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NUMERICAL PREDICTION OF FLOWS CONFINED BY IRREGULAR
BOUNDARIES. OF RELEVANCE TO ROOM VENTILATION
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Facuity of Engineering. University of Porto
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SUMMARY

The paper examines the performance of a numerical procedure suitable to handie flows
confined by irregular boundaries, when applied to room ventilation. The calculations
presented employ a two-dimensional procedure for solving time-averaged equations on a
co-located non-orthogonal grid fitted to the boundaries of the flow domain. The algebraic
equations are obtained by integration over finite volumes and solved iteratively with the
SIMPLE algorithm. Turbulent transport is approximated through the K-¢ model, in a version
suitable to handle low Reynolds number flows, as occur near solid boundaries.

The results concentrate on simple geometries. Firstly, a rectangular enclosure with full
span iniet and outlet openings, for which calculated results have been published, is again
investigated. It is shown that the present calculations are in reasonable agreement with
previous predictions obtained with turbulent wall functions.

Then, flows in non-orthogonal geometries are considered, to take full advantage of the
flexibility of the present procedure. The resuits demonstrate that it is now possible, within
reasonable limits of computer resources and cost, to calculate practical flows encountered
in ventilated rooms.
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INTRODUCTION

The report examines the numerical prediction of flows in ventilated rooms with non-
rectangular boundaries. Numerical procedures, based on finite difference formulations,
have been in use for several years and allow the calculation of ventilation flows in simple
geometries, typically rectangular enclosures. The inherent limitations of such procedures
virtually precluded the computational study of more realistic flows, such as occur in
occupied spaces, or rooms with irregular boundaries.

However, recent developments in numerical methods brought increased flexibility to the
application of finite difference based procedures, namely through the use of non-
orthogonal grids, providing the capabilities needed to handle complex flow boundaries.

The reported work will attempt to evaluate the performance of a procedure of the latter
type, which is a development of a two-dimensional implementation of the SIMPLE
algorithm, derived from a code originally employing staggered grids for the components of
velocity, as described for example in reference [1]. In order to cope with non-orthogonal
coordinates, the code was firstly adapted to employ the same grid for all calculated
variables. Secondly, the physical domain was mapped into a rectangular domain in
computational space, in such a way that the physical boundaries become the sides of the
computational rectangle, and the momentum and continuity equations were cast in a form
that reflects the coordinate transformation. And finally, the transformed equations were
solved numerically, with the SIMPLE algorithm.

Turbulent transport was modelled with the K-¢ model, but the near wall regions were also
discretized and calculated directly, avoiding the more common practice of prescribing the
flow through standard wall functions. The calculation of the low turbulence near wall
layers required a low Reynolds number formulation of the K-e model.

The various areas of development resulted in a code that is expected to perform better, in
many respects, than the original procedure from which it derived, but a quantitative
assessment was necessary, and the paper provides the main results of it.

Preliminary tests were performed with a rectangular geometry previously studied by one of
the authors [2], both experimentally and numerically. The purpose of the tests has been to
check the validity of the low Reynolds number near wall calculations and provide evidence
of the grid refinement needed to adequately represent the main features of the mean flow.

The procedure was subsequently employed to calculate the flow in a ventilated room with
an inclined section in its ceiling and in a room with a sloping floor, typical of a conference
hall. The results presented are mainly intended to demonstrate that a wide variety of
geometries are now within the limits of procedures of the present type.

The following section describes the numerical procedure, and the calculated results are
subsequently presented in detail. The report closes with a discussion of the main findings
of the calculations and summary conclusions.

NUMERICAL PROCEDURE

The procedure employed to obtain the reported results is based upon the SIMPLE
algorithm. The momentum equations are solved directly, using the components of velocity
as main variables, and the pressure is obtained iteratively through a pressure correction
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equation, that in each |teratlon is denved by enforcmg mass conservatlon to the com‘puted
velocity distribution.

i R . . y

The turbulent Reynolds stresses are modelled through a turbulent viscosity, which in turn
is expressed in terms of the distributions of the turbulent kinetic “energy’ K and iits
dissipation rate ¢. These turbulence quantities are calculated from adequate transport
equations and, together with the expression for the turbulent viscosity, form the well
known K-¢ model. With all equations written ‘in conservatlve form, a common format may
be adopted. Representing by the general variable ¢ any of the dependent quantities ’
involved, the equations to be solved are of the type

10 - _9 [p o
ax3 (P axi(P"axm)+s" =

Table 1 lists the diffusivities and source terms used in each case.
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Table 1. Diffusivities and source terms in transport equations to be solved.

