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I. INTRODUCTION 

COMPUTER models are increasingly being used to pre­
dict the thermal performance of buildings . For a new 
huilding they may be used at the design stage to determine 
aspects of the design, or to ensure compliance with regu­
lations. For existing buildings they may be used to com­
pare rival upgrade options. On a national level they can 
give guidance as to the energy saving potential of chosen 
alternative strategies. In the U.K., for example. the 
Department of Energy Pa sive Solar Programme makes 
extensive use of building thermal simulation models to 
predict the energy savings which can be obtained by 
incorporating passive solar design features in buildings. 

In a ll such applications it is clearly important that the 
models used produce reliable predictions. and that they 
have credibility. A range of exercises can be performed 
to build confidence in the programs and. taken together. 
these are referred to as 'model validation· . The first such 
exercise is analytical testing, where the model is asked to 
make predictions for cases which are so simple that the 
correct solutions can be calculated explicitly. The second 
type of test is the intermodel comparison, in which the 
predictions of a lternative simulation programs are com­
pared. The third type of test which can be applied to a 
thermal simulation model is empirical validation. in 
which the predictions of the simulation model are com­
pared with data measured in real buildings. The whole 
process of model validation was analysed extensively in 
a recent U.K. study carried out jointly by the Building 
Research Establishment and the Science and Engineering 
Research Council (I] , and the work described in this 
paper attempts to build on the conclusions of that study. 

The appeal of empirical validation as a means of 
increasing the credibility of a building imu la lion model 
is immediately apparent. To represent a rea l build ing any 
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model inevitably makes a great many simplifications. 
Some of these simplifications may be made in the interests 
of, for example. simplifying data entry or increasing com­
putational efficiency. The impact of these approximations 
can be assessed by comparison with an alternative model 
which does not make them. Other simplifications 
however. are made of necessity rather than convenience. 
The underlying physical processes may be so complex 
that thev cannot be modelled thoroughly, or that the 
uncertai~ties associated with attempting to model them 
are so large as to render the results useless. Empirical 
validation represents the only way in which the impact 
of this second type of simplification can be assessed. 

Empirical validation may at first appear to be a simple 
task, but in practice it is extremely difficult to carry out 
convincingly. The many factors which influence the ther­
mal performance of a building interact in a complex way, 
and are closely related. When agreement between model 
predictions and measured data is poor. it can be very 
difficult 10 delermine the source of the discrepancies 
observed. More seriously, when agreement between pre­
dictions and data is good. it may only be as a result of 
several errors cancelling out. 

To explore further the form that an empirical vali­
dation project should take it is necessary to specify more 
succinctly just what can be expected from such an 
exercise . It would be unrealistic to suggest that a single 
test could in some sense 'certify' a simulation model 
as being completely satisfactory. Rather, the process of 
confidence building will be gradual, each empirical vali­
dation exercise indicating new areas of application in 
which the model may be used with confidence. 

In situations where the model performs well, and this 
good performance can be shown not to be the result of 
several errors cancelling out, credibility is immediately 
enhanced. However there is a second possible outcome 
to any validation activity: the model may fail to perform 
satisfactorily. In this case the validator will be called upon 
to identify the sources of the observed errors. Armed with 
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this information. the model developer can return to his 
or her code, and improve the performance of the model. 
Once again, credibility is increased, although this time it 
may be with the associated cost of doubt cast on previous 
predictions or the model. It is however preferable to 
have an improved model and to understand that previous 
simulation results may be uncertain than to continue to 
use a model containing errors in a state of ignorant bliss. 
In many respects validation work which finds errors in a 
model, and then allows them to be identified and rectified, 
is even more valuable than a test which simply concludes 
that the model performs acceptably in one particular 
application. 

There are thus two aims in any validation task : being 
certain that good performance implies a good model, and 
being able to identify the sources of bad performance. 
To achieve these aims, great care is required when design­
ing the empirical validation experiment, when collecting 
the data, and when carrying out the simulations for com­
parison with that data. 

Preliminary validation attempts of any kind will seek 
to eliminate as many sources of complexity and uncer­
tainty as possible . In this way the number of competing 
influences on the performance of the test building are 
minimized, making it simpler to achieve the aims identi­
fied above. In the case of empirical validation this sim­
plification will largely be achieved by appropriate choice 
of test building. Inevitably there will be a compromise in 
the choice of building-too complex a building may 
defeat the aims of validation, but a structure which is so 
artificial as to be unrepresentative will mean that the 
findings of the project will lack credibility with real build­
ing practitioners. 

In the past, individual test rooms have proved to be 
useful vehicles for empirical validation. Uncertainties due 
to occupancy. complex interactions with other building 
zones, infiltration and ground floor heat loss can be elim­
inated. At the same time such rooms can be exposed to 
real climate, can be of a representative size and can retain 
realistic construction details. The Energy Monitoring 
Company (EMC) currently operates a test facility where 
nine such test rooms are sited, and these have been used to 
provide the experimental data used in the work described 
here. The site and the test rooms are described in detail 
in [2]. 

