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Abstract

This paper investigates the role of turbulence models in numerical calculations of flow
over obstacles with second-moment closure models. Two models for the pressure-strain
correlations are examined in the study. Computations of the main characteristics of the mean
flow and the turbulent fields are compared against experimental data, and results obtained
with the standard k-¢ model. All models give reasonable agreement with the data. In the
limited region in which comparisons were made, the k-¢ model gives the best agreement
with mean flow data, and the LRR model gives better agreement with Reynolds stress data.

1. INTRODUCTION

The flow over obstacles is encountered in many engineering applications in internal or
external environments. This paper explores the role of the turbulence model in calculations
of two-dimensional flow over a rectangular obstacle in a channel. A recent study of second-
moment closure models by Demuren and Sarkar[1] has shown significant influence of the
model for the pressure-strain correlation on the distribution of Reynolds stresses in plane
channel flows. The most successful models in that study were those due to Launder, Reece
and Rodi[2] (denoted LRR), and Speziale, Sarkar and Gatski[3} (denoted SSG). The latter
has the advantage that it could reproduce correctly variations in Reynolds stress anisotropies
between the log-layer and the core near the center of the channel without any special wall-
proximity modifications, whereas the former required wall reflections terms to achieve this.
Both models are utilized in the present study, and computed results are compared to those
with the standard k-¢ turbulence model and experimental data of Dimaczek et al. [4]. In
(1], three models for approximating the turbulent diffusion terms in the Reynolds stress
equations were examined. These are based on proposals by Daly and Harlow[5] (denoted
DH), Hanjalic and Launder[6] (denoted HL), and Mellor and Herring[7] (denoted MH). It
was found that only the MH model enabled the reproduction of the experimentally observed
relaxation towards isotropy near the center of the channel. Hence, the MH model is utilized
in the present study.
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flow thereby Minimizing artificial diffusion. (p the other hand, discretization eIrors may
be increased in regions with Tapid changes in grid curvayre, These are confined to the

2. M ATHEMATICAL FORM ULATION

2.1 Mean Flow Equations

The Reynolds-averaged mean-flow €quations for steady, incompressible turbulent iy
can be written in Cartesian tensor notation as: . : ) ’
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of the Revnolds stress tensor, Rii which must be determined by the turbuience model. Ip
the two-dimensiona] flow, with wails in the (1-3) and (2-3) planes, 3%; =0 in equationg

) _and (2), and Rit will haye only 4 non-zerq Components; the three diagonal elements

uf, n3 and u? which Tepresent the norma] stresses, and ope off-diagonal elemen T3 which
Tepresents the shear Stress. .




2.2 Reynolds Stress Equations

The transport equations for the Reynolds stress components can be written for high
- Reynolds number turbulent flow in Cartesian tensor notation as:

- | s ‘:‘. 8 (|J|Umu1uJ ) |J|( ij + Pij + mij — eij) 3

“where ’ Djj is the dlfoSIOI’l P;; is the productlon mjj is the pressure-strain correlation, and
" g 1s the’ d1ss1pat10n rate.

The production term is Pyj = -—ulul ax a, — Uy gU of"; and the dissipation is assumed
to be locally isotropic so that e; = 2/3 é;;¢, where ¢ is the dissipation rate of the turbulent
kinetic energy k, to be determined from the solution of a transport equation.

The MH model gives Dj; as
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This is a gradlent d1ffus1on model with isotropic coefficient. The symmetry in the indices
ijk is preserved, unlike in the more popular DH model.

