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Abstract
In this paper, we present efficient fully automatic generation algorism of 2D triangula¡ and

3D tetrahedral FEM mesh with arbitrary mesh size control. In the fust step, relatively coarse

mesh with small number of elements is generated. Then recursive local subdivision is

performed until all elements satisfy the requested mesh size distribuúon.

We also present local element conversion algorism from triangular a¡rd tetrahedral mesh.

Unstructured 2D quadrangula¡(3D hexahedral) mesh with arbitrary grid density distribution is

generated automatically by simple conversion procedure from triangular(tetrahedral) mesh.

Using our method, 3D wind flow in actual model cases are computed using FEM solver and

good results a¡e shown.

I.INTRODUCTION

Finite Element Method(FEM) is a very excellent simulation technique because it can compute

physical phenomena occurring in variety of objects with minimum distortion or modification of

their original shapes. Further more, it potentially provides availability of optimized mesh size

control which distributos computational errors most rationally under given precision requests.

However, creation of mesh using existing mesh modelers is often very time consuming and

complicated, and therefore it is quite diffrcult to futly make use of the advantageous features of

FEM.
Automatic mesh generation is the most powerful problem shooting approach and number of

such works have been reported[1-8]. While many of the reported techniques can provide

excellent 2D and 3D mesh with complex geometry and optimal mesh size control, there a¡e still

considerable problems to be solved such as CPU cost, implemenøtion difhculty, restriction of
model shape, etc. Further more, no automatic generation of optimal unstructured 3D hexahedral

mesh seems to have been achieved even though majority of 3D FEM simulation solvers use

hexahedral mesh.

We have been studying on turbulent fluid flow analysis using FEM in 2D and 3D. Under

strong requirements in pre-processing (mesh generation) and even post-processing
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(visualization), we have developed 2D and 3D mesh generation system. This paper describes
the algorism of our method which consists of generation of coa¡se triangular (tetrahedral) mesh
which we call base mesh, and recursive subdivision to provide optimal mesh size disrribution in
very efficient manner. We are also presenting mesh element conversion algorism to generate
quadrangle(hexâhedral) mesh. Throughout this paper, similar approach for both 2D and 3D
problems are described.

2. RECURSIVE SUBDryISION

Most of the existing automatic mesh generators create meshes which are totally usable for
FEM so'lve¡s. But in some applications like 3D fluid dynamics, considerable number of
elements are required, and performance of mesh generators must be high. In addition to that,
strong requirement of arbirrary mesh density control to minimize the solver computation cost
makei the load of mesh generators even heavier.

Recursive subdivision approach can be one of the solutions for some applications. Mesh
generators only have to oulput coa¡se,mesh with minimum number of elements. Subdivision
proceclure is performed elemeht by element recursively. Since it requires only local processing,
quite eff,rcient execution is possible, and it is very advantageous especially in 3D simulation.

2.1 2D:Subdivision
For edch triangular element, its size is compared to the given size function S(x,y). Any of the

three edges longer than the requested size are divided into two. Vy'hen all elements have been
checked; then for each elemcnt, one of three division procedures illustrated in Ì,igure 2.1 is
executed according to the number of divided edges included in the element. This two phase

procedures a¡e executed recursively until all the size of elements are small enough to guarantee
the requested mesh size. Finally, smoothing process is performed to imþrove quality of the
mesh.

(a) (b) (c)
divZ div3 div4

Fig.2.l Subdivision of a Triangular Element

2.2 3D Subdivision
2D triangulal subdivision can be extended to 3D tetrahedral subdivision, though some

topological difficulties a¡ise. Four procedures illustrated in Figure 2.2 are used fbr subdividing
elements. Vy'hen there are some elements which cannot be divided by any of these procedures,
additional edge division is performed until every element subdivision is possible using any of
the fcrui procedurès. Fig2.3 shows haw the subdiviSion works.
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Fig.2.3 An ExamPle of Subdivision

of Tetrahedrat Mesh

3. MESH CONVERSION

We have Sescribed about the triangular and tetrahedrat meitr generation. Element type of

FEM simulation depends completely ón designing of the sQlver program' and cannot,be

changed easity in .når, 
"ur"r. 