This paper describes a model validation exercise car­
ried out at the EMC test facility. In Section 2 some of 
the problems previously encountered when comparing 
data not originally intended for validation with the pre­
dictions of simulation models are reviewed. From this 
there follows a discussion of how best to operate test 
buildings for validation purposes. and of how sub­
sequently to operate the model for the purposes of com­
parison. ln Section 3 a validation experiment using these 
improved techniques is described. Preliminary com­
parisons between the measured data and simulation 
results indicate that there arc discrepancies between the 
two. A differenti al sensitivity study is used to determine 
whether these divergences are significant, that is whether 
they are larger than could he expected due to uncer­
tainties in the inputs to the model alone. When iL is 
found that they arc. a cross-correlation/deconvolution 
technique is used to determine which driving rorces (and 

hence which areas of the model) are responsible for 
the errors. The paper concludes that test rooms have 
been shown to be a useful vehicle in which to carry out 
empirical model validation. Further work which is now 
underway is briefly described. 

2. OPTIMAL OPERATION OF TEST BUILDINGS 
AND SIMULA TlON MODELS FOR EMPIRICAL 

VALIDATION 

2. I . Rei•ien· of problems inherent in exisring daw sets 
Previous attempts al empirica l model validation using 

data rrom the EMC test roms. had revealed that the 
available data sets were not ideally suited to the task [3]. 
Two principal problems were identified: 

(a) Cross-correlation anal ysis of the resulting simula­
tion errors failed to identify correctly Lhe source of 
those errors [3] . The reason for this was found 
to be correlations between the forces dri ving the 
rooms : solar radiation. external temperature and 
auxiliary energy input. 

(b) In the interests of realism the data sets. which 
had been gathered as part of a previous project, 
featured thermostatic control of the rooms to a 
fixed setpoint for part of the day. In other words, 
a control device was used to vary the power input 
to the rooms, to achieve and then maintain a given 
temperature within each room. 

Significant problems arose when comparing the simu­
lated and measured results. The comparison was carried 
out by supplying to the model the heating etpoint sched­
ule that had been implemented in reality. During periods 
when the heating was off the heat input was. of course. 
correctly predicted as zero. but there were errors in the 
predicted temperatures as the building reacts to other 
influences. When lhe heating cycle began there were 
errors in the prediction of the amount of energy required 
to bring the room to the setpoint. and simultaneou I • 
errors in the predicted temperatures as the room w:irms 
up. Finally. when the room and simulation model 
reached the . et point there were no further errors in 
the predicted temperature, but there were errors in 
the prediction of the energy required to maintain that 
etpoint. 

Clearly there i notbing that can be done about cor­
relations berween solar rad iation and external tcm· 
pera LUre-these variables arc beyond the experimenter~· 
control. However. it may a t least be possible 10 choost' :t 
heater operation strategy which will reduce. or perhap;; 
even eliminate. correlations between thi drh"ing fo rce 
and the others. and this possibility was explored bcforl' 
collecting the data sets which will be analysed here. 

2.2. Chnice of res/ ronm nperating strategy 
ln designing test room experiments to collect data r,,r 

the purposes of model validation. a number of aspect>,, ,· 
room operation are under the control of the cxpl'r · 
imenter. The most obvious control mechanism is that ,,,· 
auxiliary heater scheduling. In an attempt to reduce the· 

problems outlined in the previous section three possibk 
heater operating strategies were considered : 
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-operating the test rooms in pairs each with a 12 h 
ON/12 h OFF schedule, but in antiphase between 
the two rooms. One test room is heated from 6:00 to 
18:00, and the other from 18:00 to 6:00 the following 
day . Taken individually the data sets will suffer from 
exactly the same problems as those collected pre­
viously, but analysing the differences in performance 
may allow the effects due to heater operation to be 
separated from those of climate. This technique has 
proved useful in previous work (4). 

-operating the test rooms to a thermostatic schedule 
which is not a multiple of 24 h. With this strategy 
the operation of the heater drifts in and out of phase 
with the meteorological variables, allowing the 
different sources of error to be separated. Again, the 
technique has proved useful in previous test room 
work (5) . 

-randomizing the operation of the heater to ensure 
that its output does not correlate with external vari­
ables. This is a well known system identification 
technique which has been used in the past to identify 
the response of test buildings (6, 7). To our knowl­
edge, however, it has not previously been used in the 
context of empirical model validation. 

It seems that any of these operating strategies could 
provide data sets which will allow the ·source of simula­
tion errors to be isolated more effectively. However, the 
first suffers from a number of disadvantages : it requires 
that the test rooms are configured in identical pairs for 
each experiment, implicitly assuming that these pairs are 
perfectly matched. The resulting data then has to be 
interpreted in terms of the difference in performance 
between the pair of identical buildings operated with 
different heating strategies. Any attempt to interpret the 
data in the way in which the model will normally be used. 
to make predictions about a single building, causes the 
problems identified in the earlier data sets to reappear. 
The second strategy appears to solve these problems. 
providing data from a single test room which will, over 
time, allow the influence of the auxiliary heat source to 
be separated from that of climate . The problem with this 
operating strategy is that although the chosen heater 
operation will not be correlated with meteorological vari­
ables it still has a statistical structure of its own, in that 
it consists of the same sequence repeated many times. 
which in turn makes the extraction of the causes of sim ul­
ation errors less robust. 

