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i¡UMERICAI PREDICTION OF FLOWS CONFIÍ{ED BY IRREGUTAR

BOUNDARIES. OF RELEVANCE TO ROOM VEN¡T|I¡TION

F. A. Castro and A. Restivo
Faculty of Engineering. Univercity of Porto

Pono, PortuOal

SUMMARY

The paper oxamines the performrnce of a numcrical procedure suiteble to handle flows
confincd by irregular boundaries, when applied to room v€nl¡lation. The calculations
presønted employ a two-dimensional procedure for solving t¡m€-evorag€d eguations on a

co-located non-onhogonel grid fitted 10 the boundaries of the flow dom¡in. The algebraic
oquations ere obta¡nod by íntegration over finile volumes and solygd ateratiyoly with the
SIMPLE algorithm. Tu¡bulent transport is approximated through the K-e model. in a version
euitable to handle low Reynolds number flows, as occur noar solid boundariss.

The results conc€ntrat€ on simple goometries, Firstly, a rectangular enclosu¡e whh full
span inlet and outlet openings, for which calculated resuhs have been publi¡hed, is again
invcstigated, lt is shown thet the prosent calculations are in reasonable agrcsm€nt with
pTey¡ous predictions obtained with turbulent well funct¡ons.

Thon, flows in non-orthogonal geometriss are cons¡dered, to ttkg full advantage of thê
flexibility of the prcscnl procedure. The results demonstrate that h b now possible, witùin
reasonablc limits of computrr rssourccs end cost, to calculete pract¡cal flows encountered
in ventilated rooms.
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INTRODUCTION

The repon examines the numerical prediction of flows in ventilated rooms with non-
rectangular boundaries. Numerical procedures, based on finite difference formulations,
have been in use for several years and allow the calculation of ventilation flows in simple
geometries, typically rectangular enclosures. The ¡nherent limitations of such procedures

vinually precluded the computational study of more realistic flows, such as occur in
occupied spaces, or rooms with irregular boundaries.

However, recent developments in numerical melhods brought increased flexibility to the
application of finite difference based procedures, namely through the use of non-
orthogonal grids, providing the capabilities needed to handle complex flow boundaries.

The reported work will attempt to €valuate the performance of a procedure of the laner
type, wh¡ch is a development of a two-dimensional implementat¡on of the SIMPLE

algor¡thm, derived from a code or¡g¡nally €mploying stagg€red grids for the components of
velocity, as descr¡bed for example in refersnce [1]. ln order to cope w¡th non-onhogonal
coordinates, the code was firstly adapled to employ the same grid for all calculated
variables. Secondly, rhe physical domain was mapped into a rectangular domain in

computal¡onal space, in such a way that the physical boundaries become the s¡des of the
computat¡onal rectangle, and the momontum and continu¡ty equat¡ons were cast in a form
that refl€cts the coord¡nate transformation. And finally, the lransformed equat¡ons were
solved numerically, with the SIMPLE algorithm.

Turbulent transpon was modelled with the K-e model, but the n€âr well regions were also

discretized and calculated directly, avoiding the more common pract¡ce of prescribing the
flow through standerd wall functions. The calculation of the low lurbulence near wall
layers required a low Reynolds number formulation of the K-c model.

The various areas of development resulted in a code that ¡s expected to perform bener. in
many rsspects, than the or¡ginal procedure from which it derived, but a quantilative
essessm€nt was ngcgssary, end the paper provides the main results of it.

Preliminary tests w6re performed with a rectengular geometry previously studied by one of
the euthors t2l, both experimentally and numerically. The purpose of the tests has been to
check the validity of the low Reynolds numb€r near wall calculations and provide evidence
of the grid rsfinement needed to edequately represent the main features of the moan flow.

The procedure was subsequêntly omploysd to calculate the flow ¡n a v€nt¡lated room with
an inclined section in its ceiling and in a room with a sloping floor, typical of a conference
hall. The resuhs presented ere mainly intendsd to demonslrate thet a wide variety of
geometries are now w¡thin the limits of procedures of the present type.