| 2.3 Pressure-Strain Models

By far the most popular approximations for the pressure-strain correlation are. the .two
LRR models. Although the simpler version (model 2), based on the isotropization of
production, is more widely used in complex flow applications, the quasi-isotropy‘version
(model 1) is preferred for channel flow computations because it produces the correct level
of the anisotropy in Reynolds stresses, in the equilibrium log-layer. It also has a form which
is closer to those of newer, more complex, pressure-strain models. In their model 1, LRR
proposed to account for wall-proximity effects by making coefficients in the expressions
functlons of the average distance from walls. In model 2, usually called the Gibson-Launder
model, they are treated as wall-reflection terms. These wall-reflection terms are not near-wail
corrections in the conventional sense, since they are apphcable to the fully turbilent reglon
beyond the vxscous sublaycr and the buffer zone, and they still have significant contiibutions at
the center of the channel, However, theré is uncertainty as to how rapidly the functions should
decay with dlstance from walls, and in flows with corners or with complex geometries the
treatment of wall reflection terms may becorie ambiguous. For example, in the computations
of Ob1 et al.[9], these terms were simply set to zero at distances beyond 100 wall units.
Hence, it is now generally accepted that the need for speCIal wall-proximity treatment is
an uhdesirable feature in a pressure-strain model. Recently, Speziale, Sarkar and Gatski[8]
(denoted SSG) proposed a model for the pressure-strain correlation based on an invariant
dynamical-systems approach. The model was calibrated with results from experimental and
theoretical studies of homogeneous and rotating homogeneous shear flows. The resulting
model appears to be only slightly more complex than the quasi-isotropy model of LRR.
Demuren and Sarkar [1] have found that the SSG model could predict the Reynolds stress
anisotropy levels in developed channel flow without the use of any wall reflection terms, at
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least as well as the LRR model with wall reflection terms. This is a desirable quality and it
is of interest to compare the performance of both the LRR and SSG models.

The pressure-strain models can be written in terms of the anisotropy tensor

by; = (T /2k — 16i5), the rate of strain tensor Si; = -;—(-%U:‘a]’" 4 ggf:a}"), the rotation

tensor Wy = %S%‘::a;“ — %a}"), and the rate of production of turbulent kinetic energy
Py in the general form :

T = aoeb,']' + alf(bikbjk - 1/311(5&) + asz,‘j -+ angb'j + ®)

+E{ o (b S + bk Sik — 2/3_&"}'5“5%1) + as (b Wk, + by W) }
The model coefficients o . . . as may be; in géneral, functions of the invériants of the
anisotropy tensor. ‘The corresponding relations for the two pressure-strain models are
a=—3.0-f)a1 =0;a9 = 0.8;a3 = 0; 4 ="1.745; &5 = 1.309 — 0.24f : for the LRR
model, and oy = =340 = 4.2, = 0.8 — 1.3111/7';(13 = =18 aq = 1.25;05 = 0.4 :

. 3/4 ’ . . . . . -
for the SSG model. f = 5;;‘7%/2 is the wall-proximity function. n is calculated in

this study as the shortest distance 0 any wall. II = by by is the second invariant of the
Reynolds stress anisotropy tensor. ‘ C

2.4 k-¢ Model

- Calculations were also made with the standard high-Reynolds number form of the k-
turbulence model. The equations for k and € can be expressed in tensor notation as:

o Y= 0 fRk 0k Ny pep,
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This standard form of the ¢ equation is also used to close the Reynolds stress equations,
This deviates somewhat from the common practice in the literature in which anisotropic
diffusion coefficients are used which depend on the Reynolds stress anisotropies. Equation
(7) avoids this dependency and should enable the role of the pressure-strain model to be
better isolated. The empirical constants are : o= L0; 0¢ = 1.3; ¢y = 1.44; c¢p =1.92:
¢y =0.09; x = 0.40. L] R
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2.5 Solumon ProCedure
The set of equat1ons is solved by a two-dimensional, finite volume, numerical procedure
which'uses anon-linear multlgrld method to accelerate the convergence. ThlS follows closely
2 thet three d1mens1onal ﬁnlte volume method’ described in detail by Demuren[lO] On the
coarsest level, 27 by 10 grid points are-used in the (x1,x2) directions as shown in Fig. 1 (a).
‘Al variables are stored at the center of the cell in a non-staggered arrangement. Finer grids
are generated by halving each side. A 4-level multigrid scheme is utilized for the finest grid
which has 210 by 74 points. The distribution in the vicinity of the block is shown in Fig.
1 (b).. On th1s .grid convergence to a normalized residual norm of 1073 required about 450
fine gnd iterations and a total of 720 work units at a cost of 480 CPU seconds on the CRAY
YMP computer, when the k-¢ model was utilized, and 780 fine grid. iterations, 1200 total
work umts and 3000 CPU._seconds when the Reynolds stress.models were utilized. Better
Lonvergencc rates could probably be obtained with optimization of the procedure.
The objective, of this work is to compare the behavior of established turbulence models,
) computat1ons are for the high Reynolds number flow region only, in which the viscous
© sublayer is not resolved ‘but is br1dged using the standard wall- function method. Flow
separation; along the lewer wall calls into ‘question the approprlateness of standard wall-
function method. To alleviate the difficulties which occur when Uy goes to zero at the point
of separation it is replaced by c, Y41/2 i the log-law, following Obi et al.[9]. Along the
line of nodes nearest to the walls, local ethbnum is assumed: k = Ur? /¢, 1% ; € = Up°
/(xn) ; and in the horizontal direction, =107k u% =041k ;u}=052k; uug =—
0 30 k The values for uf, and u% are - transposed 41 the vertical direction, and interpolated
using cosine functions for gnd lines which lie in between. Inlet conditions are derived from
computed results fora fully developed plane channel flow at a Reynolds number (based on
mean velocity and channel height) of 105, using the SSG model.