2b quadrangular mesh generation techniques which have been

reported[2,6] are completely differint from triangular mesh generation, and therefore on:,hu:

to a"uAÀp absolutelyne*'quaOrangola¡ mesh generatof 
9ve1 

if he already has an excellent

triangular mesh generator. It is mucþ more convenient if the triangular mesh can be converted

into [uadrangulir meqlr. The same anatogy can be considered in 3D, too. In this chapter, we

describe about such conve¡sion to generate both 2D quadrangular and 3D hexahedral mesh'

3.1 Triangle Quadrangle Conversion

There are two basic procedures shown in Figure 3.1 as creating four quadrangles frqm two

adjacent triangles(Type 1), and creating tl¡ee quadrangles from one triangle(Tpe 2)' For all

original triangtes, either.Type 1 or Type Z.procedure is executed. Typ" t procedure is only

available when both of the fqllowing conditjons 1) and 2) a¡e satisfied.

1) Two unprocessed tiangles Tr and Tz arê connect"'d by one edge'

2) Both 0l < 0,,r", and 0z < 1r¡w arc satisfied'

(rilhere Oz¡¿x is chosen to 170 degree.)

First, execute Type 1 procedure to as many triangle pairs as possible, and then execute Type 2

procedures to all the rest of triangles. Since Type 2 procedure creates more distorted

quadrangular elements than Type t, ttre important point is how to select as mUch Type 1

ùungte p"lrr. rig*" 3.2(a) is an example of original tnangular mesh, and (b) is the result of

niangte quadrangle conuersion.
g,arlerate h whiclr is-still highly distorted' So

,t-y to i of the mesh', Smoothing is done by

centroid s directly linked nodes'þy edges, while boundary

nodes should be moved only on the'coresponding boundary lines. Fiþure 3.2(c) is a smoothed

quadrangular mesh.
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(a) Typel conversion

+

Fig. 3. 3 Tetrahed¡on Hexahedron

Conversion

(a) Original (b) Converted (c) Smoothed

Fig3.4 An Example of Tetrahedron Hexahedron

Çtfiversioq (qigrnali 68 nodes & 198 elements

, Converted: 1024 nodes & 792 elements)

(b) Type2 conversion (a) original (b) converted (c) Smoothed
Fig.3.1 Triangle Quadrangle Conversion Fig.3.2 Aii Example of Triangle Quadrangle Conversion

(Original: 814 nodes &.1544 elements

Converted:32O3 nodes &. 3l2O elements)

3.2 Tetrahedron Hexahed¡on Conversion
There a¡e only o¡re basic procedure possible shown in Figure 3.3 as dividing one tetrahed¡on

into 4 hexahedra though this prcrcedure tends to create distorted hex'ahed¡al çlements. ÞIowever,

this mçthod seems tò be the only possible way c-urrently available to genèrate uristructured

hexahed¡al mesh with arbitrary density contol with fully automatic proçe,dure. If tþe designing

of the solver:secrr€S that it is not severely affected by element distortion, advantage of this

method will be very large.

Figure 3.4 is an example of tetrahedron hexahéd¡on conve¡sion in a cubic domain. (a) is the

original tetrahedral mesh, (b) is the subdivided result, and (c) is the smoothèd résult of (b).

Figwe 3.5 is the 3D tetrahedral mesh of a test example of air flow simulation a¡ound a unit

ôu¡e. (a)and(b).shows the boundary surfàce. (c)and(bj shows the cross-section element

surface by a vertical plane. Figure 3.6 is an example of 3D hexahedral mesh with complicated

boundary for air flow simulation.
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(a) Boundary surface I

, (c) Cross-section 1

Fig.3.5 3D Hexahedral Mesh for'Wind Flow

(b) Boundary surface2

(d) Cross-section 2

Simulation a¡ound a Cube.
elements)185.991 nod.es 75.488

Fig 3.6 3D l{exahédral Mesh forwind Flow simulation around buildings

(121,563 nodes & 105,816 elements)
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4. CONCLUSION

3D FEM mesh generation techniques and application have been presented. We have
developed an automatic mesh generation system which can generate 2 dimensional triangular
and quadrangula¡ mesh as well as 3 dimensional tetrahedral and hexahed¡al mesh. And it is
rema¡kable that a method of automatic generation of unstructured hexahed¡al mesh is indicated
and tested on a wind flow simulation. We consider that high quality unstructured hexahed¡al
mesh generaúon has a strong impact to the world of computer simulation.
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