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1. Introduction

In the search for improved design methods it is valuable to be able
to use a few simple parameters to describe a building's thermal
performance. The average performance of a building can be described
adequately using steady-state heat-loss coefficients, which can be
estimated from performance data (1). Dynamic performance data have been
used by Subbarao (2) to estimate transfer functions which describe
instantaneous thermal behavior. Our treatment is similar to Subbarao's in
that we operate on the Fourier Transforms of temperature and insolation
time series to obtain transfer functions in the frequency domain.

However, in contrast to Subbarao's approach, which employs a four-day
period to estimate parameters which are used to predict performance over a
successive period of similar duration, we consider the potential for
longer-term predictions. Our data set consists of measurements in two
houses of different construction over 132 days. Since both houses were
passively heated and since solar angles vary considerably over such a long
period, it is necessary to include variable sunshading effects explicitly.

The eventual aim of the present line of inquiry is to be able to use
a small data set to estimate transfer functions which can then be used to
successfully predict long term dynamic performance. As a first step
toward this goal, we use the entire data set to estimate transfer
functions. We use these transfer functions to predict dynamic performance
over the same period. A good fit between measurement and prediction
indicates that the transfer function model adopted here is a good
description of dynamic behavior. Further work will examine how to
estimate the key parameters with greater economy of data.

We explain some of our terms and give an overview of the method in
section 2.1. Section 2.2. describes the houses and the measurements.
Section 2.3. discusses the shading problem in greater depth. Section 2.4.
explains our estimation procedure very briefly. We are currently
preparing a more thorough exposition of the method. Results are quoted in
section 3. Conclusions and anticipated refinements to the method are
outlined in section 4.




38

2. Method

2.1. Explanation of terms

A building can be pictured as a weather filter. It modifies the
fundamental signals air temperature and solar radiation to produce an
internal temperature profile (which hopefully lies within acceptable
limits). The methods we employ here resemble the tools electrical
engineers use to study and design filters. Our aim is to deduce the
filter characteristics of constructed buildings by analyzing the inputs
(air temperature and insolation) and the output (internal temperature}.

Thermal mass introduces time lags, making a representation of the
filter in the time domain rather complicated. For convenience, we swap
the dual representation in the frequency domain. The transition from a
time series representation of a time-dependent quantity to a frequency=
domain representation is accomplished by the Fourier Transform. The
inverse transition is accomplished by the Inverse Fourier Transform.

to

The transfer functions which we use to describe the filter
characteristics are three complex functions of freguency. We estimate
values for these functions at each frequency by solving a set of
simultaneous linear equations. This least-squares estimation procedure is
similar to standard multiple linear regression (3) with some important
differences noted below.

2.2. Measurements

The two houses employed in this study form part of the Bonnyrigg
Solar Village, situated in the western suburbs of Sydney, Australia. One
is an insulated cavity brick house on a concrete slab. The other is an
uninsulated timber house with a suspended timber floor. The monitoring
system is described in Jetail and the construction of the houses is
explained in (4). The masonry house is number 341 and the timber house is
number 359 in that document.

The measurements employed here are internal temperatures for each
house, ambient temperature, and insolation striking a North-facing
vertical surface (since this is a Southern Hemisphere study). Hourly
values obtained between March and July 1992 were used to construct sixty-
six periods of forty-eight hours duration each.

For the most part, no heating or cooling appliances were used between
March and July. However, there were a number of brief bursts of heating
and air conditioning. Periodically, doors and windows were opened
(although never overnight). Towards the end of the study, carpet was
placed in the masonry house and the windows in the timber house were
covered with aluminium foil. The data have not yet been screened for
events of this sort.

2.3. shading

The relationship between ambient insolation and solar energy

" periods, k.

{id

B
i

39

penetrating the house is not constant from month to month or even from
hour to hour during the day because fixed overhangs and other shading
devices exclude the sunlight in a highly time-dependent way.

’I‘he. 1:egression technique is not flexible enough to account for these
complex:}tles so we chose to estimate transfer functions relating the
insolation admitted by shading devices, or shade-adjusted insolation, to

internal temperature. We ex i i i
. pect this relationship to be fairl i
fairly time-independent. i ¥ linear and

i}
Although we did not measure shade~adjusted insolation and it is not
an eagy quantity to measure, it can be calculated by taking into account
the ambient insolation, the solar altitude and azimuth angles, and the
gecmetry of the fixed sunshading devices. This calculation was performed
prior to the least-squares estimation steps.

2.4. Estimating the transfer functions

2.4.1. Notation

Our data set consists of sixty-six periods of time, each forty-eight
hours long. For each of these periods, we have three discrete time-
gseries; Ik being the indoor dry bulb temperature (for the house in

A question), Ay, being the ambient dry-bulb temperature, and Q. being the

shade-adjusted insolation in Watts per metre squared. The subscript k

refers to the period (1 to 66) and the subscript t refers to the hour (0

. £0,:47), within the period.

‘w: .- Taking the Fourier Transform of each of these time series, we obtain

‘the following caomplex transforms: 1l for indoor temperature, AA for
ambient temperature, and QQg for shade-adjusted insolation. .
the subscript k refers to the period (1 to 66). The subscript f refers to
the frequency (0 to 24) in cycles per period. Generally, we shall denote
the Fqu.rj.er Transform of a time series T by doubling the letter; TT.

