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Abstract

In this paper, we present efficient fully automatic generation algorism of 2D triangular and
3D tetrahedral FEM mesh with arbitrary mesh size control. In the first step, relatively coarse
mesh with small number of elements is generated. Then recursive local subdivision is
performed until all elements satisfy the requested mesh size distribution.

We also present local element conversion algorism from triangular and tetrahedral mesh.
Unstructured 2D quadrangular(3D hexahedral) mesh with arbitrary grid density distribution is
generated automatically by simple convérsion procedure from triangular(tetrahedral) mesh.

Using our method, 3D wind flow in actual model cases are computed using FEM solver and
good results are shown.

1. INTRODUCTION

Finite Element Method(FEM) is a very excellent simulation technique because it can compute
physical phenomena occurring in variety of objects with minimum distortion or modification of
their original shapes. Further more, it potentially provides availability of optimized mesh size
control which distributes computational errors most rationally under given precision requests.
However, creation of mesh using existing mesh modelers is often very time consuming and
complicated, and therefore it is quite difficult to fully make use of the advantageous features of
FEM.

Automatic mesh generation is the most powerful problem shooting approach and number of
such works have been reported[1-8]. While many of the reported techniques can provide
excellent 2D and 3D mesh with complex geometry and optimal mesh size control, there are still
considerable problems to be solved such as CPU cost, implementation difficulty, restriction of
model shape, etc. Further more, no automatic generation of optimal unstructured 3D hexahedral
mesh seems to have been achieved even though majority of 3D FEM simulation solvers use
hexahedral mesh.

We have been studying on turbulent fluid flow analysis using FEM in 2D and 3D. Under
strong requirements in pre-processing (mesh generation) and even post-processing
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(visualization), we have developed 2D and 3D mesh generation system. This paper describes
the algorism of our method which consists of generation of coarse triangular (tetrahedral) mesh
which we call base mesh, and recursive subdivision to provide optimal mesh size distribution in
very efficient manner. We are also presenting mesh element conversion algorism to generate
quadrangle(hexahedral) mesh. Throughout this paper, similar approach for both 2D and 3D
problems are described.

2. RECURSIVE SUBDIVISION

Most of the existing automatic mesh generators create meshes which are totally usable for
FEM solvers. But in some applications like 3D fluid dynamics, considerable number of
elements are required, and performance of mesh generators must be high. In addition to that,
strong requirement of arbitrary mesh density control to minimize the solver computation cost
makes the load of mesh generators even heavier. )

Recursive subdivision approach can be one of the solutions for some applications. Mesh
generators only have to output coarse mesh with minimum number of elements. Subdivision
procedure is performed element by elemerit recursively. Since it requires only local processing,
'quite efficient execution is possible, and it is very advantageous especially in 3D simulation.

2.1 2D Subdivision

For each triangular element, its size is compared to the given size function S(x,y). Any of the
three edges longer than the requested size are divided into two. When all elements have been
checked; then for each element, one of three division procedures illustrated in Figure 2.1 is
executed according to the number of divided edges included in the element, This two phase
procedures are executed recursively until all the size of elements are small enough to guarantee
the requested mesh size. Finally, smoothing process is performed to improve quality of the
mesh.
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Fig.2.1 Subdivision of a Triangular Element

2.2 3D Subdivision

2D triangular subdivision can be extended to 3D tetrahedral subdivision, though some
topological difficulties arise. Four procedures illustrated in Figure 2.2 are used for subdividing
elements. When there are some elements which cannot be divided by any of these procedures,
additional edge division is performed until every elément subdivision is possible using any of
the four procedures. Fig 2.3 shows haw the subdivision works.
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Fig.2.2 Subdivision of a Tetrahedral Element

of Tetrahedral Mesh

3. MESH CONVERSION

We have described about the n'iéngular and tetrahedral mesh generation. Element type of
FEM simulation depends ‘completely on designing of the solver program, and cannot be
changed easily in most cases. 2D quadrangular mesh generation techniques which have been
reported[2,6] are completely different from triangular mesh generation, and therefore one has
to develop absolutely new quadrangular mesh generator even if he already has an excellent
triangular mesh generator. It is much more convenient if the triangular mesh can be converted
into quadrangular mesh. The same analogy can be considered in 3D, too. In this chapter, we
describe about such conversion to generate both 2D quadrangular and 3D hex ahedral mesh.