The following soction describes the numerical procedure, and the calculated results are

subseguently presenled in detail, The repon closes whh a discussion of the main findings
of the celculations and summary conclusions.

f{UMERICAL PROCEDURE

The procedure employed to obta¡n the reponed results is based upon the SIMPLE

algorathm. The momentum equations are solved directly. using the components of velocity
aJ ma¡n variables, and the pressure is obtained ¡terativ€ly through a prossuro correction
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equation, ttràt in.eactr ¡re(arion is derived'by enfbrcing mass consärvatio¡ ¡qthe cg¡nþuted
velocity distribution. ;' ,:' -:

The turbulent Reynolds óiresses are m'odelled through a turbuleht vÈcosity, ûhich in túin '''
is expressed in terms of the distribut¡ons of the turbulent kinetic'energy' r and iäs
d tities., are calcula transport
e on for the turbu the well
k ¡ in conservatiVe rmat may'
b variable { any quanririe5 '
involved, the equallons to be solvgd are of the type

uþ,ou*ô, = *(.. _ð_
ôx'

+.9ô (l)

Table 1 l¡sts the diffusivities and source terms used in each case

0 r. sa

1 0

*(,n-n,, # - o)'",,

(c-p3)

(.,af" - ",Lpll

llj J¡+l¡t

Table 1. Diffusivities and source terms in transport equations to be solved

The turbulent viscosity is calculated as fôllows:

äru
1¡.
;; *r'a

Y, = cufre f (2)

The constants in the K and r oquations have the accspted values:

o;=L.22 , o,=L. o , cr=1 .44 , C.=!.g2 ,Cr=g .gg

The.,above modelled forms are suitable for high turbulence Reynolds numbers, and are also
described, for example, in reference I2l.

s numerically, they were first cast into algebraic relations
conservation principles in' finite volumês, that result from a
cal domain. Earlier codes l¡mited this pan¡rion to völümes with'
volumes with faces that are coordinale sùrfaces ol cânhesiJn ot,

cylindrical coordi.ngte syst€ms. As a result, only elementary geometries could be tackled
efficiently. .

ír
ln order to overcome th¡s l¡mitat¡on, the procedure employed here handles 'general
coordinate syst€ms. The only requirement ¡s that the boundaries of the physical domain be
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coor_d¡na¡çr .surf¡pes (coordinate lines in lwo dimensions!, ¡n. . order 
^ 
to allow easy

maniputatibn oi'úoun¿ary conditioiis and enable îhe use of ã struêturedÌôrid, which has
many advantages in terms of computational economy. Detailed analyses of the problems
involvgd in. generatinq coordinate systems for
exag¡ple, in ref,erences I3l and l4l.

flow domains may be found, for-,: t!

lr

we assume srJctr'ln lwo dimensions,
thal' the physical,
comôutal¡onal, óiane

domain, in
(t,!,1, òeb

the

ü).'F.
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Figure 1. Physical and computational domains.

Dx(E) =

The lransformation of coordinates is represented by the equations:

x7 = X(EL,E?) ,., x". = y(Er,E2l (3)

lntroducing the Jacobian matrix of the transformet¡on end'its determi¡ant J. the spal¡al
derivatives in the physical plane are also transformed into the compulationel plene:

a*L
aE,

ðx2
aE'

ôxI
ôE'
ôx2

(3.t)

aE2

The transport equat¡ons to be solved may then be wratten in terms of the computat¡onal
coordinates ll,,l-J. After some manipulation, th€ ¡rangJg¡med equations for.momentum and
mass conservat¡On may be arranged as follows:

t"&(Pu*0i) =o ()

$ re "*ei+,, = &r+ rffoiol.frpTpi)r -$ rrelr *s, (5)

The primitive úelocity components. together wilh pressure, remain the dependent var¡a6leð"i
to be calculated numerically : l

. ! .jl.

