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INTRODUCTION

HVAC systems in commercial buildings account for about 65% of the total building energy
requirements. Significant savings can be achieved through improved operation of these systems,
all the while ensuring the comfort and well-being of the occupants and using the least amount
of energy possible. The aim of Fault Detection and Diagnosis (FDD) of HVAC systems is to
ensure the proper operation of the system through the timely detection of system problems and
correct diagnosis of their causes. FDD has been receiving increasing attention from researchers
in the field of control systems. This interest has been spurred by stricter standards on building
energy utilization efficiency (1) and indoor air quality (2). In addition, recent developments in
the fields of control systems and computer science have opened up new possibilities for
improving commissioning and operation of the HVAC systems.

Presently, Building Energy Management Systems (BEMS) provide simple checks for the
occurrence of faults. These include checking: (a) the limits of critical parameters, (b) whether
a point is operational or not and (c) the status of equipment (ON/OFF). No capability exists to
detect errors in sensors, degradation in equipment performance and problems with actuators.
The responsibility for the detection and diagnosis of faults rests with building operators whose
knowledge of the underlying principles of building operation and whose familiarity with the
building system’s performance enable them to detect, diagnose and ultimately correct problems.
Despite the best intentions of the operators, lack of support in terms of training as well as the
overwhelming flow of information from the BEMS often limit the operators’ ability to
adequately respond to faults of the type described
above (3). Consequently, it is desirable to
develop tools for the detection and diagnosis of
HVAC system faults without imposing additional
information processing tasks on the operators.
Such a system would actually reduce the
o P L) FAULT (L4 FAULT HNM’L Cmmqﬁépmssé operator’s load since it would automate the fault
s I e o OFERA detection, diagnosis and evaluation parts of the
A procedure shown in Figure 1. The system would
report to the operator either the information
Figure 1 Conceptual sequence of events in an 1CCCSSaTY to proceed with an Mtemative operating
FDD procedure strategy (A) or that which is necessary to

eliminate the fault (B).
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TYPES OF FAULTS IN HVAC SYSTEMS

HVAC systems, like any dynamic system, can be considered to consist of three major
subsystems: the sensors, the process and the actuators. Consequently, faults can be categorized
accordingly into sensor failures, process failures or actuator failures. Sensor failures can have
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a substantial effect on system verformance. Kao and Pierce (4) and Kao (5), have shown through
simulation of an office building, that in certain cases a 5.5°C (10°F) error can increase the
annual energy requirements by 50%. These failures may be subdivided into two types: sensor
bias and sensor drift. In the former case the sensor, although still operational yields incorrect
readings, while, in the latter, the sensor bias continually changes with time. Sensor drift, which
is more prominent in pneumatic systems, poses serious problems for the controllers. This type
of failure often leads to instabilities which may in turn cause indoor air quality problems, early
deterioration of equipment as well as waste energy. Actuator faults can also substantially
diminish the efficiency of building system operation. Valves or dampers that are not opening
or closing properly will not deliver the desired flow rates leading to problems similar to the ones
mentioned above. Process faults include the malfunctioning of equipment and of the air and
water distribution systems. These types of faults may be either easy Lo detect, as in the case of
a tripped motor, or very difficult to detect as in the case of fouled heat exchangers. Regardless
of the origin or type of fault, continued Systemt operation without detection, diagnosis and
correction of the fault, will inevitably lead to further system degradation, excessive energy use
and, possibly, indoor air guality problems.

FAULT DETECTION AND DIAGNOSIS METHODS

Hardware redundancy, an FDD method primarily used in the aerospace and process industries
is a technique that uses a set of three or more sensors to measure one variable. The signals are
then examined and majority vote ensures that the proper reading is taken. This approach
however, has not been and is unlikely to be applied to the FDD of HVAC systems largely
because it is prohibitively expensive

Current FDD procedures for HVAC systems are operatcr dependen:.  Auiomation of the rhese
procedures for these systems has received limited attention until recenily.  Alternative
approaches are being develoned based on analytical redundancy and Artiticial Intelligence (AL)
techniques (3, 6, 7). Brief descriptions of these techniques follow.