Once again,

In the interest of making the equations as general as possible, we

‘shall refer to the number of periods, 66, as M, and the number of hours
per period, 48, as N.

f Lgast—squares estimation

_'Ra construct a linear function of the fundamental signals ambient
perature and shaded insolation:

o b s o RRpx (@ps besoop ) = ag + by Wy +ocp Bhgy

vy

(1)

depends upon the complex values ag, bf, and Cge RRfk is the Fourier

Transform of a time series Ry, , which likewise depends upon ag, by, and

L4
We seek the complex values for ag, bf', and Ce which will minimize the

ot mean square deviation between Ry and I, over all hours, t, and all

These values will be the least-squares estimates of the
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transfer functions relating indoor temperature to ambient temperature and
shaded insolation.

The process of estimating values which minimize the root mean square
deviation is analagous to multiple linear regression, however here it is
complicated since we are estimating coefficients in the frequency domain
which minimize deviations in the time domain.

Introducing the errxor function, Eyp = Rip = Iyge its Fourier
Transform, EEfk, and e, the sum of E tk over all t and k, we note that the

first order conditions for minimization of e are :

de / daf =0, de / dbf = 0, de / dcf =0 (2)
For £ = 0, these conditions imply:
) M m
RZEEOk =0, >0 EBox = 0 kZAAOk BEg = 0 (3),
=t kel at

as in multiple linear regression. However for £ <> 0, the first order
conditions imply:

m ™ m
kZIEE(N—f)k =0, kZQka EE(n-£)k = 0 7 kszk EE(yog)x = 0 (%)
- ay -l

These equations differ from similar equations used in regression in
that the subscript of EE is (N-f) rather than f. This subtle difference
ariges because we are attempting to minimize root mean square deviation in
the time domain rather than the frequency domain.

Equations (3) can be used to comstruct a 3x3 regression matrix which
is then inverted to obtain the real components of ag, by, and cq-
Equations (4) can be used to construct a 6x6 matrix for each nonzero
frequency, f, which is inverted to obtain the real and imaginary
components of ag, bf, and Cge

2.4.3. Evaluating the estimates

Having obtained a complete set of complex coefficients ag, bg. and
c., it is possible to construct the function RRg., using equatien (1).
Taking the Inverse Fourier Transform of RRg., we obtain the time series
Riyr which is comparable bo I... To simplify the comparison of the
constructed time series, R,,. to the measured time series, T, we
renumber the indices of each so that they become simple vectors R and I,
each containing NxM elements.

By way of comparison, we subtract each element of R from the
corresponding element of I and take the mean and standard deviation of the
resulting difference vector. We also calculate the simple correlation
coefficient between I and R.
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Fig.l. Timber house. Measured minus constructed time series.
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Fig.2. Timber house. Plot of constructed versus measured
temperatures. Each point is one hourly value.
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Fig.4. Masonry house. Plot of constructed versus measured
temperatures. Each point is one hourly value.
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3. Results

3.1. Timber house

Figure (1) illustrates the difference between the measured and
constructed time series for the timber house. The mean difference is 0.0
OC and the root mean square difference is 2.6 °c. Clearly if it weren't
for the two concentrated bursts of deviation near hour 750 and hour 1700
and the deviating section after hour 2800, the standard deviation would be
significantly lower.

Figure (2) is a plot of measured temperature versus constructed
temperature. Each dot represents one hourly measurement. Despite some
scattering, the densest clustering of points clearly follows a line with
slope of unity and a zero intercept. This qualitative observation of
linearity is confirmed by a correlation coefficient of 0.85 .

3.2. Masonry house

Figure (3) illustrates the difference between the measured and
constructed time series for the masonry house. The mean difference is
-0.2 °C and the root mean square difference is 1.7 °C. Figure (4) is a
plot of measured versus constructed temperature. Once again, the evident
linear trend is supported by a correlation coefficient of 0.87 .

4. Conclusions and further work

Empirical data are needed to make wise decisions in building energy
management. When such data are available, they are often used in a highly
condensed form (such as monthly averages) which fails to provide much
insight into dynamic behavior. We have illustrated a method of condensing
empirical data which takes full account of dynamic features, but which
does not suffer from a high degree of model or climate dependence.

In many respects, this study is preliminary. The data have not been
screened for events which are likely to have had a spurious influence on
the results. The estimation method itself is experimental. Two
improvements would be a) using time series of longer than forty-eight
hours duration to capture important low-frequency effects, and b)
employing a smooth windowing function prior to the calculation of Fourier
Transforms to avoid distorted peak heights.

The method presented here produces a good match between prediction
and measurement. This agreement holds for buildings at both extremes of
thermal mass, for hourly values over a several month period. As model
validation studies have repeatedly shown, this kind of agreement is very
difficult to acheive.
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Possible uses for this method include model validation, a shorthand
way to describe a building's dynamic features, simplifying design tools,

<

and assessing energy use within a building. Primarily, though, it <
7

shortens the tedious and often vague cycle of design, construction, and 3
evaluation by strengthening the link between measured performance and v
theoretical transfer functions. 2!
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