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NUMERICAL PREDICTION 
OF COUNTERGRADIENT THERMAL 
TRANSPORT IN A TURBULENT PLUME 
D.J. Bergstrom, Ph.D., P.Eng. G.D. Stubley, Ph.D., P.Eng. A.B. Strong, Ph.D., P.Eng. 

ABSTRACT 

This paper examines two turbulence mode'ls that could 
be used for numerical simulations of buoyant aiiflows in 
rooms. Specifically, it reports a prediction for the mean 
temperature field and turbulent heat flux in a plane vertical 
plume, using both a k-e eddy viscosity model and an 
algebraic stress model closure. The numerical solutions 
were based on the full two-dimensional fonn of the trans
port equations, which were solved elliptically. Results 
showed that the k-e model was incapable of accurately 
reproducing the streamwise turbulent heat flux < u18 > in 
the plume, which is known to be countergradient in the 
outer region of the flow. In contrast, the algebraic stress 
model yielded much more realistic predictions for < u18 > , 
although the peak value was approximately 50% higher than 
the experimental data. One important consequence of the 
failure of the eddy viscosity model with respect to modeling 
<u18> was the inability to reproduce the enhanced level 
of turbulent transport in a plume due to buoyancy. This 
study is further evidence of the need to look to second
moment closures for realistic predictions of turbulent 
aiiflows when the effect of buoyancy on the turbulent 
transport is important. 

INTRODUCTION 

Computational modeling of turbulent flows is becoming 
increasingly useful for engineering applications. Often, an 
engineer is specifically interested in the transport of a scalar 
contaminant. One example that pertains to the design of 
building systems is the scalar transport associated with 
airflows in rooms (Murakami et al. 1987, 1991). For air
conditioned rooms, the scalar property of interest is the 
temperature. Differences in temperature can lead to buoyan
cy effects, which, in tum, influence the turbulent transport. 

, In order to predict the scalar transport using time
averaged conservation equations, a turbulence model is 
required for the turbulent fluxes. Probably the most consis
tent and realistic turbulence models to date are those based 
on the transport equations for the second moments, specifi-

cally the Reynolds stress <u,u1> and scalar flux <u~>. 
Because these models attempt to represent the "physics" 
contained in the transport balance, they are potentially 
capable of including the influence of extra effects, such as 
buoyancy, on the turbulence field. Simplest among these 
turbulence models are the so-<:alled algebraic stress mode'ls 
(ASM) (Gibson and Launder 1976). 

Although they don't have as sound a physical basis, 
eddy viscosity model (EVM) relations continue to be widely 
used in engineering applications. Probably the most popular 
of these is the k-e model. The popularity of the k-e model 
can be attributed to a number of factors. It is computation
ally efficient, since it requires the solution of only two 
additional transport equations. Furthermore, since the EVM 
hypothesis is structurally similar to the molecular diffusion 
encountered in laminar flow, the k-e model is relatively 
easy to implement in standard (i.e., laminar) numerical 
codes. Finally, the application of the k-e model to wall
bounded flows using either wall functions or low-Reynolds
number formulations is relatively well established in 
comparison to second-moment closures. All of these factors 
suggest that the k-e model is an appropriate closure for 
numerical studies of airflows in rooms. However, this may 
not be the case; as an EVM closure, the k-e model has 
significant limitations with respect to the prediction of 
buoyant airflows. 

By way of example, this paper considers a plane 
buoyant vertical jet, which in the limit of strong buoyancy 
becomes a plume. A k-e model closure yields an acceptable 
prediction for the mean velocity and temperature fields in 
a plane jet. However, when buoyancy is dominant, so that 
the flow behaves like a plume, the k-e model closure fails 
to yield a realistic prediction. The explanation lies in the 
fact that an EVM relation simply cannot accurately model 
the streamwise turbulent heat flux, < u18 >, in a plume. 
For this flow, the turbulent heat flux is actually "counter
gradient'' to the mean temperature field in the region of the 
flow away from the centerline. Failure to accurately model 
the heat flux < u18 >, in tum, renders the turbulence model 
incapable of reproducing the effect of buoyancy, which is 
to enhance the turbulent transport. In contrast, an ASM 
closure can be shown to yield a reasonable prediction for 
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the vertical plume. In particular, an ASM relation is 
capable of modeling the countergradient turbulent heat flux 
and the enhanced levels of turbulent transport due to 
buoyancy. 