The third strategy avoids these problems. One criticism 
which can be levelled at such randomised operation of 
the room heat source is that it is unrealistic. However. 
the purpose of model validation is to establish that the 
representation of a building within the model is satis­
factory over a wide range of operating conditions. ln 
fact, the type of randomized heater operation proposed 
represents a very stringent test of any model. Consider a 
heater sequence in which the heater is either on or off. 
and its state at each time step is decided rnndomly, for 
example by tossing a coin . ln this sequence information 
about the past operation of the heater provides no infor­
mation about the likely future operation . This property 
will make the sequence a very difficult one for a simul­
ation to follow : it minimizes the chance of errors from 
different sources cancelling out. 

One potential problem with the random sequence 
described is that it gives relatively little weight to the 
longer time constants present in buildings . Simple cal­
culation indicates that if such a sequence is produced 
at hourly timesteps there will be very few periods of 
uninterrupted heating longer than about six hours. Since 
inverting a sequence of this type yields another sequence 
of the same type there are also few uninterrupted cooling 
periods longer than about six hours. 

The EMC test rooms have a relatively short time con­
stant, of between 8 and 12 h. For these rooms the heater 
sequence described is appropriate . For buildings with 
longer time constants. however, the sequence is unlikely 
to stress sufficiently the slower heat transfer processes. 
One solution to this problem. which has been proposed 
for use in the PASSYS project. is the Randomly Ordered 
Logarithmic Binary Sequence (RO LBS) (8), in which the 
required number of occurrences of each length of heating 
pulse is specified and the pulses are then arranged in 
random order. Whilst this sequence retains its Jack of 
correlation with the meteorological variables driving the 
room, the accentuation of the lower frequencies inevit­
ably causes unwanted auto-correlations within the test 
sequence. A second solution, currently being investigated 
at EMC, uses a digital filter to emphasize the low fre­
quencies in a white noise test sequence. Because the filter 
which was used is known, its inverse can be used to 
·re-whiten' the resulting experimental data before it is 
analysed. However, because of the fast response of the 
EMC test rooms neither of these techniques was con­
sidered necessary here, and it was decided that the rooms 
would be operated with a straightforward randomized 
heater schedule of the type initially described. 

2.3. Operation of the model 
The notion of 'blind" simulation runs is central to the 

approach to model validation adopted in this work. The 
model user who attempts to predict the performance 
works in ignorance of the measured values which he or 
she is called upon to predict. The reason for insisting on 
this mode of operation is simple: it has been dem­
onstrated [3] that it will almost always be possible for a 
modeller to adjust the input parameters of the test room 
model to bring its predictions into line with observations. 
In the case of unconscious adjustment, bias will be intro­
duced into the simulation results which may vary between 
users and between models . ln the case of conscious 
adjustment. the inputs to the model can almost always 
be systematically altered (within physically reasonable 
bounds) to achieve a high level of agreemcni--empirical 
validation as a test of the model becomes useless. 

For the simulations described here. no modifications 
were made to the SERI-RES descriptions of the EMC 
test rooms which had been prepared some years prior to 
data collection [9]. We can thus be confident that the 
simulations were carried out 'blind". 

In the previous section. randomized operation of the 
test room heat source ,,·as chosen. on the grounds that it 
would yield data most likely to allow the errors due to 
different test room driving forces Lo be isolated. Perhaps 
the obvious way in which to carry out a simulation to 
compare with this data is to apply the same pseudo­
random sequence to the model of the test room. The 
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resulting simulations of zone and s•1rf'acc temperatures 
can then be compared with the measured values lo assess 
the quality of the simulation . We will refer Lo this mode 
of model operation as 'power scheduled'. 

The heater power-scheduled approach to model oper­
ation has a further important benefit when used with the 
model SERI-RES. The zone temperature predicted by 
SERI-RES can only be interpreted directly as an air 
temperature under a fairly restricted set of operating 
circumstances [JO] . When these requirements are not ful­
filled employing the imu.lated zone temperature as a 
thermostat temperature results in the simulation being 
physica lly incorrect. In a power-scheduled run these dis­
crepancies will still be apparent when predicted zone and 
measured air temperatures are compared, but predicted 
and measured surface temperatures and heat fluxes 
should still be predicted correctly. and can be compared 
directly. 

