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The Effect of Water Table Depth on
Steady-State Heat Transfer Through a
Slab-on-Ground Floor

A. E. DELSANTE*

The effect of water table depth and temperature on the total heat flux through a stab-on-ground
floor has not been previously analysed explicitly. In this paper the tvo-dimensional problem is
solved using a conformal (ransformation. An expression for the total flux from the floor is obtained
and compared with the towal flux without a water table, Results are presented graphically for o
water table temperature equal to the outdoor temperature. for realistic ranges of two governing
parameters : the ratio of building width to water table depth, and the ratio of wall thickness to
huilding widith. For any water wable depth greater than the building width. the flux is found to be
within 10% of the flux withour a water tuble.

INTRODUCTION

THE PROBLEM of calculating heat losses {rom slab-
on-ground floors has been tackled in a variety ol ways,
ranging from analytical treatments using simplified
boundary conditions (e.g. [1-3]). semi-analytical treat-
ments with possibly more realistic boundary conditions
(c.g. [4-6]). through to fully numerical treatments. which
in principle can deal with complex boundary conditions
(e.g. [7]). The boundary condition at some distance below
the slab is of particular interest in this paper. In the
analytical solutions of Delsante [2] and Anderson [3],
for example, the temperature was only specified at the
surface, which determined the temperature field at any
depth. Their results thus excluded the possibility of a
water table at some finite depth imposing a temperature
or other boundary condition there. Other treatments,
such as that of Krarti er al. [5], assumed a water table
with an associated temperature boundary condition, but
did not examine the effect of the water table position and
temperature on total heat losses from a floor slab.

In this paper, the two-dimensional steady-state prob-
lem with a finite water table depth will be solved using
conformal transformation, and the results compared
with those obtained in the absence of a water table.

THE MODEL AND BOUNDARY CONDITIONS

The geometry of the two-dimensional steady-state
problem is shown in Fig. |. The ground is represented by
the region y > 0; a water table at y = L at temperature
T, represents an isothermal line at this depth, and is
assumed to imposc a temperature boundary condition
there. This representation of the boundary condition
imposed by the water table is the same as was used in
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[5-7]: an alternative and possibly more recalistic rep-
resentation would be to assume that the ground thermal
conductivity changes at v = L (from a "dry’ to a ‘wet’
value) ; however this would then preclude the use of the
simple technique used here to obtain solutions. Another
representation was used by Hagentoft {8], who assumed
that the thermal conductivity was the same above and
below the water table, and calculated the heat removed
by a given flow rate of water.

The thermal conductivity of the ground above the
watcr table is assumed to be uniform. and equal to that of
the floor slab (a reasonable approximation for concrete).
The building floor extends from —a to a, with walls of
thickness d placed at a and —a. To simplify the geometry,
the floor is assumed to be flush with the ground surface.
A surface temperature boundary condition will be
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Fig. [. Boundary conditions and geometry of the model for a

slab-on-ground floor with a water table. The ground is the

two-dimensional region y > 0, with a water table at y = L at

temperature 7,,. The floor extends from —a« to a, and walls of

thickness d are placed at —a and a. The surface temperature
boundary condition T(x,0) is also shown.
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assumed to allow analytical solutions to be obtained. A
more realistic boundary condition would be the tem-
perature of the air above the slab (see Delsante [2] for a
treatment of this case in the absence of a water table).
However, for the purposes of comparing heat losses with
and without a water table, the surface boundary con-
dition should be adequate. We may assume that the tem-
peratures have been scaled so that the indoor surface
temperature is one, and the outdoor surface temperature
is zero. Furthermore, we assume that the surface tem-
perature changes linearly from its indoor to its outdoor
value over the wall thickness. This is the simplest way of
ensuring a continuous change from indoors to outdoors;
a discontinuous change in the surface temperature
boundary condition at the slab edge leads to intractable
divergences in the heat flux there (although it does not if
the boundary condition is the temperature of the air
above the surface), and is therefore undesirable.