Recognition of the failure of an EVM relation in regard 
to a plume is not new. Malin and Spalding (1984) noted the 
countergradient transport in the streamwise direction for the 
temperature field in the plume and proposed a novel 
algebraic heat flux model to eliminate the deficiency of an 
EVM relation. Their model replaced the streamwise 
temperature gradient with the temperature variance < 82 > 
divided by a turbulence length scale. Sini and Dekeyser 
(1987), in using a k-e model to predict the vertical buoyant 
jet, resorted to an empirical function of the densimetric 
Froude number in their EVM relation in order to obtain the 
correct behavior for a plume. Even with this modification, 
they noted that an EVM relation failed to reproduce the 
correct level of < u18 > in the plume. The deficiencies 
encountered by EVM predictions of a plane plume as 
de8cribed above were also encountered by Durao et al. 
(1989) for the axisymmetric case. As well as the standard 
k-e model, they also considered improved eddy diffusivity 
relations. Their general assessment was that all the models 
tested significantly underpredicted the axial turbulent 
transport. 

It is significant that the k-e model using EVM relations 
for the turbulent beat flux should break down in as basic a 
flow as the vertical plume. One important implication for 
numerical studies of airflows in rooms is that although the 
k-e model is computationally attractive in the case of 
buoyant flows, it has significant limitations. On the other 
hand, an ASM closure, which retains much of the computa
tional advantage of the k-c model, is much more successful 
at including the effect of buoyancy on the turbulent trans
port. 

Since a prediction for a plane vertical plume using an 
ASM has been reported elsewhere (Bergstrom et al. 1990), 
this paper focuses specifically on the role of the streamwise 
turbulent heat flux, especially with respect to its contribu
tion to the buoyancy production of turbulence kinetic 
energy. Both EVM and ASM closures are considered. The 
next section describes the mathematical model equations. 
The numerical solution of these equations is described next 
and then the results are compared to the experimental data 
of Ramaprian and Chandrasekhara (1989). 

THE MATHEMATICAL MODEL 

The mathematical model is based on the mean transport 
equations, the turbulence model relations for the Reynolds 
stress and turbulent heat flux, and the transport equations 
for the turbulent scale parameters k, e, and <fP>. A 
complete description of the equations and the associated 
turbulence models can be found in Bergstrom (1987). 

For incompressible flow of a -Newtonian fluid, the 
mean transport equations representing conservation of mass, 

momentum, and thermal energy can be written as follows 
using cartesian tensor notation: 
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where U, and u, represent the mean and fluctuating velocity 
components, respectively, and 9 and 8 denote the mean and 
fluctuating values of the temperature, respectively. The 
notation < > is used to indicate the time-averaged value. 
With respect to fluid properties, µ is the dynamic viscosity 
and r is the molecular diffusivity. The variation of the 
density, p, with temperature is approximated by 

p=p.(1-{j.ii9) (4) 

where .ii9 = 0 - e. is the local deviation of the tempera
ture field from the reference value e .. and {J is the coeffi
cient of thermal expansion. Finally, g1 is the gravitational 
force vector. 

The turbulent transport in the mean equations is 
associated with the gradients of the second moments, i.e., 
the Reynolds stress < u,u_1 > and the turbulent heat flux 
< u,8 > . In order to close these equations, turbulence model 
relations are required for < u1u1 > and < u,8 > . Two 
different models were considered: EVM relations using a k
c model closure and ASM relations requiring solution of 
transport equations fork, e, and <82 >. The two different 
model relations for the Reynolds stress and turbulent heat 
flux are presented in Tables 1 and 2, respectively. With 
regard to the k-e model, different values have been pro
posed for the turbulence model coefficients c,. and u, in 
buoyant flows. However, as will be shown in the results, 
modifying the value of c,. and u, does not change the essen
tial nature of an EVM closure. The values adopted in the 
present study, i.e., c,. = 0.09 and u, = 0.7, represent 
typical values for turbulent free shear flows. 

