225 619

COMPARATIVE STUDIES OF SELECTED DISCRETIZATION
METHODS FOR THE NUMERICAL SOLUTION
OF ROOM AIR FLOW PROBLEMS !

T. Skalicky, G. Morgenstern, A. Auge, B. Hanel, M. Rosler
Dresden University of Technology
Dresden, Germany

SUMMARY

Three discretization methods and their implementation in computer codes are des-
cribed:
¢ Finite Volume Methods with the variables velocity and pressure or vorticity
and streamfunction, respectively, and

e a Finite Element Method employing the Galerkin/least-squares approach.
This method embodies a straightforward extension of the Streamline-upwind
Petrov-Galerkin (SUPG) method resulting in a very stable discretized scheme.

Statements concerning capability to predict air flow patterns within rooms are pre-
sented.

The same terms of the Reynolds-averaged Navier-Stokes equations and the stan-
dard k-¢ turbulence model are used for all methods. Two simple two-dimensional
test cases (turbulent room airflow with one inlet and one outlet device at opposite
walls and laminar convection within a square room with different wall temperatures)
are calculated to compare accuracy, convergency and dependence of grid spacing of
the algorithms.

1The research was supported by the Bundesministerium fiir Forschung und Technologie under
the contract 0329016D.
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COMPARATIVE STUDIES OF SELECTED DISCRETIZATION
METHODS FOR THE NUMERICAL SOLUTION
OF ROOM AIR FLOW PROBLEMS

T. Skalicky, G. Morgenstern, A. Auge, B. Hanel, M. Rasler
Dresden University of Technology
Dresden, Germany

INTRODUCTION

Three computer codes for prediction of room air flows have been developed and
maintained at the Institute of Fluid Mechanics at the Dresden University of Tech-
nology. In two of them Finite Volume Methods are implemented (one with primitive
variables and another one with the variables stream function and vorticity), the third
is based on a Galerkin/least-squares Finite Element Method. Different solvers for
the algebraic equation systems are implemented. Stimulated by ANNEX 20 activi-
ties, the codes have been tested for their capability to predict room air flows with
natural and forced convection, that is the Nielsen test case 2D1 [9] and a closed
cavity problem. In addition, accuracy, expence and dependence of grid spacing of
the underlying methods are examined.

BASIC EQUATIONS

The basic equations are the Reynolds averaged Navier-Stokes equations and further
transport equations, for instance the equation of energy transport. By using of the
assumption of incompressibility, Boussinesq’s approximation of buoyancy and a k—¢
turbulence model, the following system of differential equations can be presented:
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with
Very = V + Vi, (6)
14 Uy
Gegf = Br + “]3;, . (7) _

VW = CDk2/€ (8)

and appropriate initial and bquhdary éonditibﬁ"_s‘

‘
and ‘moreover a set of constants,
see table 1.

Cp Cy cz Pr, P"k oPry
0,09 1,44 |1,92] 1,3 | 1,0 [ 0,77,

Table 1: Set of .c;o'h'stants for k'—:e)tu'rbulexice model "

Equations (1), (2) and (3) with Vess = v are used for laminar flow problems.

. NUMERICAL METHODS
Finite Volume Method with primitive Variables "

3i) it
Discretization a e

This method is a time marching prdéedu"ré.i It is based on the al'gl:dfithm of th"e_ '
MAC-method of Harlow and Welch [2]. The basic idea of the solution procedure’
can be presented as follows:

¢ Integration of equation (1) and (3) over a time step

) el = . _,._ -

 7ian I o <0 o oU; aU; oUU; .0F .
U, = U, +[m oz (Vc!f (axj + az;)) e et
- 91T — To) dt (9)

94 — 1o ; *(10)'-’-
tm+1 . — — = Coa

Fm+l  mm o . 8T 3U,T/x g g mr g
T =T +/m 0_1:, (a°”8:c,-) = 3z, +q fit | (11)

¢ Approximation of the integrals with a.simple explicit Euler scheme

I [ 0 (v)f ‘(,aif.. +?av,-)) _oUU; &P
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Treatment of equations (4) and (5) is analogously. (Another, more exact approxi-
mation one can fiid.in [12),) Calculationi“of prassure P using equation of mass
conservation (2) is based on:

P _ 1807 9 [0 ( /4T +Ma'"U _auT,
327~ Dt oz; | oz |0z, \" \Bz; T Ba, 9z
—'y-"Y(T'-To)] (14)

After the calculation of pressure, neéw velocity, temperature and further transport
quantities are determined.