For ease of transformation, let us rescale lengths by
n/L, so that the water table is at y = 7, and let x = an/L
and § = dn/L denote the rescaled building half-width and
wall thickness respectively. Figure 2 shows the rescaled
geometry, with points of interest indicated by the letters
A to J. In the steady state the temperature field T(xv, y)
satisfies

V3iT(x.y)=0;
L, |xl <2
T(x,0) = 0, |x|=a+4,
(@+0—|x])/d, a<|x|<a+d;
TEm)= T,
Consider now a conformal mapping from the complex
plane z = x+iy to the complex plane w = u+iv, given
by
w = exp(z).

Applying this transformation to Fig. 2, where (x,»)
plane is taken to represent the complex plane, yields Fig.
3, in which it can be seen that the water table at z = x+in
has been transformed to the region u <0, v = 0. The

transformation of the points of interest 4 to J is also
indicated.
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Fig. 2. As for Fig. |, with dimensions rescaled by n/L, so that
the water table is now at y = =, with « = an/L and 6 = dnL.
Points of interest are indicated by the letters 4 to J.

In the w-plane, the temperature field T(w v) is still
harmonic and therefore satisfies

V3T(u,v) =0;

1 T, u<?O,

0, 0<u<exp(—a—97),

(a+d+1n (w))/d,
exp(—a—90) <

T(u,0) = I, exp(—a)<u

(2490 —1n (w))/0,
exp (o) < u < exp (x+9),

0. u>exp(a+9)

u < exp ( _a)7
< exp (%), M

SOLUTIONS

Equation (1) is a problem for Lhe semi-infinite solid
with a surface temperature boundary condition only, the
solution of which has been given by Anderson [3] as

1= 2
T(u.r) = ﬁ Jl ; m T(I.O) de. (2)

Before proceeding with the calculation of the total flux
from the slab. we note that (1) and (2) may be used to
obtain the temperature field for a step change in the
surface temperature (i.e. for § = 0). The result is

e‘cosy—e™"
efsiny

X <
efcosy—e
—arctan{——— |, (3)

: e* sin p

valid for all x and y (although care must be taken at
y =0). This expression may be compared with that
obtained by Krarti e al. [5] for identical boundary con-
ditions. They give the result in two parts, one valid for
x < —a, the other for —x < x < 0 the temperatures for
x > 0 are the same because of symmetry). For x < —a
their result is identical to (3), but for —a < x < Oitisnot;
furthermore their two expressions are not continuous at
x = —a, although their graphed isotherms appear to be.
Within the accuracy limitations of the graphs, (3) appears
to reproduce their isotherms very well.
The total heat flux from the slab, @, is given by

Ty 1
T(x,y) = = +7—t arctan

* oT
o= 4] a
- ay r=0
or
exp (x) aT
O = —k—| du, 4
.[xpt—m) o ju_o “

where k is the thermal conductivity of the ground. From
(1) and (2), we find

oT
ov

T, 1
veo MU TUO

x [Inju—exp (—a)| —Inlu—exp (—a—9)|
—In|u—exp (a+38)| +Inju—exp (@)|]. (5)
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Fig. 3. Effect of applying the conformal transformation w = u+iv = exp (z) to the complex plane = = x+iy

of Fig. 2. showing the location of the transformed points A4 to J. The water table at y = = has been
transformed to the region « < 0. v = 0. The linear change in the surface temperature of Fig. 2 has been
transformed to a logarithmic change.

Subsituting (5) into (4) gives, after some manipulation,

Dk 2/\' I - exp(—22) 1
1D=L(I—T“)——_[J —Ldr
n 7| Jo | —1

I—c.\p(AZx-—n')l 3
—J —n—dr]. 6)
I —exp(—9) 1—1

An cxplicit expression tor the integrals in (6) is not avail-
able. However, we can use the expansion

to obtain
ln t x t" x f"
——dt=Int¢ —— —
Jl—t ugl n Il;l n-
or
In ¢ =2

l—_—ldt= —Intin(l—=0— )

x

0
R

Applying (7) to (6) gives

20k 2k I —exp (—20—9)
=Rty ['"( [—exp(=5) )

20 | —exp(—2a—9) 2k 21
+€l“( [—exp (—29) >]+EE,§,P
x [(1 —exp (—2a))" + (L —exp (= 6))"

—(l—exp(—20—4))"L (®)

This expression can be checked in the limit of infinite
water table depth, L — co. In this limit, « — 0, J — 0, and
a/d (i.e. a/d) remains constant, since lengths have been
scaled by /L. Hence the total flux in this limit.®,
obtained by expanding the exponentials in (8), is given

by
2k 200+ 0 2 20040

This is the result obtained by Delsante et al. [1] and
Anderson [3].