The abovp qqüAtions are intrilrated in the computational domain. wti in'
shape,,and lendls irself easily 10 a scheme similar to the conveiitional of '''

SIMPIE in äarthesian coordinates. t' 
, 

I

However, both völocity lomponents ere now required in all volume fabËs, in o"", ,o
compute the mass fluxes, and so the staggered gr¡d arrangement, commonly adoþted in
such ,ir¡plemeq!?!!o1s, would entail ,.ûe ng9! for add¡t¡onal interpolations. lnstead, the

1:. ,'ìa,i 'it i -r,. i f:, i | , { L.)ì.;
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present procedure mekes use of a s¡ngle gr¡d, where all velocity components, pressure and
any additinal scalar quantit¡es are calculated. . .." 

,"

This non-staggered approach has beçn exr¡lored in previous works [s, 6] and shown to
lead to an efficient procedure, provided that the velocity components at the volume.faces,,,
are represent€d by a pressure-weighted interpolation that prevents the oscillatory pressure
distributions encountered in 

,nrevilus 
studies. 

. r. , .l
.N

u*--
------ñ-.

js

Figure 2. Location of nodes and interfaces in finite volume.

With reference to figure 2, the U-component of velocity at the volume interface between
nodes P and E, designated ue, is obtained by averaging the coefficients of the algebraic
equations for U at these two nodes, ¡n the following wayi

(6)

'.ì
Howevef, the pressure gradient term introduces the pressures at adjacent nodes, and so
oscillations in pressure are effectively filtered mass conservat¡on is , enforced by the
prsssure correct¡on equation. The present procedure also took into considerat¡on the
findings of reference f7l, in order to make the interpolated fluxes consistent, with the
rolaxation fàctors used in solving the algebraic equations. :. ...

.i
The transpo4 equat¡onsfor Kand c were also transformed in a si¡nilar manner. ln addition,-
the turbul€nce model was wr¡tten in a form suitable to compute the.,flow in the vicinity of
solid boundaries. The modifications introduced account for low turbulence Reynolds
numbers and for the damping effecl of ,the solid walls, expressed, in terms of non- , ,

dimenèiqnal guantit¡es 81 and Rr, respectively. The corresponding effects are representgd
by correqtion factors applied to ihe.constants C,, C,,and Cz given by:

t, = [1-.*p ( -o. 01:sæy)1;* t,:..{i ¡.

f, = r*,!f )z ; f, = 1-exp({Rr2)

Rr=p#tRy=rßl
I tl t

The lqw Reynolds number formularion of the, K-q model is described in, f8l and tg ,

correptiqî factors adopted here were proposed in [91. .L r ¿_, .. .. ì i
'i â ,t : li !r I ,: !l 'The complete s€t of equalions has .been solved ¡teratively, using a line.by li¡e,TDMA. , "

solver. Boundaryconditions at solid surfaces were, for all reponed calculations, nt¡-ll values - ..

for the boundary velocity iompone¡ts, turbulent kinet¡c energy and dissipation.
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CALCUI-ATED RESULTS

The geomêtries'sludied here are sketchëd in fiçiÛte 3, tògether w¡th the relevant scales that
identify thêin.

, r i -ì I :i

The calculations to be presented were all performeld in a VAX 6520 computer. Coliverged
solutions required approximately 350 min CPU time wilh the f¡nest grids employed.
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Fig.3. Geometries of the present study.

Pre with a geometry already adopted in reference [2]' lt
r€p with lull width inlet and outlet slot¡, as shown iò figuìè-

3 a e h/H=0.056, L/H=3 and t/h=0.16. I ,. 
" t,:

The tests aimed to check the celcúlated results age¡nst pròvioús prodict¡ons performed

with a two-d¡mensional version of the TEACH comput€r programme. Since the geometry is
rectangular, any differences between the two results may bg directly attr¡but€d 1o the use .

of rurbulent walt filncr¡ons in f2l, comparèd'to the d¡iect catcütation of thd near vùäl

regions in the piesent câ3€'' '1 
:: 

- 
. ' 

! ì "r 'r'!

The calculâtions reponed.h€re were carried out for two ßeynolds numbers, 5000. and

10000 (based ori'inlet cóhdit¡onsl, áñd for meshes of 50x50 anð îOlxlQ1 grid nódes.