A Finite Volume Method on a staggered grid is used for the spatial discretization.
By integration over each control volume, application of GauB’ ‘theorem and local
approximations one get a system of difference equations.

According to the topical ptoblem boundary conditions have to be discretized in
the same manner. Additional grid points were mt,r_oduced at the physical boundaries
for Dirichlet conditions. Boundary conditions for the pressure are necessary to solve
the Poisson equat,lon One can deduce boundary conditions from equatlon (12), see
[11].

Solution of the algebraic equation system

Following the above mentionéd algorithni, new velocity, temperature and further
transport quantities are calculated by means of explicit equations. The Poisson
equation for pressure is solved by a multlgnd method at each time step. It consists
of a so called V—cycle on 3 or 4 grid levels. Smoothing iteration is a Gauf-Seidel
method, the equatlon system on the coarsest grld is solved by the Cholesky factori-
zatlon ' . . \

T

Code

Currently the PASCAL code "ResCUE” runs under UNIX operetmg sjstems It
consits of about 6 000 lines’ source code. The amount of occupied memory is about
280 bytes per grid point.

Finite Volume Method with variables w,"bilﬂ a
Dlﬂ'erentlal equations, boundary condltlons

For a steady flow described with the vanables stream functlon ¥ and vorticity w,

defined by . - -
— _ 8‘]’5 _: aUz 8U1 '
U= 8_.‘52’—(]2 = 11.-3;, w= 3@: — B_zze . (15)

the differential equations 1 and 2vlead to

W ( 3_“’) e ﬂ) -2 (3”e_f_f_“. f2 (3”=frw) 4
32?1 wc’ixz 633 wB:q - : 31‘1 621 6;\:g 612
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v + v
oz? = Ozl
Problems of laminar flow can be solved also by equations (16), (17) and (3), if
Vefy = V. , v
The relatively difficult boundary conditions for w and ¥ are defined using relation
(15), the non-slip-conditions on the walls and assumptions about velocity profiles in
the vicinity of walls, given velocity profile on inlet, and the assumptlons of a fully
developed flow in the outlet, see [10]." -

= —w. (17)

Discretization

An orthogonal grid is used for the discretization. Each differential equation is in-
tegrated over rectangular control volumes, values of functions and their derivatives
ori' the boundary of cont,rol volumes are mterpolated and expressed usmg values of
adjdcent nodes.

For stabilizing the discrete equations, simple upwind differences are used for the
convective terms.

Solution of the algebraic equation system {

The system of - d1screte equations is solved successively. The connectlon of va.nables
is given through an outer iteration loop. : =

The system of linear equations for each variable is solved by a modified block-
Gauf-Seidel method (line by line). This method is stablée on non-uniform grids if
the aspect ratio of control volumes is 0.1 < 2% < 10, cf. [13].

Code

The computer code ”PSIOM2D” Wthh consists of about 4 000 hnes of FORTRAN 77 :
runs on workstations under: UNIX operating systems. Approximately 172 bytes :
memory space are required per grid node.’ T B TRt

Finite Element Method with primitive variables
Galerkin /least—équares formulation of the gov’érning equatibns o

The Galerkin/least-squares (GLS) formulation of a convection /diffusion (or trans-
port) equation is a generalization of the Streamline diffusion or Streamline-Upwind-
Petrov/Galerkin method (SDFEM or SUPG) which results in a very stable nunyerical
scheme and allows arbitrary choosing of interpolation functions. This formulation
is an extension of the Standard Galerkin method where l.he residuals are weighted
additionally by the differential operator itself. Equ. (18), (19) are consistent in
the sense that the exact solution still satisfies the stablllzed problem. The above
mentloned techmque is apphed as well to momentum and continuity equation as to
energy transporl equation.