3.1 Triangle Quadrangle Conversion .

There are two basic procedures shown in Figure 3.1 as creating four quadrangles from two
adjacent triangles(Type 1), and creating three quadrangles from one triangle(Type 2). For all
original triangles, either Type 1 or Type 2-procedure is executed. Type 1 procedure is only
available when both of the following conditions 1) and 2) are satisfied.

1) Two unprocessed triangles T1 and T2 are connected by one edge.

2) Both 61 < Omax and 62 < Omax are satisfied.

(Where @max is chosen to 170 degree.)

First, execute Type 1 procedure to as many triangle pairs as possible, and then execute Type 2
procedures to all the rest of triangles. Since Type 2 procedure Creates more distorted
quadrangular elements than Type 1, the important point is how to select as much Type 1
triangle pairs. Figure 3.2(a) is an example of original triangular mesh, and (b) is the result of
triangle quadrangle conversion. . ) 3 ‘ ’

The basic conversion step generates quadrangular mesh which is still highly distorted. So
smoothing procedure is necessary to improve the quality of the rlngsh.; Smoothing is done by
moving each node toward the centroid of all its direcﬂy; linked nodes.by edges, while boundary
nodes should be moved only on the corresponding boundary lines. Figure 3.2(c) is a smoothed
quadrangular mesh.
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(b) Type2 conversion (a) Original  (b) Converted  (c) Smoothed
Fig.3.1 Triangle Quadrangle Conversion Fig.3.2 Af Example of Triangle Quadrangle Conversion
- (Original: 814 nodes & 1544 elements
Converted:3203 nodes & 3120 elements)
3.2 Tetrahedron Hexahedron Conversion : 5 :

There are only one basic procedure possible shown in Figure 3.3 a$ dividing one tetrahedron
into 4 hexahedra though this procedure tends to create distorted hexahedral elements. However,
this method seems to be the only possiblé way currently available to generate unstructured
hexahedral mesh with arbitrary density control with 'kf'ully automatic procedure. If the designing
of the solver secures that it is not severely affected by element disiortion, advantage of this
method will be very large. ' : T

Figure 3.4 is an example of tetrahedron hexahédron conversion in a cubic domain. (a) is the
original tetrahedral mesh, (b) is the subdivided result, and (¢) is the smoothéd résult of (b).
Figure 3.5 is the 3D tetrahedral mesh of a test example of air flow simulation around a unit
cube. (a)and(b) shows the boundary surface. (c)and(b) shows the cross-section element
surface by a vertical plane. Figure 3.6 is an example of 3D hexahedral mesh with complicated
boundary for air flow simulation.

Fig.3.3 Tetrahedron Hexahedron (a) Original (b) Converted  (c) Smoothed
Conversion Fig.3.4 An Example of Tetrahedron Hexahedron
Conversion, (Original: 68 nodes & 198 elements
" "Converted: 1024 nodes & 792 elements)



(a) Boundary surface 1 (b) Boundary surface2

. (¢) Cross-section 1 el (d) Cross-section 2
Fig.3.5 3D Hexahedral Mesh for Wind Flow Simulation around a Cube.
(85.991 nodes 75.488 elements)

Fig 3.6 3D Hexahedral Mesh for Wind Flow Simulation around buildings
‘ (121,563 nodes & 105,816 elements)
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4. CONCLUSION

3D FEM mesh generation techniques and application have been presented. We have
developed an automatic mesh generation system which can generate 2 dimensional triangular
and quadrangular mesh as well as 3 dimensional tetrahedral and hexahedral mesh. And it is
remarkable that a method of automatic generation of unstructured hexahedral mesh is indicated
and tested on a wind flow simulation. We consider that high quality unstructured hexahedral
mesh generation has a strong impact to the world of computer simulation.
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