ANALYTICAL REDUNDANCY METHODS

Various methods for FDD using analytical redundancy have been reported in the past two
decades. As the name implies, these methods make use of the inkerent relundancy contained
in the static and dynamic relationships among the system inputs and measured outputs. In other
words they make use of a mathematical model of the system, an aspect that has both advantages
and disadvantages for the application of these mathods in HVAC systems. The main ad vantage
being the significant number of HVAC equipment models already available (8), while the
disadvantage being the non-Iinear characteristios of the processes involved in HVAC systems,

A schematic of the overall procedure used in analytical redundancy techniques is shown in
Figure 2. Two basic techniques exist for generating the difference between the expected and
actual system observations (resiGuals) using analytical redundancy: 1. state estimation and 2.
parameter identification.



1. State Estimation Techniques

u A

7] PROCESS = In order to facilitate the description of the
————ei] | .1 | characteristics of state estimation techniques
‘MODEL L PV S — g let us gonsider the lipear system given by the

jfa';?o"é'éés]aa OBSERVED PAULTY % following state equations:
e e e %(t)=Ax()+Bu(t)+Ev(t)+Kfy (D

STATE |FﬂMIﬂ.‘I‘l’_ﬁ
= l Y(0)=Cx(t)+F(t)+Gf(t) @
| NF’W‘O” e ' E where x is the state vector, u the known input
_52“0“ Sonnis %[ | vector, v the unknown inputs vector, f the
COMPARISON g| | fault vecto%' and y the measured outputs vector.
- 2| | The matrices A, B, and C are known
DECISION === matrices. Ev(t) modeis the unknown inputs to
_______________________ A — 1| | the actuators and to the dynamic process, Kf(t)
""""""""""""""""""""" p| | actuator and component faults Fyv(t) the
BIAGNOSIS & | unknown inputs to the sensors and Gf(t) the
T T g sensor faults. The model is then used to
. S § evaluate the redundancy relationships through
b s i e i A®) | the generation of residuals for fault isolation
and diagnosis.
Figure 2 Procedure for FDD using aralytical

redundancy methods . . , .
‘ The state estimation techniques require the

reconstruction of the system state based on measurable input and output signals.” The
reconstruction is achieved with the aid of observers or Kalman filters. The fundamental
configuration of a linear full order estimator is shown in Figure 3 (9). it consists, in effect of
a parallel model of the process with a feedback (H) of the estimation error. It can be shown
from equations 1 and 2 that the estiraied state R(t) and estimated outpui §(t) are governed by
the following two equations:

] e £()=A%(5)+Bu(t)+My(0)-Ce() )
Jt)=C2(0) )
b= :.[
Moo [ SEvERATN where I is the feedback gain matrix that has
r 1o be chosen properly io achieve the desired
F==g ]<==: Frmm— performance of the observer. Using equations
SWIE 1 through 4 the state .estimation £rTor
e e(y=x(t)-R(t) and the residuals or output
Figure 3 ‘Basic configuration of residual generation cstimaiion error e(t) =Y (l) —y (t) are derived:

through state estimation
é(ti=Ae(t) +Ev(t)+ Ky (1) ~HICe(d)+ Fy () +Gf ()] )

e(t)=Ce(t)+Fy(t)+Gf(t) (6)

It can be seen from these equations that the output estimation error e is a function of the fault
vector f and the vector of unknown inputs v but not of the actual input u. This vector can
therefore be used for detecting faults. The degree to which the residual generation is affected
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by the unknown inputs, i.e. its robustness, is one measure by which the tecanique’s performance
is assessed.

Fault decisions can subsequently be made through special testing methods:

@) Generalized Likelihood Ratio test which results in the correlation of e
observed residuals with the precomputed filter responses due o faults.

(b)  Fault Detection Fiiters which are full order state estimators with special
choice of H.

©) Statistical tests of the residuais of a Kalman filter.

State estimation methods have been studied extensively. However, the non-linearities inherent
in the physical processes involved in HVAC and the fact that the faults are difficuit to separate
from unknown inputs, make the use of these techniques problematic. More detailed descriptions
of methods using state estimation may be found in Ref. 10.

