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INTRODUCTION

HVAC systems in commercial buildings account for about 65To of the total building energy

requirements. Significant savings can be achieved through improved operation of these systems,

all the while ensuring the comfort and well-being of the occupants and using the least amount

of energy possible. The aim of Fault Detection and Diagnosis (FDD) of HVAC systems is to
ensure the proper operation of the system through the timely detection of system problems and

correct diagnosis of their causes. FDD has been receiving increasing attention from researchers

in the field of control systems. This interest has been spurred by stricter standards on building
energy utilization efficiency (1) and indoor air quality (2). In addition, recent developments in

the fields of control systems and computer science have opened up new possibilities for
improving commissioning and operation of the HVAC systems.

Presently, Building Energy Management Systems (BEMS) provide simple checks for the

occurrence of faults. These include checking: (a) the limits of critical parameters, þ) whether

a point is operational or not and (c) the status of equipment (ON/OFF). No capability exists to

detect errors in sensors, degradation in equipment performance a¡rd problems with actuators.

The responsibility for the detection and diagnosis of faults tests with building operators whose

knowledge of the underþing principles of building operation and whose familiarity with the

building system's performance enable them to detect, diagnose and ultimately correct problems.

Despite the best intentions of the operators, lack of support in terms of training as well as the

averwhelming flow of information from the BEMS often limit the operators' ability to
adequately respond to faults of the type described

above (3). Consequently, it is desirable to

develop tools for the detection and diagnosis of
HVAC system faults without imposing additional
information processing tasks on the operators.

Such a system would actually reduce the

operator's load since it would automate the fault
detection, diagnosis and evaluation parts of the

procedure shown in Figure 1. The system would
report to the operator either the information
necessary to proceed with an alternative operating
strategy (A) or that which is necessary to
eliminate the fault @).

TYPES OF FATJLTS IN HVAC SYSTEIVIS

HVAC systems, like any dynamic system, can be considered to consist of three major
subsystems: the sensors, the process and the actuators. Consequently, faults can be categorized

accordingly into sensor failures, process failures or actuator failures. Sensor failures can have
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Fþre I Conceptual sequetce of events in an
FDD procedure
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a substantial effect on system oerformance. Kao and Pierce_(Ð and Kao (5), have shown throughsimulation of an oflìce building, that in certain cases a s.l"c (10.F-i áiro. can increase theannual energy requirementsby 50%. These failures
bias and sensor drift. In the former case the sensor,
readings, while, in the latter, the sensor bias continual
is more prominent in pneumatic systems, poses seriou¡ proble
of failure often leads to instabilities whictr may in turn óause i
deterioration of equipment as well as waste energy. Actu
diminish the efhciency of building system operatioã. valves
or closing properly will not deliver the desired flow rates leading to problems similar to the onesmentioned above. Process faults include the malfunctioning or 

"qiip*.nian¿ of the air andwater distribution systems. 
_These types cf faults may be eitñer *ry to cletect, as in the case ofa tripped motor, or very difr-rcult to dètect as in the cáse of fouled h-eat ex.changers. Regardlessof the origin or type of fault, contim¡e,d_ systenr operation without detection, diagnosis andcorrection of the fault, will inevitably,Jead to furtheisystem degrudation, excessive energy useand, possibly, indoor air quality prohlems.

FATJLT DETECTION AND DIAGNOSIS METHODS

Hardware redund'ancy, an FDD method primarily used in the aerospace and process industriesis a technique that uses a set of three or ntore sensors to measure one vanable. The signals arethen examined and majority vote ensures that the proper reating is taken. This approachhowever, has not been and is unlikely to be applied tó tne FDD-of HVAC systems largely
because it is prohibitively expensive

current FDD pro'cedures for HVAC systems are operatcr tlependeni, Atr'¡rration of the thcseprocedures for these s¡rstems has receivetl ti'nitø erttentìon until recenliy. Alte¡natlveapproaches are being develooed based cn ana,lytical redundancy altl Arliticial ftrteìligence (Ai)techniques ('3, 6, l). Brief descriptions of these technitues folrow.

