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|.Introduction

Energy savings in buildings heating is very important because of the
amount of needs compared with total emergy requirement.

In 705 many nations started creating rules and also facilities for
thermal insulation of buildings. In the same time, for reaching more
savings, also for existing buildings, the intermittent heating studies
and experiments received new impulse (1,2,3,4,5,6,7,8,9,10,11,12).

The dynamic thermal performance of buildings is not simple: during the
transient periods complex heating exchanges are present between parts of
building, inside and outside; only using the computer we can, with a good
accuracy, take count of it (13,14,15,16).

The problem solution is very simplified if the building is planned as an
omogeneous and isothermal body (17) and by the use of the average season
efficiencies of heating system (18,19,20).

2. Expression of energy savings in intermittent heating

The energy Savings in intermittent heating are expressed by
s=1(Q -Q)/q =1-4Q./q) (1)
c i e i'e

where Q.(J), Q;{J) are respectively the building needs in continuous and

intermittent heating.

The amount of Q. is known with a good accuracy from

Q = Cg+V+D
[
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where Cg (W/m'-°C) is the building total volume heating exchange
cosfficient, V (m') is the building volume, D (°C:s) the degree-days. The
expression (2) is very often used because of its simplicity in heating
verified in the experimental measurements

!ost frotn the body must be equal to the heat released from storage. Th
integration of the energy balance equation is ) ’

e

2ol ey gy

caleulations, and it is
for not too light buildings, see for instance (18).
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The expressions (5) and (7) show as building cooling and heating speed

increases when the time constant becomes lower. The Lime constant I 0,5

repreesnts therefore in a synthetic way the building thermal inertia; in L ol
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The expression (13) shows that for maintaining a given intermittent ‘,. 2,3 =

heating program, an over-power depending on the same program and on the ; £, = 3 (h) bt = 10 (h)

building thermal inertia, but not on the external and the indoor 3 0,2 th =1 (h) L '

temperature, is needed. .- 3 0,1

The over-powers increase rapidly when the building time constant

increases (fig. 3.a) till T reaches n~ 50 h and when t|, decreases (fig. . 0 " : : :

3.b). The over-powers increase about linearly when the t. increases (fig. . ! ! L ! I

3.e). b 4 ° 20 40 60 80 100 {
Tl 4
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generally high, except for little inertia buildings, short t. and/or for Fig. 4. Intermi’tent heating energy savings as a functi E
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The equation (14) shows that the energy savings in the intermittent
heating are Ffunction only of the intermittent heating program and of the
building thermal inertia. It shows also that the energy savings are
varying inversely to over-power, so they are rapidly decreasing as the
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7. Conclusicns
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walls as the internal one, the same ratio is near to 0.1
hand the lumped capacity method validity
thermal insulation increases.

- On the other
increases as the building

The results obtained are good and

in accordance with other authors,
researche and studies.

The results, besides,
are generally little for houses in

and a thermal inertia commonly used.

show as the energy savings
Presence of an intermittent Program

The energy savings reduce taking into account a

system and may be they are alsa negative dependin
efficiencies and losses and also on the climate.

traditional heating
g it on the system

We can say, therefore, that the intermittent heating does not afford so

many energy savings as expected. Conclusions are unlike for other type of
buildings, as school, offices, where the heating intermittance and the
thermal inertia can he very different.
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