2. Parameter Identification Techniques

Parameter identification techniques detect fauits via estimation of the modei parameters through
the following procedure (11).

1.

Development of the empirica: process model. This model may oe in the form of a
polynomial equation in the case of a static model:

Y(W)=8 , +Bu+Bu’... (7

or of a differential (or difference ) equation in the case of a dynamic model:
YO+ay+a)+....+ay P =b u+burbji+....+b u™ )

The process model parameters 87 =[8,,8,,8,,...j0: 97 =[a,,...,4,jb,....,b,] represent
relationships of several process coefticients.

Determination of the relationships between the model parameters ©; and the physical
coefficients p;

0=/1p) ©)

Idertification of the model parameter vector ¢ using tihe iaput vector u and output vector
¥

Calculation of the preeess coefficients

P (10)
Calculation of the vector of deviations Ap, from its nominal value taken from the nominal
model.
Location of faults by the use of a library of fault signatures in which the relationships

between faults and changes in Ap; has been established. This step may require the use
of statistical dzcision theory and pattern recognition.

This technique may be particularly useful for the detection of slowly developing (incipient)
fau'is, for exampie sensor drift and fouling of iieat exchangers.
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PROBLEMS WITH ANALYTICAL REDUNDANCY

These methods require advanced information processing techniques and depend heavily on the
quality of the system models. Since HVAC system models would require model order reduction
and some degree of linearization to make them computationally efficient, the requirement for
high quality models would pose problems in the implementation of ar FDD system based on
analytical redundancy (11). Such FDD systems suffer in general, from the practical limitations
imposed by the approximate nature of the model used. This ieads to problems of robustness
with respect to (a) parameter uncertainties, e.g., heat transfer coefficients (b) non-linearities,
e.g., radiation heat transfer (c) vncertain dynamics, e.g., combustion and (d) fault types, €.g.,
actuator or sensor failure.

These limitations may be overcome by the use of thresholds in order to distinguish a fault from
modelling errors and signal noise. Choosing apprepriate thresholds, however, is not a frivial
task. Thresholds that are set too low often result in false alarms while thresholds that are set
too high can reduce the sensitivity of the FDD system in detecting real faults.

Although several robust techniques, i.e., techniques that are aimed at reducing the effect of the
above mentioned limitations, have been developed, problems still remain which limit
significantly the practical application of analytical redundancy-based techniques. Otber
techniques, namely ones that use the developments in Al such as qualitative modelling and the
use of artificial neural networks may.prove to be more advantageous.

ARTIFICIAL INTELLIGENCE-BASEL METHODS

The use of Al in process control as well as fault detection and diagnosis is spreading rapidly
albeit with varying degrees of success. Three major areas of on-going research include:

1. Rule based expert systems;

2. Deep knowledge expert systems and

3. Artificial neural networks (ANN).

1. Rule Based Expert Systems (RBl;L'S)

Pioneering efforts at using AI methods in process contrel and diagrosis made use of rule based
expert systems. These systems constitute the AI applications currently in use. Their mode of
operation is intuitively simple, although creating practical applications is far from trivial. Process
measurements or alarms are explicitly linked to causes or conseqguerces: in the process hehaviour
through the use of a compiled knowledge database, as illustrated by the following example:

EXAMPLE .

RULE 2055: Examine effect of wind on economizer

IF wind speed > 45 v_

AND NOT control OF Outside Air Damper IS full owtside cir

AND Reading OF Mixed Air temp sensor = Reading OF Ambient tenp sensor
THEN State OF Mixed Air temp sensor IS Faulty

The main advantage of these systems js that knowiedge of human experts can be translated to
this form without any in-depth understanding about the dynamics of the process, i.e, rules of
thumb can suffice. Other advantages of RBES-based methods include the fact that they are
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relatively easy to follow and that incremental increases of the scope of the system are easily done
by the knowledge engineer. These advantages clearly address the limitations cited earlier for
analytical redundancy techniques. However, RBES-systems do have several cisadvantages.
First, situations not described explicitly in the database cannot be recognized and/or treated (this
is sometimes referred to as brittleness). This may be a major impediment for large systems, as
is the case with large HVAC systems, where the number of rules required to cover all situations
may rapidly increase with size. Second, finding optimal strategies for the activation of rules
(referred to as "firing" of rules) becomes increasingly difficult with size. Finally, a relatively
slow response time in the case of large systems may limit their on-line application.