ANALYTICAL REDIINDANCY METHODS

various methods for I'.ÐD-.using analytical 
-redundancy have been reported in the past twodecades' As the name implie-s, these methods make usé ot the inlie¡e¡ri reiunda.ncy containedin the static and dynamic relationships amon-g_th? system inputs and measured outputs. In otherwords they make use of a mathematical model nf ttre system, an aspect that has both aclvantagesand disadvantages for the application of these metho¿s in HVAC systems. The main a¿vantagebeing the signif:cant number of HVAC e4uiprnent models already ava-ilable (g), white thedisadvantage being the non-l;near charact..trti.r cf thc processes hvolveti in HvAC systems,

A schematic of the- overall procedure used in analytical redundancy techniques is shown inFigure 2' Two basic techniques exist for g"nr*tini ttt" ¿lm"r.nce úenveen ih" .*p""ted andactual system observ¿tions (residuals) usin! analytiðal røundancy: 1. state estimation and 2.parameter identification.
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Figure 3 confi guration of residual generation

i. State Estimation Techniques

In order to facilitate the description of the
characteristics of state estimation techniques
let us consider the linear system given by the
following sûate equations:

i(t)=ÆE(t)+Bu(t)+Ev(r)*KÍ(t) (1)

y(t)=C¡(¡)+Fv(t)+C¡¡¡1 Q)

ri'here x is the state vector, u che known input
vector, v the unknown inputs vector, f the
fault vecior and y the measured outputs vector.
The matrices A, B, and C are known
:natrices. Ev(t) modeis the unknown inputs to
the actuators and to the dynamic p.o""si,Kf1t¡
actuator and component faults Fv(t) the
unknown inputs to the sensors and Gf(t) the
sensor faults. The model is then used to
evaluate the redundancy relationships through
the generation of residuals for fault isolation
and riiagnosis.

Figure 2 Procedure fo¡ FDD using aralytical
redundancv methods 

The state estimation techniques require the
reconstruction of the system state based on measurable input and output signals.' The
reconstruction is achieved with the aid of observers or Kalman hlters. The fundamental
configuraiion of a linear full order estirnator is shown in Figure 3 (9). it consists, in effect of
a parallel nrodel,of the process with a feedback (H) of the estimation error. It can be shown
from equations 1 and 2 that the estirnated state i(t) and estimated ourpui 9(t) are governed by
the following two equations:

,'

î(t)=A!r,)+Bu(t)+I4yG.)-Cî(t)l (3)

i(t)-Ci(t) (4)

where If is üle feeclback gain matrix that has
to t'e chosen properly to achieve the desired
performurce of tlle obscrver. Using equations
1 ilrrough 4 the state estimation error
e (t) =x1¡;-1,r, a¡,d the residuals or output
estimatiorr error e(t):y(Ð-9(Ð are derived:
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v
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a

througb state estimation

êft¡=arçr+Ev(U+K1Ø-Hl.Ce(t\+Fv(t)+G1Øl (5)

e(t)=C¿(¡¡+Fv(t)+Qf(¡1 (6)

It can be seen from these equations that the output estimation error e is a function of the fault
vector f and the vector of unknown inputs v but not of the actual input u. This vector can
therefore be used for detecting faults. The degree to which the residual generation is affected
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by the unknown inputs, i.e. its robustness, is one nreasure by which ttie tecnnique's perforrnance
is assessed:

Fault decisions can subsequently be made through special testirrg methods:

(a) Generalized Likelihood Ratio test which results in the correlation ot ihe
observed residuals with the precomptited frlter responses due'co faults.

O) Fault Detection Filtcrs which a¡e full order state estirnators wrth special
choice of H.

(c) Statístical tests of the residuais of a Kalman filter.

State estimation methods have been studied extensively. However, the non-linearities inherent
in the physical processes involved in HVAC and rhe fäct that the faults are difficult to separate
from unknown inputs, make the use of these techniques problematic. Mo¡e detaiied descriptions
of methods using state estimation m^ay be',bund in Ref. 1ü.

2, Parameter Identificatic¡n Techniques

Para^'neter identification techniques detect faults v'ia estinration of the nrodei parameters through
the following procedure (11).
1. Development of the empiricai process rnodel. This model may be in the fbrm of a

polynomial equation in the case of a static model:

y(u)=ß . +P r¡t+fl^ttz , .. (7)

or of a differential (or difference ) equation in the case of a dynamic model:

y(t)+ary+a)+....+aJ@ =bou+þr¿+þ".¿+.... *b^u@) (8)

The process model parameters 0' :lß",ßr,ß.r,...joi 0F :[âr,...,a"ib,
relationships of several process coeift-lcients.