The principal disadvantage of heater power-scheduled 
operation of the model is that it provides no information 
about how good the model i at predicting the energy 
consumption of the room. the actual con umplion having 
been fed LO the model a part of the simulation process. 
Since the prediction of auxiliary energy conSllmption is 
one of the principal application of the model. its per­
formance on this task i ofimerest. To obtain predictions 
of energy consumption. the model can be fed with hourly 
details of the temperature within a test room. If this value 
is uses as the setpoint, the model will predict the amount 
of auxiliary energy (which ma. be positive or negative) 
that is required to maintain that temperature. This pre­
diction can then be compared with the actual energy 
consumption measured . The model a lso produce · pre­
dictions of the surface temperatures and heal flu .'<es which 
can, again, be compared with the measured values. We 
refer to this mode of operation as ·zone temperature 
scheduled'. 

To summarize. there are two ways of operating the 
simulation model. The first. heater power scheduling, is 
to apply the same heat input to the model as was applied 
to the test rooms, and observe the quality of the pre­
dictions of the i-esulting temperatures and heat fluxes . 
The second approach, zone temperature scheduling, is 
to force the model zone temperature to follow the air 
temperature measured in the test room. and examine the 
prediction of the energy required to do this. and of the 
resulting surface temperatures and heat fluxes. The con­
sistent use of one of these strategics throughout a simul­
ation run will eliminate the types or problems pre\'iously 
encountered in interpreting the results of comparisons 
between the measured data and corresponding simu­
lations. The availability of these twin strategies is in no 
way dependent on the fact that the room is being operated 
with a randomized heater schedule rather than under 
thermostatic control. Either technique can be used with 
data sets featuring any kind of healer control. including 
unheated operation. 

3. COMPARISON OF MODEL PREDICTIONS 
WITH MEASURED DATA 

Data was collected from three Lest rooms equipped 
with single glazing. double glazing, and an insulated 

opaque infill panel. for a period of 50 days. The data 
were recorded at five-minute intervals, and subsequently 
integrated into hourly average values for use with SERI­
RES , which was used to produce predictions at hourly 
intervals . The data set is continuous over the 50 day 
acquisition period. 

A total of six simulations were then carried out, com­
prising a power scheduled and temperature scheduled 
run for each of the three rooms. The results presented 
here are based on the results for the double glazed room 
only. 

3.1. Preliminary comparisons bet1l'ee11 simulation results 
and measured data 

Figure l shows the simulated zone temperature and 
the air temperature measured in the double-glazed test 
room, O\'er five days of the overall 50 day experimental 
period . The period shown was chosen because it con­
tained a good range of meteorological driving forces, and 
thus demonstrates the full range of test room response. 
This simulation was 'power scheduled' and thus the 
model has been called upon to predict zone temperature 
(as shown), surface temperatures. and surface heat fluxes. 
Apart from an obvious offset, the initial appearance is of 
quite good agreement, with the model appearing to fol­
low the temperature fluctuations observed in reality quite 
well. Figure 2 shows the difference between the simulated 
and measured temperatures, hereafter referred to as the 
'simulation error'. Examination of Fig. 2 reveals quite 
large temperature prediction errors, which were not 
immediately apparent on Fig. 1, and indicates one of the 
dangers of presenting empirical validation results in that 
form alone . 

The next stage in the validation process is to determine 
whether these discrepancies are significant in the context 
of an empirical validation trial. 

3.2. Sensitil'ity studies 
Any detailed model of a building will, by definition, 

require as input a great deal of information. Generally 
this will include parameters describing the location of the 
building. the geometry of the structure. the thermo­
physical properties of the materials used in the con­
struction of the building, and the heating and/or cooling 
plant inst:.J!led in the building. When a simulation is actu­
ally performed using the model of the building further 
inputs are required. in the form of meteorological data 
and information about how the building was operated. 
Jnevitabl~. there will be uncertainties in all of these 
inputs. In this section a definition of whether a given 
discrepancy between simulation results and data is 
significant is adopted which is based on whether the 
uncertainties in inputs to the model can account for the 
discrepancy observed. 

To carry out this test, the maximum amount of dis­
crepancy 11·hich can be accounted for in terms of uncer­
tainty in the input parameters supplied to the model 
must be established. If the discrepancy which has been 
observed is greater than this. the model can nei>er be 
made to r.:prcsenl the observed reality by adjusting the 
input parameters within their accepted ranges. In this 
case the model itself is deficient- it cannot adequately 
represent reality. Jr the observed discrepancy between 
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Fig. l. SERI-RES predicted and measured zone temperature in a double-glazed test room. 

model and reality can be entirely accounted for by uncer­
tainties in the input parameters then the body of the 
model may be without fault (or 'valid'). In this case the 
only way to proceed is to obtain better values for at least 
some of the input parameters. When this is done the 
consequent uncertainty in the predicted values will 
decrease, increasing the power of the validation test. At 
this stage the input uncertainties may no longer be able 
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to account for the discrepancies observed, and the model 
is concluded to be flawed, or it may be found to be 
satisfactory even at this higher level of accuracy, increas­
ing credibility yet further. 

