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1. Introduction

Building designers are often urged to consider their designs from
the viewpoint of utilising energy as efficiently as possible. The
ultimate in energy efficiency is a completely passive building in which
an acceptable indoor environment is achieved by means of natural
ventilation, natural Tighting and passive thermal performance.

Most methods of predicting the thermal performance of naturally
ventilated buildings require measured or assumed values for the
expected ventilation rates. At the design stage measured values are
often unavailable, which makes it difficult to evaluate alternative
design strategies quantitatively (1).

A much simplified method of thermal analysis, including the effect
of natural ventilation, was developed at the National Building Research
Institute (NBRI) and experimentally verified in a number of buildings
(2). Although the method is based on theory, empirical constants
represent the typical expected natural ventilation vrates in
conventional South African buildings. The method is therefore
eminently suitable to predict, at the design stage, the indoor air
temperature of a naturally ventilated building.

This paper briefly describes the method (3) and shows how
appropriate design changes can affect the energy efficiency of the
design. Some of the simulated results are compared with measured
data. The parameter sensitivities of a naturally ventilated building
are similarly investigated to demonstrate the effect of changes to the
design on the energy efficiency and cost of the building.
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2. Thermal analysis method

2.1. Temperature vari n

The heat flow through a building can be predicted by the
simplified electrical analogue model shown in Figure 1. The variation
in the indoor air temperature of the building can then be derived from
the response of the model to the outdoor air temperature.

It is assumed that the correct orientation of the building, as
well as an adequate roof overhang, will limit direct solar penetration
to a negligible amount during the summer. Good cross-ventilation is

also presupposed.

The assumption is made that the indoor air temperature (Tj) is
dependent only on the thermal interaction of the building and the
outdoor air temperature (Tg). Due to the simplicity of the model,
the effect of exterior surface colour is not taken into account,
although 1its effect is partly allowed for by empirically derived
constants and equations.

In the simplified electrical analogue model (Figure 1), the
thermal properties of the building are described by the total active
thermal capacity (IC) of the building, the shell resistance per unit
shell area (Rg/EA) and the ventilation resistance (Ry).  The
ventilation resistance is dependent on the ventilation rate, while the
shell resistance is dependent on the thermal properties of the
building. The total active capacity 1s that portion of the building's
thermal capacity that effectively stores heat. This value therefore
takes into account the relative position of mass and insulation in the
shell, as well as the contributions of the interior walls and floors of
the building. The calculation of the active capacity is based on
theory and empirical data (4).

Ry
—-:'rm O
y /EA
" (322 Ry == 3eh T
= == — —_—

Fig. 1. Simplified electrical analogue thermal analysis model
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The electric analogue model can be solv

h ed numeri 1
Faria}:lon in the indoor air temperature due to any coau]tgom(-mr'or The
unction, can be described by the following equation: e

i) = %ﬂgm.cr - exp-({t-tp) /1) (nm
where:

ATo(t) = the increment in the outdoor air temperature [°C]

t = time [h]

to = start time of outdoor air temperature (h]

exp = basis of natural logarithms

T = time constant [h]

The correct value of the time const
. ant (x) for a buildj
derived from the frequency response of the simplified mod:?mgi‘ggnt::

outdoor air tempera
rbiriiMionl follopws: ture as the driving function. The time constant is

T = 12.w =1 /1 + (IC.263-1)2 (2)
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The numerical solution of E i
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" convolution (6). - |Umver of computations required to perform the

¥ 2.2. Shift in mean i ir _temperatur

. Although the electrical analogue can be i

1 A 3 extended to pred

E 3 mean indoor air temperature, the following empirically derivepd ec;t::attigzg
! are employed to calculate the shift (aT) in the mean values (2):

AT(Summer) = 2.0 [*C] (3)
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AT(Winter) = - 40.4455R* + 89.667SR’ - 85.307SR?

+ 45.622S5R - 2.233 [°C] (4)
where: SR = thksﬂf"
and: Tyt = the product of the daily solar energy (direct plus

diffuse), incident normally on the windows and the
percentage transmittance [kWhday *1;

Rs = the equivalent thermal shell resistance
[m2°CH™*1:
A = the total floor area [m”]

The mean values of the indoor air temperature were generally
found to be higher than the mean values of the outdoor air
temperature. The empirical equations partly compensate for the fact
that the higher mean sol-air (and not the lower mean outdoor air)
temperature is the mean forcing temperature for heat flow through the
building shell. The effect of direct sun penetration in winter is
allowed for by the empirical equation (4).

3. Appropriate building desiagn changes

The thermal efficiency of a prototype A house (7) was
investigated, to compare the predicted and measured effects of
inexpensive changes to the basic design. The building has very little
mass in the walls, while the thermal resistance of both the roof and
walls is also very low. The walls and roof consist of precast trough
elements. Temperature measurements were recorded at the test facility

of the NBRI at Pretoria.

Figure 2 shows the indoor temperature variation of the unmodified
building. To increase the thermal resistance of the building shell,
paper was attached to the inside of the walls and the roof, to bridge
the troughs so as to trap a layer of air next to these elements.
Figure 3 indicates the resultant improvement. The maximum indoor air
temperature was approximately 1.0°C lower, which represents a fair
improvement in one aspect of the thermal efficiency of the building.
It was thus possible to minimise the energy requirement.

Other features that may influence the energy efficiency of a
building can be similarly investigated. These include an increase in
the mass of the structure, the insulation of different building
elements and the type of floor.

A standard house (4) was wused for the parameter sensitivity
studies, to demonstrate the predicted energy efficiency of changes to
the basic design. The maximum and minimum predicted indoor air
temperatures for different shell resistances and north-facing window
areas are shown in Figures 4 and 5. All the calculations were done
with design weather data for Pretoria.
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increased shell resistance



30 per cent of the area of a wall, even a modest increase in its size
may augment winter solar heating. Proportionately larger windows
provide 1ittle added benefit. The increase in summer maximum tempera-

ture will be less than 0.5°C if window size is kept below 30 per cent.
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Figure 4 shows how an increase in the thermal shell resistance , Z I',l",
from 0.17 to 0.30 m2°C W1 reduced the summer maximum temperature by 25 | i
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Figures 4 and 5, and other similarly derived parameter sensitivity f
graphs, will enable the designer to select appropriate changes to his

passive building design, in order to produce a cost-effective and S LE
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