The turbulent viscosity is calculated as follows:

LY 2)

The constants in the K and ¢ equations have the accepted values:
0,~1.22, 0,=1.0, C,=1.44, C,=1.92 ,C,=0.09

The above modelled forms are suitable for high turbulence Reynolds numbers, and are also
descnbed for example, in reference [2].

s

To, solve the equations numencally, they were first cast into algebraic relatuons‘

representing the same conservatlon principles in finite volumes, that result from a
subdivision of the physical domain. Earlier codes limited this partmon to volumes ‘with’
simple geometry, namely volumes with faces that are coordinate surfaces of carthesian of "
cylindrical coordlnate systems. As a resuit, only elementary geometnes could be tackled
efflmently

e

In order to overcome this limitation, the procedure employed here handles “general

coordinate systems. The only requirement is that the boundaries of the physical domain be
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coordmatgr surfgpes (coordinate lines in two dnmensuons) in_order to aliow easy
manipulation of boundary conditions and enable the use of 8 structured’ grld which has
many advantages in terms of computational economy. Detailed analyses of the problems
mvolved in, generatlnq coordinate systems for arhlt;ary flow domalns may be found, for
example in references 13] and 14]. pf §
[} two dnmensmns, we assume that a suitablé coordinate system has' been devised, sich’
that the physncaL domain, |n the Ix,,x,l plane, is maped into a ‘rectangle in the
computatlonal plane (E,,E ), see flgure 1. '

L
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Figure 1. Physical and computational domains. )

The transformation of coordinates is represented by the equations:
xt = X(E*, &%), x* = Y(£*,8%) ®

Introducing the Jacobian matrix of the transformation and its determipant J, the spatial
derivatives in the physical plane are also transformed into the computational plane:

ox* odx?
aEl aEZ sat 3 aEI- el (3 n
= v =7 3
- ox? 9x? P ox*
aEl aEz ]

The transport equations to be solved may then be written in terms of the computational
coordinates {§ ,£.). After some manipulation, the transformed equatlons for momentum and
mass conservation may be arranged as follows: '

1.3 "y
g7 (Pusbi) =0 v
W
3 Gy o 0 Bt aul Ouy - 3
azj(PUkﬁkqi) an[ = aempkpk aEmBin)] @U’B) *Sy, 9

The pnmmve velocnty components, together wnth pressure, remain the dependent vanables |
to be calculated numerically.

The abovp equatnons are mtegrated in the computatuonal domain, wtud'h is rectangular in
shape , and lends itself easily to a scheme snmllar to the conventlonal |mplementations of

SIMPLE in canheslan coordlnates i '
However, both \iélocity components are now required in all volume fatks, in order to
compute the mass fluxes, and so the staggered grid arrangement, commonly adopted in
such implementations, would entail the naad for additional intqrpqlatians. Instead, the

\ T A ' L1 RN P (9]
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present procedure makes use of a single grid, where all velocnty components, pressure and
any additinal scalar quantities are calculated. | - .,

This non-staggered approach has been explored in previous works [5, 6] and shown to
lead to an efficient procedure, provided that the velocity components at the volume faces ..
are represented by a pressure-weighted interpolation that prevents the oscillatory pressure
distributions encountered in- previous studies. :

Figure 2. Location of nodes and interfaces in finite volume.

With reference to figure 2, the U-component of velocity at the volume interface between
nodes P and E, designated Ue, is obtained by averaging the coefficients of the algebraic
equations for U at these two nodes, in the following way:

(uia)” = a,,

aj(u;)+b’_ 2 -Pa)Bi 1 :
L 7 (p P, ) ] _au{%i) {p:;.—p;) ( I‘l)(“‘“)n S (6)

ap

However the pressure gradlent term introduces the pressures at adjacent nodes, and so
oscillations in pressure are effectively filtered mass conservation is .enforced by the
pressure correction equation. The present procedure also took into consnderatlon the
findings of reference [7], in order to make. the interpolated fluxes consistent, with the
relaxation factors used in solving the algebraic equations. e : ig

The transpon equatuons for K and ¢ were also transformed in a similar manner. ln addmon,
the turbulence mode! was written in a form suitable to compute the-flow in the vicinity of
solid boundaries. The modifications introduced account for low turbulence Reynolds
numbers and for the damping effect of .the solid walls, expressed, in terms of non- .-
dlmens;onal quantities R, and R, respectlvely The corresponding effects are represented
by correction factors applaed to the constants. C C,.and C,, given by: = . T

f = 20.5
v[1 exp (-0. OlGSR)]x(1+ R )«

[}
t
£, = (°f°5)3 s £, = 1-exp (<R?)
"~ kz
. R, = pZ— = Y
14 p“e ’ Ry pﬂu

The low. Reynolds number formulation of the, K-¢ model is described .in, [8] and the .
correctlon factors adopted here were proposed i |n [9]. ol . G . i s