3. RESULTS AND DISCUSION .
" Predictions of the mean streamwise velocity' and the turbulent kinetic energy at two
locations downstream of the block are compared with experimental data [4] in Fig. 2.
Similar to findings of Obi et al. [9], the prediction of the mean flow obtained with the k-¢
model agrees bettcr with the data than those pbtained with the Reynolds stresy models. Both
‘Reynolds stress moclcls give slmll__a: predictions of the mean flow. Experimental data give the
length of the recirculation zone behind the block as 7.1 block heights.. The computations with
the k-¢, LRR, and the SSG models .give the length as 6.6, 6.7, and 7.3 heights, respectively.
These are all within the range of the experimental uncertainty. Mean flow results are relatively
grid independent, since computed results on third- and fourth-level grids indicated changes
in the peak cross-sectional velocity and the recirculation length which were less than 2 %.
However, peak values of k showed larger changes, so predicted turbulence fields may not
be grid independent, and the discussion below is made with this reservation.

Figure 2 shows that the k-¢ model gives k values which agree quite well with the data at
yi/H=5, but are underpredicted at y;/H=9. Both the LRR and the SSG models underpredict
k at y1/H=5, but the LRR model gives the correct maximum value at y;/H=9, although not
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at the right location. The SSG model still underpredicts k at the latter location. These results
agree with findings of Demuren and Sarkar[11] in plane mixing layer computations, in which
it was found that only the LRR model predicted the correct maximum turbulence intensity
level. Both the SSG model and the k-¢ model underpredicted it,

Predicted Reynolds stresses are compared in Figs, 3 and 4. Neither model gives
perfect agreement with the data; but on the average, the LRR mode] appears to perform
better. Clearly, the underprediction of k by the SSG model shows up in the distribution
amongst its components, Present predictions with the LRR model agree somewhat better
with experimental data than results presented by Obi et al. [9]. This could be due to
differences in the form of the model, the grid distribution, or in the inlet conditions. A
surprising observation is that the experimental data indicate very little anisotropy in the
Reynolds stresses. For example, at y;/H=5, almost perfect agreement is obtained (not shown)
by splitting the k values equally into its three components, i.e., assuming complete isotropy.
This level of isotropy is not obtained with either Reynolds stress model. The mechanism
for producing this in the experiment is not clear at this time. Clearly, plane channel fows
and plane mixing layers, which may be combined to synthesize the present flow are highly
anisotropic. Further investigation is needed to explain this. Perhaps, new results from large
eddy simulation will provide some answers,

4. CONCLUDING REMARKS

Computations of two-dimensional turbulent flow over a rectangular block placed in a
channel were made with two Reynolds stress models and the standard high-Reynolds number
turbulence k-¢ model. The k-¢ model results agree reasonably well with the data in the region,
beyond two heights behind the block, investigated in detail. The Reynolds stress models give
reasonable, but not periect agreement with the data in this region. On the average, the LRR
model seems to perform better.
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FIGURE 2. Comparison of RSM and k—e results with
experimental data of Dimaczek et al.[4], at y,=5H & 9H.
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FIGURE 3. Comparison of Reynolds stresses.at y,=5H:

Influence of the pressure—strain model.
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FIGURE 4, Comparison of Reynolds stresses at y,=9H:
Influence of the bressure—strain model.



