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Abstract

This paper investigates the role of turbulence models in numerical calculations of flow

over obstacles with second-moment closure models. Two models for the pressure-strain

correlations are examined in the study. Computations of the main cha¡acteristics of the mean

flow and the turbulent fields are compared against experimental data, and results obtained

with the standa¡d k-e model. All models give reasonable agreement with the data. In the

limited region in which comparisons were made, the k-e model gives the best agreement

with mean flow data, and the LRR model gives better agreement with Reynolds stress data.

I. INTRODUCTON

The flow over obstacles is encountered in many engineering applications in intemal or

external environments. This paper explores the role of the turbulence model in calculations

of two-dimensional flow over a roctangular obstacle in a channel. A recent study of second-

moment closure models by Demuren and Sarkar[l] has shown significant influence of the

model for the pressure-strain correlation on the distribution of Reynolds sffesses in plane

channel flows. The most successful models in that study were those due to Launder, Reece

and Rodi[2] (denoted LRR), and Speziale, Sarkar and Gatski[3] (denoted SSG). The latter

has the advantage that it could reproduce correctly variations in Reynolds stress anisotropies

between the log-layer and the core ne¿ìr the center of the channel without any special wall-
proximity modifications, whereas the former required wall reflections terms to achieve this.

Both models a¡e utilized in the present study, and computed results are compared to those

with the standard k-e turbulence model and experimental data of Dimaczek et al. [4]. In
[1], three models for approximating the turbulent diffusion terms in the Reynolds shess

equations were examined. These a¡e based on proposals by Daly and Harlow[S] (denoted

DH), Hanjalic and Launder[6] (denoted HL), and Mellor and Herring[7] (denoted MH). It
was found that only the MH model enabled the reproduction of the experimentally observed

relaxation towards isoÍopy near the center of the channel. Hence, the MH model is utilized

in the present study.

01676105/93/$06.00 O 1993 - Elsevier Science Publishers B'V. All righs reserved.

ft



96

aligneçl wirh rhe
ation errors may
confined to the

2. MATTIEMA]ÏCAL 
FORMULATÏON

2.7 NIean Flow Equadons
The Reynolds_avera

can be *il;f"c;,:.s,:: m_ean-flow equadon

continuity 'iun 
t"nro, n"oiuä;ir:"t 

for steady, incompressibre 
turbuient flow

a

6(lJlu-o]") = ¡
(1)
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2.2 Reynolds Sfess Equations

The Íansport equations for the Reynolds sFoss components can be written for high
, Reynolds number turbulent flow in Cartesian tensor notation as:

I

. 
,,, , ,, ' fr(irlu-",'¡'l) : lJl(Di; * pi.i+ ?rij - eij) (3)

where D¡¡ is the diffusion, P¡¡ is the production, Trij is t(re pressçre.¡sfrain correlatiorr, and
e¡ is the dissipatioq rate.
' ttt" production term is Pi: = -"i"¡#cin - {tl #tT; and the dissipation is assumed
to be locally isoÍopic so that ei::213 á;1e, where e is the dissipation rate of the turbulent
kinetic energy k, to be determined from the solution of a transport equation.

The MH model gives Di¡ as

o72glTFl,* *T"T*#";"] Ø). e lðx^ 6 r)x
':

This is a gradient diffusion model with isoffopic coefficient. The symmetry in the indices
ijk is preserved, unlike in the more popular DH model.

2.3 Pressure-Strain Models

By far the most popular approximations fo¡ the pressure-sEain correlation a¡e. the .two
LRR models. Although the simpler version (model 2), based on the isoûopization of
production, is more widely used in complex flow applications, the quasi-isotrqpy¡Version
(model 1) is preferred for char¡nel flow computations because it pródnces the cor¡ect level
of the anisoúopy in ReynoldS sfiesses, in the equilibrium log-layer. It also has a form which
is closer to those of newer, more complex, prossure-sEain models. In theh' model i, LRR
proposed to acçount for wall-proximlty effects by making coefficients in the expressions
functions of the average distance from wall's. In model 2, usually called the Gíbson-Launder
model, they are treated as wall-reflection terms. These wall-reflection terms are not nea¡-wall
correôtions iir the conventional senie, since thèy are applicable to the fully turbuleht region
beyond the viscous sublayer and the buffer'zone, and they still have significant conuibutions at
the cènter of the channel. However, therð is uncertainty a¡ to how rapidly the functions should
decay with distancä frorn walls, and in flo1vs with cornefs or with complex geomefiies the
treatment of wall reflection terms may become ambiguôus. For example, in the computations
of Obi et al.[g], these terms were,simþly Set to àero at distances beyond' 100 wall únits.
Hence, it iij now genelally accepted that the need for special wall.proximity Eeattnont is
arr uhdesirable feature in a pressure-strain model. Recently, Speziale, Sarka¡ and Gatski[8]
(denoted SSG) proposed a model for the pressure-strain conelation based on an invariant
dynamical-systems approach. The model was calibraæd with results from experimental and
theoretical studies of homogeneous and rotating homogeneous shea¡ flows. The resulting
model appears to be only slightly more complex than the quasi-isotropy model of LRR.
Demuren and Sa¡kar [1] have found that the SSG model could predict the Reynolds súess
anisotropy levels in developed channel flow without the use of any wall reflection terms, at
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least as well as the LRR model with wall reflection terms. This is a desi¡able quality and itis of inte¡est to compare the performance of both the LRR and SSG models.
can be written in þ¡ms of the anisot¡opy tensorb¡ strain rensor s,¡ = i(gT;if ,^ *rf):",JJ.J;ten \

p¡ ), and the rate of procluction'of turbulent kinëtic energy

r;i : qoebij ¡ a1e(b;¡b¡* _- l/glláij) I a2kS¡¡ I asp¡b;; ¡
+k{a4(t;¡st* * b¡xS;r, - 2l'6;;bhtsk,) + .,uqu,uy, * +" b¡'*W;r)\ (5)