N P !
The complete set of equatlons has been solved iteratively, using a Ime by Ime TDMA ¥
solver. Boundary conditions at SO|Id surfaces were, for all reported calculations, null values . -
for the boundary velocuty components turbulent kinetic energy. and dnssnpatlon
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CALCULATED RESULTS

The geometries ‘studied here are sketched |n fugufe 3 tégether with the relevant scales that '
identify them

[ © 1
The calculations to be presented were all per‘formed ina VAX 6520 computer. Converged
solutions required approximately 350 min CPU time with the finest grids employed.
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Fig.3. Geometries of the present study.

Preliminary tests were conducted with a geometry aiready adopted in reference [21.
represents a rectangular enclosure with full width inlet and outlet slots, as shown in fngure'
3 a. The geometrical paramsters are h/H=0.056, LIH=3 and t/hh= 0 16.

The tests aimed to check the calculated results against previous preductnons performed
with a two-dimensional version of the TEACH computer programme. Since the geometry is
rectangular, any differences between the two results may be directly attributed to the use
of turbulent wall functions in (2] compared to the’ dlrect calculatlon of the near Wall
reglons in the present case:

The calculations reported -here were camed out for two Reynolds numbers, 5000 and
10000 (based ofi' inlet conditions), -and for meshes of 50x50 and 101x101 ‘grid nddes.

The inlet boundary conditions, as in all subsequent calculations, weré uniform velocity,’
turbulence kinetic energy corresponding to 5% turbulence intensity and dissipation
corresponding to a length scale equal to the inlet height h. Results are presented in figures
4a, 4b and 4c, in terms of streamline patterns (stream function is normalized with the inlet
volume flow rate). Figures 5a and 5b depict vertical profiles of longitudinal velocity,
turbulence kinetic energy, energy dissipation and effective viscosity.

These results were obtained with non-uniform grids, as a substancial concentration of grid
lines was required to ensure that the first line adjacent to a solid boundary lies within the
viscous sublayer, and the steep gradients of the _turbulence..variables are apropriately
reproduced.

Special care was exerted to obtain stable distributions of all variables near the boundaries,
where K and ¢ approach zero and, due to the way in which they are combined in equation
2, tend to induce large fluctuations of turbulent viscosity from iteration to iteration in the
near wall region. It was found that the adoption of a large initial ‘value of turbulent
viscosity'in all'nodes, of at least 100 times the fluud vrscos:ty, and strong under-relaxation
in updating the turbulent viscosity, were sufficient to eliminate'the observed difficulties.
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Fig. 4a. Streamline pattern’for. the-flow in the geometry of figure 3a. Re=5000, 101x101
grid nodes. ¥/(h.Uin) in the interval [1.03, -2]

Fig. 4b. Streamline pattern for the flow in the geometry of figure 3a. Re= 10000,"’101)(‘"101
prid nodes. ¥/(h.Uin) in the interval [1.03, -1.33]

Fig. 4c. Streamline pattern for the fiow in the geometry of figure 3a. Re = 10000, 50x50
gnd nodes \Ifllh Uin) in the interval [1.03, -1 33] sk

The vertical profile of longitudinal velocity, computed at x/H=2 with the same ¢onditions "
as in figure 5, is shown in figure 6, and the calculated results from [2] are superimposed,

to enable an assessment of the relatuve dlfferences that may be attributed to the dlfferent
representations of the:near wall flow. - R i

I8 I gt 1h i
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Fig.5a. Calculated profiles of U, K, & and u /i at x/H=1. Re= 10000. 50x50 grid nodes.
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Fig.6. Calculated profiles of U at x/H=2. Present calculations {Re=10000. 50x50 grid
nodes) and results from reference [2].

The present procedure was then applied to predict the ventilation flow in geometries with
non-rectangular boundaries. One is a room with a partially elevated ceiling, as sketched in
figure 3b. The relevant scales are h/H=0.056, L/H=3 and t/H=0. 16 as in the prevnous
case, and L1/H=1, HH1=3,5 ; b/H1=0.33 §o

The driq p}ﬁploved, again with 50x50 nodeé,»is,-shown in figure: 7. Eor,-simplicity, -it has-

been derived from a carthesian grid by uniformly expanding the vertical:size to: fit: the ' .-
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contour of the ceiling. The Reynolds number has .been fixed.at 10000...The calculated
streamline pattern is shown in figures 8 and 9, the latter being a close-up view of the zone
that contains the elevated section. This tes was particularly severe for the procedure, due
to the skewness of the grid lines near the inclined boundary, which tends to deteriorate the
rate of convergence.
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Fig.8. Streamline pattern of the flow in a geometry of the type shown in fig. 3.b. ¥/(h.Uin)
in the interval [1.3,-1.3]