The uncertainties in the model parameters may arise 
from two sources. The first is measurement error when 
the parameters are determined. For example in meas­
uring the thermal conductivity of a slab of insulation 
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Fig. 2. SERI-RES zone temperature prediction error in a double glazed test room. 
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there are errors in the measurement of the temperature 
drop across the slab, and in the measurement of the 
resulting heat flow. As a consequence there will be uncer­
tainty in the quoted conductivity. The second source of 
error is due to bad parameterization. In the case of the 
insulation, for example, the real conductivity may not be 
the single constant value which is sought. There may be 
variation with age, with manufacturing batch, or with 
operating conditions which are not accounted for. 

The net effect of both these types of error is the same­
incorrect values are used to describe the properties of the 
building which is to be simulated. What is required is a 
method of establishing the effect of each of those uncer­
tainties on the output of the model, and of combining 
those effects to obtain the overall output uncertainty. 
One technique for performing this analysis was proposed 
in the SERC/BRE study [1], and has been applied here. 
For each input parameter, a simulation is carried out 
with the parameter set to its maximum possible value, 
and a second is performed with the parameter set to 
its minimum possible value. The change in simulation 
output from the base case simulation, in which all the 
input parameters were set to their nominal values is then 
calculated for both cases. This process is repeated for all 
the model inputs (or, more often, for the subset believed 
to have the most significant impact on the results). The 
resulting output perturbations are then grouped into 
those tending to increase the output, and those tending 
to decrease it. The magnitudes of these increases and 
decreases are then combined in quadrature to obtain an 
estimate of the overall increase or decrease in output 
which could occur as a result of uncertainties in the input 
parameters supplied to the model. When uncertainty 
bands are to be established for a succession of predic­
tions, for example hourly temperature values, this pro­
cedure is carried out for each point. One consequence of 
this is that if variations in a parameter cause errors of 
different signs at different times that parameter will 
implicitly be assumed to vary over time. always adopting 
its 'worst case' value. For some parameters this may be 
a reasonable assumption, for others (for example dimen­
sions) it is clearly not. 

As described, the technique also requires a number 
of assumptions concerning the linearity of the model 
with respect to its input parameters. and the statistical 
independence of the uncertainties in those parameters. 
Whilst many of these assumptions may be valid, some 
can be refuted directly [3]. and thus the method will not 
be exact. However, recent comparisons between the 
results of this technique and more sophisticated Monte 
Carlo methods has indicated that agreement is generally 
close [I I]. 

Figure 3 shows the error in predicted zone temperature, 
hour by hour, which can be attributed to uncertainties in 
the 27 most important inputs required by the SERI-RES 
model of the double glazed EMC test room. A total of 
55 simulations have thus been carried out to generate 
these bounds. Also shown on the figure is the simulation 
error which was actually observed. The interpretation of 
the figure is straightforward. If the observed error always 
lies within the range which can be attributed to uncer­
tainties in the input parameters then these uncertainties 
can account for those errors. and the model itself cannot 

be faulted. If, however, the observed error falls outside 
the range generated by the sensitivity study then that 
error cannot be accounted for in terms of input uncer­
tainties, and the model itself must be at fault. This is 
clearly the case for the data shown on Fig. 3, and it 
is concluded that the simulation errors which we have 
observed point to a significant failing in the model SERI­
RES when used to model a heated test room. 

3.3. Detailed analysis of simulation error structure 
The analysis of the previous section has demonstrated 

that the divergences observed between the measured data 
and the simulations of SERI-RES cannot be accounted 
for in terms of uncertainty in the model input parameters 
alone-that is they are significant to the empirical valid­
ator. This in turn implies that there are one or more errors 
within the model itself. The next step in the empirical 
validation process is to locate the source of those errors. 
If this is achieved, recommendations can be made as to 
which parts of the model should be refined. 

A number of diagnostic techniques were outlined in 
the SERC/BRE model validation project (1). The most 
powerful of these, when it comes to identifying sources 
of error, centre around cross-correlation analysis. These 
techniques will be exploited and subsequently extended 
here. 

We begin by examining the cross correlations between 
the simulation errors and the quantities driving the build­
ing. The latter fall into two categories: those which are 
used in the simulation, modelled driving forces, and those 
which are not, which we term unmodelled driving forces. 
In the first category fall external temperature, solar radia­
tion and auxiliary energy input. In the second category 
are wind data, and the net sky to ground radiation 
exchange at the site. 

3.3.1. Cross-correlation of errors with driving forces. 
The cross correlation function gives a measure of how 
closely two sequences of data are related, as a function 
of time delay. In analysing the discrepancies between 
building models and real buildings the inclusion of time 
delay is essential, as both systems are dynamic, and thus 
errors may be delayed from the driving forces which 
cause them. 

The cross correlation function always lies within the 
range - 1 to I. Its absolute value gives a direct indication 
of how closely the two sequences are related, a value of 
1 implying perfect correlation, and a value of zero imply­
ing no dependence at that particular time delay. 