2. Deep Knowledge Systems

Deep knowledge systems address the inability of KBES to treat novel situations by providing
models of reasoning that can lead to fault detection/diagnostic decisions. In this sense one can

view the rule based s stems as the topmost

- layer of the deep models. Among others, the
?x‘fdf'[‘;,? relatively new "qualitative physics" or
Iyl "qualitativ- modelling" approach is currently

- 0 + generating a lot of interest for cases where

__“}7"_" . 2 computational difficulties o- the lack of

| detailed kiowledge about the dynamics of a

Ix]1 o | - 0 + system renders analytical redundancy
impossible (12). The basic idea here is that

+| 2 + + the traditional description of a system with

state variable and algebraic or differential

[x]=sign(x) equations is replaced with one where only part

[yl=sign(y) of the information of the state variable is

Figure 4 Truth table retained and where formal equations are

replaced with qualitative constraini equations.

As an example consider a system in which only the sign of a variable X and the sign of iis
derivative with respect to time X’ are retained, The algebra. governing the system is then
defined through "truth tables"” for "operations®” on the variable as shown in Figure 4. A question
mark indicates that any of the oatcomes (+,-
,0) is acceptable. With the operations defined,
oné can construct qualitative constraint

Q n—pp- A equations from physical models and zny
assignment of variables (and derivatives)
"{‘ AP ?UT satisfying the constraints are deemed to

represent valid states (i.e., physical states). A
simple valve configuration shown in Figure 5

AS - ;':,I::srl?f: drop between in and out w1l be used to illustrate this. Rates of change -
A = Cross-sectional area in flowrate, pressure drop and orifice area are
constrained by the following constraint
Figare 5 Valve model equation:
[dP] + [dA] + [dQ] =0 (11)
The requirement that the flow be in the same direction as the pressure drop leads to:
(P1-[Q1=0 (12)

Given these equations, one then tries to evaluate the possible outcomes of the system.
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3, Artificial Neurel Network Systems

Whereas KBES store their information explicitly (rules, symbols, models), ANN’s, an example
of which is given in Figure 6, are an implici¢ realization (13) of ihe information contained in
a system: synaptic weights and neuron odiases contain all the knowledge one has about a given
system. This "storing" of information is achieved in the following way: a set of input/output
vectors T, and O, is wsed to "train” the network. "Train" in this context means the adjustment
of synaptic weighis and neuron biases at every node so that error (e.g., the norm of the
difference (P,-0,) Letween the predicted (P) and actual output ( Oy)) is minimized. If training
is successful, the net will not only be able to correctly estimate the output for the original set
of inputs but will also be able to generalize the relationship to correctly estimate the output for
inputs never encountered before.

In the case of fault detection, one can train the
net {or nets) with regular operating data. Once
this has been done, the net should correctly
report situations which are outside the defined
regime of operations as ‘“faulty".  An
interesting feature here is the ability to
incrementally expand the training set by re-
assigning situations which are incorrectly
labelled "fauliy" to the set of "operational”
data. Since nets are inherently black box
systems and cannot "explain” why a fault has
occurred, their applicability to diagnosis is
Figure 6 An artificial reural netvvork limited.

CONCLUSION

The use of any ore of the techniques reviewed in large HVAC systems poses several problems,
robustness being the most important. This is especially so for the fault detection aspect of FDD
systems. The groblems described with respect to analytical 1edundancy tectiniques seem to point
in the direction of methods that are moere tolevant of modeiling approximations. The use,
therefore, of Al-methods appears tc be preferted. The biack pox models developed through
ANN do not lend themseives te fault diagnosis where knowledge of *he reasoning is often
imperiant. This aspeci of FDD has long teen the domain of F™=S. 7. ¢ use, tizclore, of a
hybrid Al-based technique would seem to orfer the flexibility required @ r the develonmert of
an HVAC Fault Detection and Dizagnosis system.
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