The infinite series converges rapidly enough to allow
(8) to be readily used for practical calculations : typically,
50 terms give an accuracy of better than 0.2% for par-
ameter ranges typical of buildings (see below).

RESULTS AND DISCUSSION

In assessing the effect of water table depth on the heat
flux, the parameters of interest that arise are the ratio of
building width to water table depth. 2a/L, and the ratio
of wall thickness to building width, d/2u. Let y = 2a/L
and f = d/2a; then (8) can be written as

L—exp (—my(1 +5))
I —exp (—n7p)

k
O =9k(1-T,)+ 2; [ln(

+1ln<1—exp(—nv(l+ﬂ»ﬂ+n2{c F 1

B | —exp (—my) BB, n
x [(1—exp (—7y))" + (I —exp (—nyp))”
—(I—exp(—=my(1+p))"]. (10)

Equation (10) gives the total flux from the slab for a
continuous surface temperature boundary condition as a
function of water table depth and temperature. Krarti et
al. [5] give a graph showing the effect of water table depth
on the heat flux distribution along an uninsulated slab
(i.e. the flux as a function of x at y =0) for a dis-
continuous surface temperature condition. As would be
expected from their temperature boundary condition, the
flux diverges at the slab edge. More importantly, it can
be seen from (10) that the total flux from the slab will also
diverge with this boundary condition. Such divergences
confuse the interpretation of the results, and illustrate
the importance of imposing a continuous surface tem-
perature condition (or alternatively locating the step
change in surface temperature in the centre of the wall,
say, and only integrating up to the wall; for example
see [3]).
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Fig. 4. Ratio of total flux from a floor with a water table at finite depth to the total flux in the absence of

a water table. as a function of two parameters : the ratio of building width to water table depth. and f. the

ratio of wall thickness 1o building width. Beta ranges [rom 0.005 1o 0.05 in steps of 0.005. The water table
temperature has been taken as zero, this is. equal to the outdoor temperature.

From (9), the total heat flux for a water table at inifinite
depth is given by

2%
O, =—[n(+UH+UAInA+AL (1D

The flux ratio ®/®, has been calculated for
0.1 <7<10.0 and 0.05< f<0.005 (for a building
width of 10 m. these ranges correspond to a water table
depth between 1 m and 100 m. and a wall thickness
between 0.05 m and 0.5. which cover the dimensions of
interest). The results are presented in Fig. 4. in which the
water lable temperature has been taken as zero. that is,
equal to the outdoor temperature. This is a reasonable
choice for the purposes of presenting the results graphi-
cally. although other values may well be equally realistic.

Figure 4 shows that for any water table depth greater
than the building width (3 < 1), the increase in heat loss
attributable to the water table is small. being less than
10% . Hagentoft [8] reached a similar conclusion via a
somewhat different route, using a numerical analysis

that took into account the ground water flow rate. the
permeability of the soil. and insulation over the slab, with
a step change in the surface temperature at the edge.

It is interesting to note that for constant § the flux ratio
increases with increasing 8. This can be understood as
follows: for a water table at infinite depth. an increase in
p implies a decrease in building width at constant wall
thickness. or an increase in wall thickness at constant
building width ; in either case the total flux will decrcase
to zero as f approaches infinity, since the second case
can be rescaled to the first. For a water table at finite
depth. an increase in f is cquivalent to a decrcase in
building width and a decrease in water table depth by
the same proportion. suggesting that the flux approaches
a non-zero constant. This can be seen from (10). which
shows that the flux approaches ky(1-T7,) as fi
approaches infinity ; therefore the flux ratio increases. As
f approaches zero. the flux ratio approaches one. This is
because both (10) and (11) diverge at the same rate. since
in this limit the surface temperature approaches a step
change at the slab edge.
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