Fig.9. Close-up view of figure 8. Flow beneath the inclined ceiling and elevated section;
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Fig.10. Streamline pattern of the flow in a geometry of the type shown in fig. 3.c. ¥
/(h.Uin} in the interval [1.3,-2.4]

The other application is the case of an enclosure .with a sloping floor, of the type adopted
in conference halls, and is sketched in figure 3.c. The relevant scales are h/H=0.056,
L/H=3 and t/h=0.16, as in the previous two cases, and L1/H=1.

A grid with 50x50 nodes was again employed, and the Reynolds number was once more
fixed at 10000. The calculated streamline pattern is shown in figure 10.

Relevant comments to the results shown are presented in the following section.

DISCUSSION

The calculations that have been described give an account of recent developments in
numerical procedures that have increased the power of prediction methods in the context
of room ventilation. The developments reported here cover two main areas: the calculation
of low Reynolds number flow near solid boundaries, as an alternative to the adoption of
turbulent wall functions, and the use of boundary fitted, non-orthogonal coordinate
systems, to cope with room geometries that are not rectangular in shape.

The calculation of the near wall regions is known to require a substantial increase in grid
detail to describe the steep gradients of turbulence kinetic energy and dissipation that
occur in the transition layers. As shown in the profiles of figure 5, grids of the order of
50x50 nodes are 100 coarse to reproduce them accurately, and even the results with the
finest grid tested (101x101 nodes) are still likely to contain a significant amount of grid
dependence.

However, the distributions of streamiines calculated for the rectangular geometry exhibit
the correct overall recirculation pattern, and the comparison of present velocity profiles
with those reported:in reference (2], obtained with turbulent wall functions, indicates
reasonable agreement, as shown in figure 6. N
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In any case, the direct calculation of low Reynolds number flow becomes necessary if
smaII details of the near wall flow must be captured because the use of turbulent wall
layer, say at y+ of at least 30. Wliﬂ fme gnds, that minimum distance may be several
times Iarger than the 5|ze of a xyplcal .grid cell.

Moreover, in many ventllatlon flows the productlon of turbulence kinetic energy occurs
mainly in a restricted region adjacent to the inlet jets and leads to a moderate turbulence
Reynolds number in the overall fiow. As a resuit, the layers that would have to be replaced
by standard wall functions tend to be considerably thick. That limitation would probably
have prevented the calculation of the corner recirculation areas shown in figure 4.

Two geometries were subsequently adopted to demonstrate the ability to handle non-
orthogonal boundaries., and both are extensions of the same basic rectangular shape with
h/H=0.056, L/IH=3 and ;t/h=0.16.. In both cases the. grid employed is' rather coarsé
{50x50 nodes) and the results cannot be expected to be grid-independent. Also, the:
distributions of grid lines, as shown in figure 7, are simple linear distortions of rectangular
meshes and exhrbrt unnecessanly large deviations from orthogonality.

As a result, the calculated sreamlmes are not intended to present accurate quantitative
information. Neyertheless, the results shown in figures 8, 9 and 10 indicate that, even in
simple non- orthogonal geometries, the procedure has been able to capture a variéty of flow
patterns that are not accessible to methods based on cartesian coordinates.

Thé applrcatlon to more elaborate two-dimensional geometries would not require any
furthér modification of the procedure, and its extension to three . dimensions 'is
straightforward. However, it is recognized that the rate of convergence deteriorates as the
number of grid nodes increases, This limitation is not inherent to the use of non-orthogonal
grids, ' but indicates that the development of more efficient methods to -solve the algebraic
equations is in need.

A~

. CONCLUSIONS

19

The report described the development and application of a numerical procedure to the
prediction of flows in vantilated rooms. The foliowing summary conclusions may now be
extracted:

-Using as reference for comparison- published results of calculations done on a simple
rectangular geometry, it has been shown that the present procedure is capable of providing
an overall description of turbulent flows in ventilated rooms, with the same degree of
accuracy, as results from the use of turbulent wall functions. However, a considerable
amount of grid nodes must be used in the near wall layers.

-In addition, the modelling and direct calculation of the near wall layers results in better
resolution of details that are beyond the reach of procedures based on the use of wall
functions.

-Further results obtained in non-rectangular geometries, in spite of being associated with
relatively coarse grids that limit their accuracy, indicate the ability to handle a variety of
non-orthogonal geometries and produce information that is relevant in the context of room
ventilation.
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