The inlet boundary conditions, as.in all subsequent óalculatiôns, werè uniform velocity,'
turbulence kinet¡c ener !p 5% turbulence intensity and diss¡pat¡on

corresponding to a lengt inlet h€¡ght h. Results are presented in figures

4a, 4b and 4c, in terms ns (stream funclion is normalized with the ¡nlel

volume flow rate). Figures 5a and 5b d€p¡ct vort¡cal profiles of longitudinal velocity,

turbulence kinetic energy, en€rgy dissipation and effective viscosity.

Those results were obtained with non-un¡form grids, as a substancial concentration of grid

lines was required to ensure that the first line adjacent to a solid boundary lies w¡thin the
viscous sublayer, and the .steep grad¡ents of the ..lufbulence.Jeriables are apropriately

reproduced.
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Fig. 4a. Streamline patteriìifoÉthe'flow in thageometry of figure 3a. Re=5000, 1O1x1O1
grid nodes. il,/(h.Uin) in the inrerval Í1 .O3, -21

{

Fig. 4b. Streamline pattern for the flow in rhe geometry of f¡gure 3a. Re= .lO000, ,101x.l01
grid nodes. V/(h.Uinl in the interval f 1.03, -1.33t

Fig. 4c. Streamline pattern for the flow in the geometry of figure 3a. Re=10000, SOxSO
grid nodes. */lh.Uinl in the interval 11.03, -1:3íl¡ r.':,r

1 .a ' rÈ l:','
..: i ,. ,,ì

The venical profile of longitudinal velocity, computed alxlH=2 w¡th the same Conditions'
as in figure 5, is shown in figure 6, and the calculated resuhs from [2] are superimposed.
10 enable an as3essmenl'of the relative d¡ff€rences that may be anribúed to the different ';r
ropresentations of the:near wall flow., ,,"' ',' - i''i rtì i r: ì.. ':
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} l;: ]

The present procedure wes then applied to predia ùre ventilation flow in geomsrissr!ùt hh ,;

non-rectangular bounderies. One is e room with a panially elevated ceiling, as sketched in
figure 3b. The relevant scalos are h/tl=0.056, L/H=3 and t/Þl=0.16, as in ttre previous
case, ånd Ll/H=;l , H/tl1=3¡5 ; b/tll =0.33 I ,i,

tìi':- 'i - lj ;'i- :t¡ .: ¿

The gri/ gmploy€d, aga¡n with 5Ox50 nodes,-is;¡hown in figure: 7; For,.simplicity, .h tras-
bsen derived trom a carthesian gdd by unifomly expanding t'he ver¡icalr,sizo to,fü,üt6,,r.,
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contour of the ceil¡ng. The Reynolds number has.béen fixed;A 1.0000,...The .calculqled
slreamline pattern is shown in figures I and 9, the latter being ã close:up view of the zone
that conta¡ns the elevated section. Th¡s tes was particularly severe for the procedure, due
to the skewness of the grid lines near the inclined boundary, which tends to deler¡orate the
rate of convergence.

Fig.7. Grid adopted to calculate the flow in a geomerry of the rype shown ¡n fjs. 9.b". .

il

/a-_-

Fig.8. Streamline pattern of the flow in a geometry of the type shown in fig. 3.b. 'Vl(h.U¡nl
in the interval t1.3,-1.31

Fig.9. Close-up view of figure 8. Flow benèath the incl¡ned ceiling and elevated sgçtionr
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Fig.10. Streamline pattern of the flow in a geomefry of the type shown in fig. 3.c. 'l
/(h.Uinl in the interval 11 .3,-2.41

The other application ¡s the case of an enclosure-with a sloping floqr,",.qf the lyrq
in conference halls, and is skitched in figure 3.c. The relevant scáles are h/H
L/H=3 and t/h=0.16, as in the previous two cases, and L1/H=1.

adopted
=0.056,

A grid with 50x50 nodes was again employed, and the Reynolds number was once more
fixed at 10000. The calculaled streamline pattern is shown in figure 10.

Relevant comments to the results shown are presented in the following sect¡on.

DrscusstoN

The calculations that have besn described give an aoeount of recant developments in
numerical procedures that have increased the power of prediction methods in the context
of room vent¡lat¡on. The developm€nts roported here cover two main areas: the calculation
of low Reynolds number flow near sol¡d boundaries, as an alternative 10 the adoption of
lurbulenl wall functions, and the use of boundary fitted, non-orthogonal coordinate
syslems, to cope with room geometries that ere not roctangular in shape.