,....,bJ represent

Determination of the relationships between the model parameters O, and the physical
coefhcients p,

0=Í(p) (e)

Identification of the rnodel par¿meter v'ector d using tire input veotor u a¡rd output vector
v

4. Cal<;ulation of the proccss coefficierrts

p--f'(0) (i0)

5. Calculation of the vector of deviations Ap, from its nominal value taken from the nominal
model.

6. Location of faults by the use of a library of fault signatures in which the reiationships
between faults and changes ;.n ap, has been estal¡lisired. This step rnay require the uie
of statistical d,ecisior¡ theory arrd pattenr iecognition.

This technique may be particularly useful for the detection of slowly developing (incipient)
faurls, for erarnp,le sensor drift and f'ouling of ireat exctrangers.

2

3
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PROBLEMS WITTI ANA LYTICAL REDIJNDA^NCY

These methods require advanced information processing techniques and depend heavily on the
quality of the system- models. Since HVAC systern models would require model order reduction
and some degree of linearization to make them computationally eff,rcient, the requirement for
high quality models would pose problems in the implementation of an FDD system based on

analytical redundancy (11). Such FDD systems suffer in general, from the practical limit¿tions
imposed by the approximate nature of the model useC,. This ields to problems of robustness

with respect to (a) parameter uncertainties, e.B., heat transfer coefficients @) non-linearities,
e.g., radiation heat transfer (c) uncertaj.n dynamics,a.E., cornbustion and (d) fault types, e.g.,
actuator or sensor failure.

These limitations may be overcome by the use of thresholds in order to disîinguish a fault from
modelling errors and signal noise. Choosing appropriate thresholds, however, is not a trivial
task. Thresholds that a¡e set too low often ¡esult in false alarrns while thresholds that a¡e set

too high can reduce the sensitivity of the FDD system in detecting real faults.

Although several robust techniques, i.e., techniques that are aime<i at reducing the effect of the

above mentioned limitations, have been developed, problems still remain which limit
signihcantly the practical application of analytical redundancy-based techniques. Oiher
techniques, namely ones that use the developments in AI such as qualitative rnodelling and the
use of artificial neural networks may prove to be more advantageous.

ARTIFICHL INTELLIGENCF-BASEIi METHODS

The use of AI in process control as well as far¡lt detection and diagnosis is spreading rapidly
albeit with varying degrees of success. Three major areas of on-going resea¡ch include:

l. Rule based export systems;
2. Dæp knowledge expert systerns and
3. Artificial neural networks (AN¡Ð.

Pioneering efforts at using AI methods in process control and diagnosis nrade use of nrle based

expert systems. These systems constitute the AI applications currently in use. Their mode of
operation is intuitively simple, although creating practical applications is far from trivial. Process
measurements or alarms are explicitly linked to causes or consequencerî in ths procesrì behaviour
through the use of a compiled knowledge database, as illustrated by the following example:

ÐøMPLE
RULE 2055: Exatnine effect of wind on economizer
IF wittd speed > 45 :

AND NOT control OF Outside Aír Darnper IS.ful! out,side clr
AND Reading OF Mixed Air temp sensor : Rea¿inß OF Ambienr rcrp s€ntor
TIIEN State OF Mixed Air temp sensor IS Faulry

The main advantage of these systems is that knowiedge r:f human erpcrts can be translated trr
this form without any in-depth understanding about the dynamics of the process, i.e, rules of
thumb can sufhce. Other advantages of RBES-based methods include the fact that they are
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relatively easy to follow and that incremental increases of the scope of the system are easily rlorre
by the knowledge engineer. These advantages clearly address the limitations cited ea¡lier for
analytical redundancy techniques. However, RBES-systems do have several cisadvantages.
First. situations not described explicitly in the database õannot be recognized and/or treated fihisis sometimes referred to as brittleness). 