The model coefficients @0 . . ' 05 may be, in general, functions of the inva¡iants of theanisotropy tensor' The corresponding relations 'fo¡ the two pressue-strain models areos = -(3.0 - "f); or : 0; o,z: 0.8; ûs = 0; o¿ = l.Tk,bjr':1.ä;:õ.roy , for the LRRmodel, and o¡ : -8.4; at = 4.2;oz 
= 

0.e_.1.gyytttrr, _ li;; a+": r.2¡jas:0.4:
for the SSG model. f : ( "!' *"''\' ,. .*- .,,

thi s study as rhe sh orre s ;kTIJ" r' Jï. 
-#'];::'il'l, 

',ï 
Tll;,, l,ï:i:lï:i#Reynolds sEess anisofropy tensor.

2.4 k-e Model

' calculations \ryere arso made with the standard high-Reynolds numbsr form of trhe k_eturbulence model. The equations for k and e can b" ";p*;ilii","n];; norarion as:

afi(trtu-u*'-) =#*{l'r'f (#"r)l*j.}+ rJr(p¡ - c) (6)

ãf,(r,ru..''ò:i*{i,''f (r*"*)]*Í"} * r.rr(..,fru - "*1) e)

bEtter isolaferl. The empirical constants are :
c!,=0.09; rc=0.40. ,r



2.5 Solutioh Procedure-'- 
*.'r", of àquution, is solved by a two-dimensional, finite volume, numerical procedure

: ,,iühicltusÞs 4láòn-line'ai mùltigrid method to aicelerate the convergence. This follows closely

, , :r"'thd'thÍee-d¡mensional ffnite-volume metliod described in detail by Demuren[O]. On the

,,, , Ç9illes! heuel,Z,7 by 10 grid points are used in the (xr,xz) directions as shown in Fig. I (a).

All va¡iables are stored at the center of the cell in a non-staggeled afran$ement. Finer grids

are generated by halving each side. A 4-level multigrid scheme is utilized for the finest grid

which has zLQW 74pqints. The disnibution,in the vicinity of the block is shown in Fig.

I (b). , pn ¡his, grid convergence to a nor.rnalized residual norm of l0-3 required about 450

fine grid'iterations and a total of 720 work units at a cost of 480 CPU seconds on the CRAY
utilized, and 780 fine grid-iterations, 1200 total

the Reynolds stress,models were utilized. Better
ned with optimization of the proóedure.

are the behavior of established turbulence models,

so computations are for 49 ttigtt Reylolds number flqw region only, in which the viscous
' sublaler id notrresolved but is bridged using the standard wall-function method. Flow

separation:glong the lower wall calls into'questioh the appioþriatehess of standard wall-
function method. To alleviate the difficulties which occur wtren Ç goes to zero at the point

of separation it is replaced by cl/4k112 in the log-law, following Obi et al.[9]. Along the

line of nodes nearest to the walls, local equilibrium is assumed: k = Ur2 lcp.llz ; , =lJr3
/(rcn);and,inthehorizontaltlirection,u?=1.07k;"3=0,¿lt;4=0.52k1u1u2=-
0.30 k. .Thd values for uf and u! are ransposed riir the vertical diroction, and interpolated
usiiìg côsine functions for grid lines which lie in betweon. Inlet conditions are derived from
computed results for¡a fully-developed plane channel flow at q Reynolds number (based on
mean velociiy arid channel height) of 103, using the SSG model.
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3. RESUUIS AND DISCUSION

Predictioris of ihe mean sfi.eamwise,velicity' ànd the turbulent kinetic energy at two
locations downstream of the block are compared with experimental data [4] in Fig. 2.

the k-ei LRR, and the SSG models give thç,length as 6.6, 6.7, and 7.3 heights, respeétively.
Ttiè'ée are all within the rangè of the experimental uncertainty. Mean flow results are rel4tively
grid independent, since computed results on third- and fourth-level grids indicated changes
in the peak cross-sectional velocity and the recirculation length which were less than 2 7o.

However, peak values of k showed larger changes, so predicted rurbulence fields may not
be grid independent, and the discussion below is made with this reservation.

Figure 2 shows that the k-e model gives k values which agree quite well with the data at

YI/H=S, but a¡e underpredicted atyl¡H=g. Both the LRR and the SSG models underpredict
k at y1¡1=5, but the LRR model gives the correct maximum value at ytlÍ1--9, although not
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FIGUIIE 1. Flow configuration and computational grirls.
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FIGURE 4. Comparison of Reynolds stresses at yr=gH:
Influence of the pressure_strain model.
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