Figure 4 shows the cross-correlation of the error in 
predicted zone temperature in the double glazed room 
with the modelled driving forces, and Fig. 5 shows the 
corresponding correlations with the unmodelled driving 
forces. All of the cross-correlation functions contain 
elements that are statistically significant, that is they lie 
outside the 5% confidence intervals shown on the graphs. 
In previous work. however, it has been demonstrated 
that examination of cross-correlation functions alone is 
not a conclusive way of identifying the source of simula­
tion errors. because of the inter-correlations between the 
quantities driving the rooms [3]. To separate out the 
influences of the different driving forces. and express 
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Fig. 3. Simulation error attributable to uncertainties in input parameters and actual error. 

them in a form which is independent of the particular 
weather statistics during the validation experiment a 
deconvolution technique is employed. 

3.3.2. Deconvolution of errors due to driving forces . In 
order to separate out the various sources of error a simple 
model of the error process is postulated. The proportion 
of the error in any predicted variable due to a given 
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driving force is assumed to be related to that driving force 
by a linear, time invariant dynamic system. In reality, 
these assumptions will always be violated to a greater or 
lesser extent. For example the dependence of simulation 
error on solar radiation may vary over time as solar 
geometry changes. Other sources of error may violate 
the linearity assumption, for example errors in external 
surface heat loss may depend on wind velocity, solar 
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Fig. 4. Cross-correlations between zone temperature prediction error and modelled driving forces. 
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Fig. 5. Cross-correlations between zone temperature prediction error and unmodelled driving forces. 

radiation and net radiation exchange in a complex, non­
linear way. We shall see however, that the assumptions 
of time invariance and linearity allow a large proportion 
of the simulation errors to be accounted for. 

Each of the linear, time-invariant systems which 
describes the way in which simulation error can be related 
to a driving force is fully characterized by its impulse 
response. A technique has been developed which allows 
these impulse responses to be extracted from simulated 
and measured data, and measurements of the driving 
forces . The technique is described in outline in the Appen­
dix to this paper. The results presented in [3] used a 
simplified form of the same analysis, also described in 
the Appendix . 

Figure 6 shows the result of deconvolving the con­
tributions of the principal driving forces to the error in 
simulating the test room zone temperature. The system 
inputs are the driving forces defined earlier: heater 
power, solar radiation, ambient temperature, wind speed 
and net radiation exchange in turn . The impulse 
responses shown relate the difference between the simu­
lated and measured test room zone temperatures dynam­
ically to the driving forces listed. To obtain a rep­
resentative plot, the impulse responses have been scaled 
by the mean value of each of the driving forces . This 
choice of scaling has a straightforward interpretation. If 
each of the forces driving the test room were simply 
constant at its mean value over the period of the exper­
iment then the contribution from each source to the 
simulation error would equilibrate at a constant value 
given by the area under the impulse response curve mul­
tiplied by the mean value of the driving force. In practice, 
of course, the driving forces are not constant, and their 
relative contributions vary over time. However, this 
scaling does serve to give a reasonable indication of the 

relative importance of each source of error. The figure 
demonstrates that by far the most significant source of 
error when predicting the test room air temperature is 
operation of the auxiliary heat source, the contributions 
from the other driving forces being insignificant in com­
parison. 

Figure 7 shows the impulse responses contributing to 
back wall temperature error. These responses are sig­
nificant in magnitude, and we see that there are significant 
contributions to the error from heater operation and 
solar radiation. 

Finally, Fig. 8 shows the corresponding disaggregation 
of the errors in the back wall surface heat flux. Here, 
once again, the contribution from the auxiliary heat input 
overshadows that from other sources of error. Inter­
estingly, the error is seen to be positive for the first hour 
(the simulated heat flux is larger than that measured) . 
and then becomes negative for the following three hours. 
The overall integrated error is thus close to zero, which 
indicates that very good agreement will be observed when 
the Jong term mean values are examined. This conclusion 
has been confirmed by reference back to the original 
simulated and measured results. This demonstrates 
clearly the dangers inherent in using simpler heater 
schedules to produce model validation data . Consider an 
experiment in which the heater is simply operated at a 
constant power. After the first few hours of the ex­
periment the error in the rediction of back wall heat 
flux which has been detected here will become self can­
celling, leading to the erroneous conclusion that the 
quantity is being correctly predicted. This problem 
occurs because of the inappropriate choice of heater 
schedule. and is avoided when heater operation is 
randomized. demonstrating further the power of such 
heater schedules. 
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3.3.3 . Reconstitution of observed errors. Once the error 
impulse responses have been obtained, it is possible to 
generate the hour by hour contributions of each of the 
driving forces to the overall discrepancy between the 
simulated and measured quantities. 