The ASM closure essentially follows that of Gibson and 
Launder (1971). The model relations used for the pressure 
scrambling terms are those originally put forward by 
Launder (1975). Improved models for these terms in the 
second-moment transport equations are being actively 
pursued by Launder's group (Launder 1988) and elsewhere. 
The algebraic relations represent approximations to the 
transport equations for the second moments. In the present 
analysis, the net transport of < u,u1 > and < u,8 > has been 
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c. = 0.09 c, = 2.2 C2 = C3 = 0.55 

modeled in terms of the corresponding transport of k and 
< 82 > . This represents a potentially more general relation 
than one that neglects convection and diffusion altogether. 

The most important distinction between the two models 
pertains to the dependence of the second-order fluxes on the 
mean field gradients o9/ox1 and oU,loxr An EVM relation 
implies a dependence on a single me.an field gradient; an 
ASM relation introduces a much more complex dependence 
on the mean flow field. In the present study, attention will 
be focused on the mean temperature field and the perfor
mance of the turbulence model relation for the heat flux 
< up > . If we consider the streamwise turbulent heat flux 
<u18>, an EVM relation implies that <u18> is solely 
dependent on the mean streamwise temperature gradient 
o9/ox1• In contrast, the ASM relation includes a depen
dence on both temperature and velocity gradients, specifi
cally, ae1ax., ae1ax2, au.tax., and au.1ax2. The algebraic 
relation also includes a dependence on the other flux 
component < u.JJ > , as well as the Reynolds stress compo
nents <u1u1> and <u1u2 >. As such, the algebraic 
relations for the turbulent heat flux and Reynolds stress are 
strongly coupled. 

Evaluation of the turbulence model relations for the 
second moments also required solution of transport equa
tions for the turbulence-scale parameters. The EVM relation 
required solution of transport equations for the turbulence 
kinetic energy, k, and its dissipation rate, t. For an ASM 
closure, a transport equation for the temperature fluctuation 
< 82 > was also solved. The thermal dissipation rate, t 9 = 
2r <fJ81ax1 aotax1>, was obtained from assumption of a 
constant turbulence time scale ratio, R. The transport 
equations for the turbulence-scale parameters are presented 
in Table 3, together with the relation for R. For the free 
shear flow being considered, the high-Reynolds-number 
form of the turbulent transport equations was adopted. 

THE NUMERICAL SOLUTION 

The numerical solution method followed the finite
volume formulation of Raithby et al. (1986). A staggered 
grid arrangement was adopted. The upwind weighted 
approximations of Raithby et al. were used to discretize the 
differential transport equations. A pseudo-transient formu
lation based on a finite time step was used to introduce 
relaxation into the numerical solution. The discrete equation 
set was solved iteratively, using the SIMPLEC algorithm to 

TABLE 2 
Turbulence Model Relations for the 

Turbulent Heat Flux 
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TABLE 3 
Transport Equations for the 
Turbulence Scala Parameters 

solve for the velocity-pressure field. The solution was 
considered to be converged when the normalized mass 
residual was less than 10-5 per control volume. Additional 
details of the solution method are given in the thesis of 
Bergstrom (1987). 

In contrast to most previous numerical predictions for 
a buoyant jet, the present study retained the full two-dimen
sional form of the transport equations and solved them 
elliptically. Thin shear layer approximations were not 
introduced. The elliptic solution of turbulent shear flows, 
especially buoyant shear flows, often leads to numerical 
problems associated with the violation of reali:zability 
constraints during intermediate steps of the solution process. 
Computational checks were introduced into the algorithm to 
ensure that "temporary" violations of realizability did not 
prematurely terminate the solution process. At the same 
time, care was taken to ensure that the checks did not 
influence the final solution fields, once steady state had 
been achieved. 

The solution domain consisted of the half-plane of a 
vertical plane plume, as shown in Figure 1. The boundary 
conditions are also summarized in Figure 1. The plume was 
considered to be discharged from a slot of width D located 
in a smooth insulated wall. The centerline represented an 
axis of symmetry. At the outer edge, the mean velocity 
gradient was set equal to zero, while the temperature was 
set equal to the ambient value. A zero gradient outflow 
boundary condition was implemented at the downstream 
edge of the solution domain. 