. 
This may be a major impediñent for large systems, as

is the case with large HVAC systems, where the nurnber oirules requ1red to cover .¿ll situations
may rapidly increase with size. Second, finding optimal strategiej for the activation of rules
(referred to as "firing" of rules) becomes increasingly diff,rcult with sire. Frnally, a relatively
slow response time in the case of large systems rnayiinnit their on-line. application.

view the rule based s;'stems as the topmost
layer of the deep models. Among others, the
relatively new "qualitative physics', or
"qualitativ:; modelling" approach is currently
generating a lot of interest for cases where
computational tirfficulties o: the lack of
detaileo kr,owledge about thc dynamics of a
system renders analytical retlundancy
impossible (12). The basic idea here is thãt
the traditional description of a system vuith
state variable and algebraic or differential
equations is replaced with one where only part
of the information of the state variuble is
retained and where formal equations are
replaced with Enlitarive cons t raint e qt:utî ors.

As an example consìder a system in which only the sign of a variable X and the sign cf irS
derivative with respect to time X' are retained The algcbra governing the system is then
defined through "truth tables" tbr "operations,' on the variable as shown in Figure 4. A question

mark indicates that aly of the outcomes (i,-
,0) is acceptable. With the operations defined,

o+ one can construJt qualitative corrstraini

2. Deep Knowledge Svstems

Deep knowledge systems address
models of reasoning that can lead

addition
lxl + [y]

t-

:-f-.
IyI
0 +

?

lxl o 0 +

++ ? +

[rl=slgn(x)
lyl=slgn(y)

Figure 4 Truth table

A

IN UTÂP

Q = Flowrate
¿tP = Pressu.e drop between in and oul

A = Cross-sectional area

Fig.rre 5 Valve model

the ina.bility of KBES to treat novel siii¡ations by providing
to fault detection/diagnostic decisions. In this sensã one can

equations from physical nroclels and ¿my
assignment of variables (and derivatives)
satisfying the constraints are deemed to
represent valid states (i.e., phystcirl states). A
simple valve configuration shown in Figure 5
w'll be used to illus[rate this. Rares ot change
in flori'rate, prcssure drop and orifice area are
constrained by the following constraint
equation:

ldPl+tdAl+tdQI -0
The requirement that the flow be in the same direction as the pressurc drop leads to:

[P]-[Q]:o
Given these equations, one then tries to evaluate the possible outcomes of the system.

(l l)

(12)
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Flgure 6 An a¡tir-rcial leural net..¡ork

3-

\¡/hereas KBES store their information explicitly (rules, symbols, models), ANN's, an example

of which is given in Fig.rire 6, are an irnplicit realization (13) of ihe information contained in
a sysiem: synaptic ureights and neuron 'oiases ccritarn all the knowledge one has about a given

system. This "storing" of information is achieved in tlie following way: a set of inpuloutput
v.¡ctors I' and O. is used to "train" the network. "Train" i¡r this context means the adjustment
of synaptic weighis and lreuron biases at every rtode so that error (e.g., the norm of the

difference (P*-OJ l.r'etween the preCicted (Il and actual ouþut ( OÐ) is minimized. If training
is successful, the net will not only be able to correctly estimate the ouþut for the original set

of inputs but will also be able to generalize the relationship to correctly estimate the output for
inputs never encountered before.

In the case of fault detection, one ca¡r train the
net (or nets) with regular operating data. Once
this has been done, the net should correctly
report situations which are outside the defined
regime of operations as "faulty". An
interesting feature here is the ability to
incrementally expand the training set by re-
assigning situations which are incorrectly
labelled "faulty" to the set of "operational"
data. Since nets are inherently black box
systems and cannot "explain" why a fault has

occurred, their applicability to diagnosis is
limited.

CONCLLTSIOI.I

The use of ar,y olre of the tecirnitlues ¡e;ieweC in large HVAC systems poses several problems,
robustness being the most important. This is especially so for the fault detection asoect of FDD
s1'stems. The 1:rrfilems des¿¡ibed r+'ith respect tcr analytical redundancy tecliniques seem to point
in the direcli.cn of mettrc,,Js thac ¿re rnore tolerurt ot'mcdeilirrg approximations. The use,

there'fore, of Al-nnethods appears tc tre prefetred. fhe biack'oox irrodels developerl through
ANN do not lend themseives to fâult diagrrosis where knowledge of *he reasoning is often
important. This ;:specf crf FDD has long been the domain of I."'r¡. 1r, c uSe, ,.li:'"iore, of a
hybrid ¡l.I-base¡J te.cl".nique q'ouitl seem to offel the flexibility required i' r the ¿evslç¡nent of
an HVA.C Fault Detection and Diagnosis system.
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