The calculation of the near wall regions is known to require a subslantial increase in grid
deta¡l to describe the steep gradients of turbulence kinetic energy and dissipation that
occur in the trans¡tion layers. As shown in the prof¡les of figure 5, grids of the order of
50x50 nodes are too coarse to reproduce th€m eccurately, and evon the results with the
finest grid test€d (lolxlOl nodesl ere st¡ll likely to contain a significant amount of grid
dependence.

However, the d¡str¡but¡ons of streamlines calculated for the rectangular ggometry exhibil
the correct overall recirculation pattern, and the comparison of present velocity profiles
with thos€ r€port€drrin reference [2], obtained with turbulent wall functions, indicates
reasonable agreement, as shown in figure 6.
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ln any case, the direct calculation of low Reynolds number flow becomes necessary if
small details of the n€ar wall flow must be caplursd, because the use of turbulent wall
functions imposes that the nodes adjqc,pqt to-a sold well must be placed in the logerithmic
layer, say at y+ of et least 30. W¡th fine grids, that minimum distance may be several
t¡mes larger than lhe siz_q of a ¡ypical.grid cell,

r' l' '

Moreoúer, in many veñtilation flows the production of turbulence kinetic energy occurs
mainly in a restricted region adjacent to the inlet jets and leads to a modêrate turbulence
Reynolds number in the overall flow. As a result, the leyers thet would have to be replaced
by standard wall functions lend to be considerably thick. That limitat¡on would probably
have prevented the calculation of the corner recirculation areas shown in figure 4.

Two geometries were subsequently adopted 10 dsmonstrate the ab¡lity 1o handle non-
onhogonal boundaries., and both are extensions of the same basic rectangular shape wilh
h/H=0.056, L/Þl=3 and ¡t/h=0.16. ln both cas6s the,grid employed is rather coarsè
(5Ox5O nodes) and thö results cannot be expected to be grid-independent. Also. thé'
d¡stributions of grid lines, as shown in figure 7, are simple linear distortions of rectangular
meshes and exhibit un-necessqrily large deviations from orthogonality.

As a result, the calculated.sreamlineå are not intended to present eccurate quant¡tat¡ve
¡nformation. fleyertheless. the rosults shown in figure.s 8, 9 and 10 indicate thatr. oven in
simþle non-òrthoþonal geometries, the procedure has been àble.to capt.ufg a varièty of flow
patterns that are not accessible to methods based on canesien coordinates.

Thé appliéation to .år. olaborate two-dimensional
furthii modificatiòn of the procedure, and its
straightforward. However. it is recogn¡zod that the rate of converg€nce det€r¡orat€s es the
number of grid nodes incr€a.q.es, This limitation is not inherent to the uso of non-onhogonal
grids, but ¡ndicates that the development of more efficient methods to solve,'thb algebraic
equat¡ons is in need.

r ',i -'

geometries would not require any
e)ctens¡on to three dimensions 'ls

, coil'crusroils

The repon described the develgpme¡t and applical¡on of e numericel procedure to the
prediction of_ flows in ygf¡tilaled rooms. The following summery conclus¡ons may now be,
extracted:

-Using as reference for comparison. published results of celaulat¡ons done on a simple,
rectanjular geomotry, ¡t has been shown that ths present procedure is capablè of providing
an overall description of turbulent flows in venülatod rooms, with the same degree of
eccuracy, as results from the use of turbulent wall functions. However, a considerable
emount of grid nodes musl b€ used in ths n€ar wall layers.

-ln eddhion, the modolling and dir€ct calculation of the near wall layers resuhs in b€n€r
rssolution of details that are beyond the roach of procedures based on the use of wall
functions.

-Funher results obtained in non-rectangular geometries, in spite of being associated whh
relatively coa?se grids thet l¡m¡t their accurecy, indicate the ability to handle a variety of
non-orthogonal geomelries and produce information that is rolovent ¡n the context of room
v€ntilat¡on.
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