In order to ensure grid independence of the similarity 
profiles, solutions were obtained on grids of different sizes 
and mesh densities. Specifically, a solution was first 
obtained on a grid using 45 X 35 control volumes and 
extending 80 and 31 slot widths in the streamwise and 
cross-stream directions, respectively. A second solution was 
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then obtained on a refined grid, using 85 x 55 control 
volumes. Comparison of the similarity profiles obtained on 
the two grids indicated a maximum difference of 2 % . The 
solution presented below pertains to the refined grid and is 
considered to be, for practical purposes, grid independent. 

RESULTS 

The computational model described above was used to 
predict a plane vertical plume. The relative influence of 
buoyancy compared to inertial forces is given by the 
densimetric Froude number, Fr = rl21g{39D. In this case, 
a discharge Froude number of Fr0 = 8 ensured that 
buoyancy forces were dominant. The flow behaved as a 
plume over most of the solution domain. Typical values of 
the discharge conditions were as follows: U0 = 0.05 mis, 
9

0 
= 20°C, and D = 0.005 m. 
Chen and Rodi (1980) used similarity analysis to deter

mine the mean field behavior of a plume in the fully 
developed region of the flow. The resultant similarity 
relations describe the evolution of the mean velocity' um, 
and temperature, e,., along the centerline, i.e., 

(5) 

(6) 

and the corresponding lateral growth or spread rates, i.e.; 

(7) 

(8) 

where bN and b8 are, respectively, the half-widths of the 
velocity and temperature field. In the equations above, x1 is 
the streamwise flow direction. 

The predicted values of the similarity parameters for 
the plume are presented in Table 4 for both EVM and ASM 
closures, together with the values recommended by Chen 
and Rodi (1980) and the more recent measurements of 
Ramaprian and Chandrasekhara (1989) (hereafter denoted 
RC). In regard to the mean temperature field, the EVM 
closure predicted a thermal spread rate that is approximately 
40 % lower than the experimental value. In comparison, the 
ASM closure did much better, although the level of the 
thermal spread rate is still about 13 % less lhllll the ex~ri
mental value. Predictions based on the solution of the full 
differential equations for < u,u1 > and < u,8 > , e.g. , Malin 
and Younis (1990), have also obtained a relatively low level 
for the thermal spread rate in the plume when the standard 
model constants are adopted. 

Bergstrom et al. (1990) present a comprehensive 
discussion of the ASM prediction for the velocity and 
temperature fields in the plume. In the present paper, 
attention will be focused on the prediction for the turbulent 
heat flux and its role in reproducing the effect of buoyancy 
on the overall level of turbulent transport. 

The predicted similarity profiles for the transverse 
turbulent heat flux < u.JJ > using EVM and ASM closures 
were compared to the experimental data of RC in Figure 2. 
Although the shape of the < u.jJ > profile for both models 
agrees well with the experimental data, the peak value of 
the EVM prediction is approximately 20% too low, while 
the ASM prediction is approximately 30 % too high. The 
experimental uncertainty quoted by RC for the turbulent 
heat flux was 10 % . However, their experimental profile for 
< u.j) > was as much as 20 % lower than the profile implied 
by an energy balance based on the mean temperature and 
velocity fields. 

The predicted profiles for the streamwise turbulent beat 
flux < u18 > using both EVM and ASM closures are 
compared to the experimental data of RC in Figure 3. The 
EVM closure failed to predict both the level and direction 
of <u,8>. In contrast, an ASM closure did much better, 
although the peak value is now approximately 50 % too 
high. 

TABLE 4 
Prediction for the Similarity 

Parameters in a Vertical Plume 

Study II Bu I Bo I Su 
k- f. 2.3 3.6 0.080 
ASM 2.0 2.8 0.097 

data RC {8) 2.13 2.56 0.11 
data CR [13] 1.9 2.4 0.12 

Ss 
0.082 -
0.113 
0.133 
0.13 
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Figure 2 Similarity profile for transverse turbulent heat 
flux in plume (Bergstrom et al. 1990). --
k-e model,· --- ASM,· --e- Ramaprian 
and Chandrasekhara (1989) data. 