Figure 9 shows the total error from the five driving 
forces considered, together with the actual discrepancy 
between simulated and measured results over the same 
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period. Back wall temperature has been chosen to dem­
onstrate this analysis because it has been seen previously 
to contain significant contributions from a number of 
driving forces. The figure indicates that a large pro­
portion of the error observed has been accounted for by 
the simplified error model. The remaining, unexplained, 
portion of the simulation error may be due to unmodelled 
driving forces which have not been measured but which 
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affect the performance of the building, or to the break 
down of the time invariance and linearity assumptions 
upon which this analysis depends. Inevitably, there will 
be mechanisms present in the test rooms which cause 
both assumptions to be violated to some extent. 
However, the close agreement between the linearly recon­
structed and observed simulation errors implies that 
effects from these sources are relatively small. 
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Figure 10 shows the relative contributions (over the 
whole 50 day simulation period) of each driving force to 
the variance of the simulation error, providing a picture 
of how the errors in predicting back wall temperature are 
built up, and demonstrating that the dominant sources 
of error is, in this case, solar radiation. This conclusion 
is not general to the remainder of the quantities predicted 
and measured in the test room. Back wall temperature 
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Fig. 9. Reconstituted and observed errors in test room back wall temperature prediction . 
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Fig. 10. Relative contributions of driving forces to the reconstituted prediction errors. 

was deliberately chosen as the quantity with which to 
demonstrate the error reconstitution technique because 
its prediction error contained components from several 
sources. As the impulse responses presented earlier indi­
cated, the dominant source of error in the simulation 
is auxiliary energy input For some of the quantities 
predicted. for example zone temperature, it is the major 
contributor lO the discrepancies between simulation and 
reality. 

4. CONCLUSIONS 

It has been demonstrated that data from test cells can 
form the starting point for detailed empirical validation 
work on computer simulation models. It has further been 
shown that, with the appropriate operation of both test 
rooms and simulation model , the sources of discrepancies 
between predictions and measured da ta can be identified, 
providing u efu l information to model users, and in the 
longer term, to the developers of futu re models . 

The ana lysis presented implies that, for many of the 
quantit ies predicted by SERI-RES, the most signi ficant 
source of error is operation of the auxiliary heat source. 
Hence the model should be able to predict the per­
formance of an unheated room well . As a test of this 

conclusion, and thus of the deconvolution analysis 
described, further data sets have now been collected in 
which the test rooms are unheated. Subsequent com­
parison with the predictions of the model demonstrated 
a high level of agreement, confirming the conclusion of 
the analysis described in this paper, and providing a first 
indication that the technique satisfactorily identifies the 
source of discrepancies between model and data. Further 
work is now pursuing three lines of investigation : 

-analytical tests which will allow verification of the 
validation techniques presented above are being 
developed, 

-a combination of further analysis and further exper­
imental work has been used to determine why sig­
nificant errors appear when SERI-RES is used to 
handle heated buildings, and finally, 

-the impact of the errors detected in test rooms on 
simulation results for more realistic buildings is 
being assessed analytically . 
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APPENDIX 
DESCRIPTION OF THE CROSS-CORRELATION/ 

DECONVOLUTION TECHNIQUE 

Any linear, time invariant sys1em can be completely described 
in 1errns o f ils impulse response. Tbis is the output of the system 
when its input is an impulse, which is uni1y at time zero and zero 
al all other times. ll is a requirement of any physical system that 
its impulse response is zero before time zero. If not . the system 
would begin to respond to inputs before they were actually 
applied-it would be non-causal. 

The ability of the impulse response lo characterise a system 
completely stems from the fact that an arbitrary input sequence 
can be broken down into a series of scaled and time-shifted 
impulses. Because the sys1em is postulated 10 be linear, the 
output due to a caled impulse i imply the impulse response 
suitably scaled. Ir the system is also time invariant, the response 
to an input shifted in time is simply the response sbjf1ed in time. 
Again because the system is linear the total output is simply the 
s um of the outputs due 10 each part of the decomposed input 
sequence. 

This process of building up the system output in response 
to an arbitrary input is written formally as the discrete time 
convolution sum. For the univariate case where the experiment 
begins at time zero, and all inputs to the system are zero before 
this , it is: 

"' y[I] = L h[k]x[t-k] 
1.--0 

where : 

y[t] is the system output. 
x[c] is the system input. and 
h(t] is the system impulse response . 

(!) 

Equation(!) allows the response of a system with a known 
impulse response lo be generated for any arbitrnry input. In 
approaching the problem of identifying the source:s of simula tion 
errors the output of the system (in thi case the simula tion error) 
is known, as is the input (the measured driving force) . The 
impulse response connecting the two data sequences is the 
required quantity, and the convolution equation given above 
must be inverted to obtain it. a process known as deconvolution. 
Equation(!) can be inverted directly to obtain a recursive solu­
tion for the impulse response h[l] : 

/r(O] = y[O] followed b) 
x (O] 

,_I 

y[t]- L h[k]x[r-k] 
lr[r] = •~o 

x(O] 
(2) 

In prac1ice. however. equat ion (2) does not represent a good 
way of o btll ining iin impulse response from inpul and o utput 
data seq uences. Simple CM1mination of the equation. shows that 
the v11luc of 11[0) i · based on only one rair of dat;i roints. Any 

errors in h[O], caused for example, by noise in those readings, 
will then be propagated through to the estimate of h[l]. Uncer­
tainties in h(O] and h[I] are then carried forward into the estimate 
of h[2] and so on. The process thus has very poor performance 
when faced with any noise in the measured data . 