The EVM failed to predict the streamwise turbulent 
transport because it depends entirely on the mean stream
wise temperature gradient lJ9/lJx1• Experimental studies 
have shown that, whereas <u18> remains positive 
throughout the plume, a01ax1 changes sign, indicating that 
the turbulent transport in the outer region of the jet is 
countergradient. Figure 4 plots the streamwise temperature 
gradient for the plume based on the similarity relations for 
the mean temperature field. From Equations 5 and 6, and 
assuming a Gaussian profile for 9, i.e., 

9 /9,,. = exp(-a 172
), (9) 

where a = -ln(0.5) and 7/ = x2'b8, then the expression for 
a01ax1 becomes 

a9 = S8 (9n,/b9)exp(-a712)(2a712 -l). (10) 
axl 

Using the recommended value of 0.13 for S8 (Chen and 
Rodi 1980), the curve shown in Figure 4 was obtained. 
From the analysis, the positive value of the streamwise 
gradient of the mean temperature in the outer region of the 
flow is due to the dominance of spreading over the axial 
decay. Also shown in Figure 4 is the streamwise mean 
temperature gradient based on an ASM closure, which 
compares favorably with the similarity relation. An ASM 
closure is capable of modeling the countergradient heat flux 
because the ASM relation includes a dependence on the 
production terms - <u1u2> a9/ax,. and -uz,8> aui1ax2, 
both of which are significant in a shear flow characterized 
by strong mean field gradients in the transverse flow 
direction. 
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Figure 3 Similarity profile for streamwise turbulent heat 
flux in plume (Bergstrom et al. 1990). ---, 
k-e model,· -- ASM; --·-- k-W 
model (Malin and Spalding 1984),· --e
Ramaprian and Chandrasekhara (1989) data. 
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Figure 4 Mean streamwise temperature gradient in 
plume (Bergstrom et al. 1990). --·-
similarity relation, Equation 10;---ASM. 

In their numerical study of buoyant jets, Malin and 
Spalding (1984) also recognized that an eddy viscosity 
model would be inappropriate for < u18 > because the 
profile for the heat flux would then necessarily change sign 
across the plume. Instead, they proposed the following 
relation: 

(11) 

where CH = 0.55 is an empirical constant chosen to 
optimize the prediction for a pure plume in a uniform 
environment. Their prediction for < u18 > in a plane plume 
is also given in Figure 3; it compares favorably with the 



experimental profile, except for the relatively high value at 
the centerline. (Of course, the good comparison is to be 
expected, since the value of CH was optimized for this 
specific flow.) 

Consider now the consequence for the mean field of the 
failure of an EVM relation to accurately model <u18>. 
Results of previous studies (Hossain and Rodi 1982) have 
shown that a k-e model does yield a reasonable prediction 
for a plane vertical heated jet, at least in terms of the mean 
field behavior. The prediction for the streamwise compo
nent of the turbulent heat flux in a heated jet is incorrect, 
but this result is not of any consequence for the mean flow. 
However, for a vertical plume, a flow in which the effect 
of buoyancy on the turbulent transport is significant, the 
failure to correctly model the streamwise turbulent heat flux 
has an important consequence for the overall flow predic
tion. 

In the transport equation for k, the buoyancy produc
tion, Gx = -(1 < u18 > , represents the additional generation 
of turbulence kinetic energy due to the density fluctuations 
a8sociated with the streamwise heat flux < u18 >. The k-e 
model prediction for the buoyancy production across the 
width of the plume was compared to the experimental 
measurements of RC (Ramaprian and Chandrasekhara 1989) 
in Figure S. Also shown is an ASM prediction. It is evident 
that a k-e model does not realistically model the buoyancy 
production. On the other hand, an ASM relation that 
successfully predicts the countergradient thermal transport 
also reproduces the approximate level of the buoyancy 
production term. The peak level predicted by the ASM 
closure is approximately 50% higher than the experimental 
value. 

The numerical and experimental profiles for the 
turbulence kinetic energy in the plume are shown in Figure 
6. Because direct measurements were not available, the 
experimental value of k was estimated from the relation k 
= 3/4 (<u1u1> + <uV·>), using the normal Reynolds 
stress components measured by RC. The k-e model predic
tion was too low; an ASM prediction was typically within 
10 % of the experimental value. One of the principal reasons 
for the deficiency in the k-e model prediction is the failure 
to include the influence of buoyancy on the turbulent 
transport. 

As noted above, Sini and Dekeyser (1987) used a 
modified k-e model to predict a vertical buoyant plane jet. 
A realistic prediction for the spread rates and decay 
constants for the plume was only obtained by introducing an 
empirical modification to the value of the eddy viscosity v, 
in the EVM relations adopted. Their prediction for k is also 
shown in Figure 6. It is substantially low and very close to 
the profile predicted by a k-e model. This can be attributed 
to the fact that an unrealistic value of < u18 > precluded a 
reasonable prediction for Gx and hence k. The important 
point to be noted is that the failure of a turbulence model 
can be "repaired" in terms of the mean field behavior 
without ensuring a realistic prediction for the turbulence 
field. Such a "fix" cannot be regarded as a valid and 
generally useful predictive model. 
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CONCLUSIONS 

As an example of a buoyant airflow, this study consid
ered a numerical simulation of a plane vertical plume, 
which is characterized by strong destabilizing buoyancy. 
The full two-dimensional form of the transport equations 
was retained, and the resultant equation set solved elliptical
ly. The predictions for the mean temperature field and 
turbulent heat fluxes were compared to the experimental 
data of Ramaprian and Chandrasekhara (1989). 

Both eddy viscosity and algebraic stress models were 
used to close the mean transport equations. The EVM 
closure based on the k-£ model failed to provide an accurate 
prediction for the plume. Specifically, an EVM relation was 
incapable of predicting the streamwise turbulent heat flux, 
which is countergradient in the outer region of the flow. 
For a vertical plume, Ramaprian and Chandrasekhara 
(1989) have shown this term to represent a significant 
fraction of the total streamwise transport of thermal energy. 

As a direct consequence of this deficiency in the EVM 
relation for < u18 > , the k-£ closure also failed to reproduce 
the correct level of turbulence kinetic energy, k. In particu
lar, the predicted value of the buoyancy production term in 
the transport equation for k was negligible, which is 
physically incorrect. This low level of turbulence kinetic 
energy partly accounts for the low level of the predictions 
for the momentum and thermal spread rates using an EVM 
closure. A clear implication is that numerical models 
intended for buoyant airflows in rooms may encounter 
specific flow configurations where the standard k-c model 
is inadequate to predict the overall scalar transport. 

The ASM model was shown to yield much better 
results. The nonequilibrium algebraic stress model intro
duced a complex dependence of < u18 > on both the mean 
velocity and temperature gradients (in both coordinate 
directions). This enabled an ASM to obtain a much more 
realistic prediction for < u18 > and the associated level of 
turbulent transport in the plume. 
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NOMENCLATURE 

half-widths 
decay constants for plume 
slot width 
material derivative, 
D( )!Dt = o( )lot + ~ o( )lox1 
discharge Froude number, Fr

0 

uo21gf39P 
gravitational vector 
buoyancy production rate of k 
buoyancy production rate of < u,u1 > 
buoyancy production rate of < u,8 > 

= 

k = specific turbulent kinetic energy 
p = mean pressure 
PK = shear production rate of k 
P8 = production rate of < 82 > 
Pu = shear production rate of < u1u1 > 
P,8 = mean production rate of < u18 > 
R = turbulence time scale ratio 
s spread rate, S = dbldx1 

t time 
u, fluctuating velocity 
<u,u1> Reynolds stress 
<uP> turbulent heat (or scalar) flux 
u, = mean velocity 
x, distance from origin 

Greek Symbols 

f3 coefficient of thermal expansion 
r molecular diffusivity 
r I turbulent diffusivity 
lJu = Kronecker delta 
c dissipation rate of k 
£8 dissipation rate of <ff> 
8 = fluctuating temperature 
e mean temperature difference between 

local and ambient value, i.e., for temper
ature T, 9 = T- T0 

µ molecular dynamic viscosity 
v molecular kinematic viscosity 
v, turbulent kinematic viscosity 
p mean fluid density 
u, turbulent Prandtl number 
u K turbulent Prandtl number for k 
Ue turbulent Prandtl number for £ 

u8 turbulent Prandtl number for < 82 > 

Subscripts 

a ambient value 
i J ,k Cartesian indices 
m 
0 

u 
8 

Abbreviations 

ASM 
EVM 
RC 
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