A second problem arises with the state of the system at time 
zero. Implicit in the formulation of the response equation was 
the assumption that there are no inputs to the system before 
I = 0, that is the system is settled in quiescent state when the 
inputs begin. In any real experiment there are likely to be driving 
forces (for example climate) which cannot be switched off up to 
the point at which the experiment begins. Thus at the start of 
the test the system retains some memory of the disturbances 
which occurred earlier. This effect is most pronounced in the 
measurements taken at the start of the experiment, the very 
values which are to be used to initiate the solution process by 
deducing h[O] . 

The solution to both of these problems lies with the cross­
covariance function . The cross-covariance between two 
sequences of numerical data, { x[ll} and {y[tl}, is defined by : 

r"[k] = E((x[j]-x)(y[j+kJ-.fl) (3) 

where: 

E denotes the expectation (or averaging) operation over the 
dummy variablej, 

x denotes the mean of the sequence {x[IJ}, and 
ji denotes the mean of the sequence {y[t]}, that is: 

.\' = E(x[j]) ji = E(y[j]). 

The auto-covariance function of a sequence is simply the 
cross-covariance of the sequence with itself. 

If equation (3) is substituted into equation (l ) . a little 
algebraic manipulation yields: 

1 

r , . .[t] = I: h[k]r,.,.[r-k]. (4) 
./\:rO 

This rather remarkable result reveals that the cross-covariance 
between the input and output of a system is given by the con­
volution of the input signal auto-covariance with the system 
impulse response. The relation given is the discrete time form of 
the Weiner-Hopf equation. 

The Weiner-Hopf equation can be inverted as before. to yield 
the impulse response of a system from the appropriate auto­
covariance and cross-covariance functions. In this way, both of 
the problems outlined earlier are avoided. The terms in the 
covariance functions are the results of averaging over the whole 
data set. and thus the effect of noise in the data is greatly reduced. 
If the experiment is significantly longer than the time constants 
of the system under investigation the influence of disturbances 
before the start of the experiment will also be minimal. The 
combination of cross-correlation and deconvolution thus pro­
vides a robust way or obtaining impulse responses from streams 
of input and output variables_ 

The problem posed in lhe main text requires that the relative 

l 

j 
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contributions from a number of inputs, or driving forces, x,[1], 
x,[1) , x,[r) etc. to a single output be determined. Expressed in 
terms of the impulse responses to each of those inputs, h 1 [t], 
h,[t], h,[t] etc., the analysis model is: 

x 7J 

y[1] = L h,[k]x,[t-k]+ L h,[k]x 2 [t-k] 
k - 0 k=O 

.,,, 
+ L: 1r , [kJx, [1-kJ. ... C5l 

k=O 

For the purposes of solution, equation (5) can be cast in matrix 
form. Here, for the sake of brevity, we consider a case with two 
independent variables, the impulse response of each of which 
has only three non-zero elements. The extension to larger cases 
(for example the five independent variables with impulse 
responses of 13 elements each used in the main text) is straight­
forward. If the length of the input and output sequences is n + 1 
points, then equation (5) can be written: 

y = Xh (6) 

where: 

['I'll y = y[/] 

y[n] 

x,[O) 0 0 x 2[0) 0 0 

x,[1) x,[O) 0 x 2 [1] x 2 [0] 0 

X= x 1[2) x,[1] x ,[O) x 2 [2] x 2 [1) x 2 (0] 

x 1[3) x 1[2] x,[l] x 2 [3) x 2 [2) x 2 [1] 

x 1[n] x ,[n-1] x,[11-2] x 2[n] x 2[n-l) x 2[n-2) 

and : 

h,[O] 

h 1[1) 

h = h,[2] 
h 2 [0) 

h2 [1] 

h,[2] 

Equation (6) can be solved for h, the required impulse response 
terms, using the pseudo-inverse of the non-square matrix X: 

The elements of the matrices xrx and xry correspond to the 
cross-correlations and auto-correlations used previously in the 
solution of the univariate case. Thus this method for solving the 
multivariate case demonstrates the same robustness described 
for its much simpler counterpart. The quality of the solution 
obtained can be established by using the measured input 
sequences and the derived impulse responses in equation (5) 
to attempt to 'reconstitute' the observed output (in this case 
simulation error) . Close agreement between the reconstituted 
output and that observed indicates that the postulated model is 
representing physical reality well . 

Clearly the analysis required for the multivariate case is much 
more complex than that for the univariate case, because of 
the possibility of cross-correlations between the various input 
sequences. When these inter-correlations do not exist, or can be 
ignored, the multivariate solution can be replaced by a univariate 
solution for each impulse response in turn. In this case the 
reconstitution of the errors using equation (5) provides a test of 
how well the model derived using the simplified analysis accounts 
for the errors observed. This is the simplified analysis used in 
the earlier work referred to in the main text. The results presented 
in this paper, however, used the full solution method described 
above. 