M
Z/ (—vAu+(uoVi)u+Vp)owdQd = ;Ayfo@dﬂ (18)

p=1
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Z/ﬂ (Vou)qu 0-- (19)

p=1

1]
f

Cw+ §(—vAw+ (vo V)w + Vg)
g+ 62(Vow)

=
|

i
.

It should be mentioned that only 2D laminar and steady flow problems are
considered at this stage of research.

Dlscretlzatlon of boundary conditions

The boundary conditions are formulated in an integral form,.i.e. nodewise given
Dirichlet~-boundary values are piecewise integrated qver the boundary edges of the
finite elements. As well prescribed Dirichlet conditions as homogeneous and non-,
homogeneous Neumann conditions can be employed..

Spatial discretization and choise of elementary shape functions

An arbitrary 2D domain can be discretized using an unst;rilcti'i'red“trtxa:ﬁgle based °
mesh. In case of a rectangular domain as in, the examples presented. here, only
structured orthogonal triangulations are applied. For simplicity and computational .
convenience, we restricted the implementation to piecewise linear finite elements for
velocity, pressure, and temperature approximation, respectively. ey

Solution procedure

The linear algebraic equation system resulting from the GLS-discretization of the
suctessive linearized.(with respect to all-non-linearities) p.d.e: system-(1)-(3) has
a significiant block structure. . Each block consists 6f banded sparse matrix of di-
mension n (n=amount of nodes). A particular block iteration procedure in which
all unknowns of a single node are treated simultaneously is applied to this equation
system. This very simple procedure has been successfully tested up to.systems with
some 7 000 nodes, i.e. some 30 000 equations. The successive approximation process
was stopped after 200 cyclesor whén the relative difference 6f two following cycles
became less than 1077, . : g

"

3

Computer code

The program system is a research code consisting of several parts. These are two
mesh generators, someé mterface programs and thé main part, the program "NS”.
Progra.mrmug Ia.ugua.ges ar¢ above all C and F ORTRAN 7. The whole memory
requlred is alloca.ted dynam:ca.lly at run time. The code consists of about5 000
lines. ' Memory requirements are about 312 bytes per hode, whereas the code 1s
designed for flexibility and is not optimized for storage. '
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Laminar natural convectlon in a square cavnty

L

. COMPUTATIONS
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o

Flow in a cavity is often used to vallda.te numerlcal methods Here the computatlonal
domain consists of a closed two-dimensional square (cf. fig. 1) with a hot (Ty) and
a cold (T¢) vertical wall. The horizontal walls are isolated.

K ELLLL LSS,

o V,
Z I
/1 /
/TH lg TC/L
7 4
;y,:u %_0 /
77
L

Figure 1: Geometry of cavity

Ra 10°

Pr 0.71°

g 10.0 m/s*°

Y 36107 1/K

v 15.00 10~ m?/s
a 21.1310°% m?/s
L 0.05605 m

AT 50K

Ty 2803 K

Tc 2753 K

Table 2: Parameter of computations

Two dimensionless parameters are essential for flow and temperatur field — the
Prandt] number Pr = v/a and the Rayleigh number Ra = (gyL3/v*) AT Pr. Re-
striction to the laminar case (Ra < 10%) allows investigations of some properties of
discretization methods, e.g. stability and convergency, almost independent of turbu-
lence modelling. Resulting from the same structure of the differential equations, the
achieved piece of knowledge can be useful also for solving turbulent flow problems

with natural convection.

0 0.5
x/L

Fivgure 2: Streamlines

0.5 y/L

0.5
x/L

Figure 3: Isotherms

0.5 y/L

A lot of numerical results of laminar flow, exists, cf., [4], [7], [15],.[3]. Hortmann
et al. [4] obtained, very accurate results (estimated accuracy 0.01%) ‘as solution on
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very fine grids (320x320 and 640%640 éohtrol volumes, respectively) for Rayleigh
numbers 10, 10° and 10° and Prandt] number 0.71. They are used as a basis, for
comparison for all of the discretisation methods described in the previous section.

Computations of this problem have been: carried out with parameters shown ‘in
tab. 2. The computational domain -was discretized using 'a uniform grid {see tab.
3). Criterion of accuracy was specified by 1073 -: :

The results — flow and temperatur pattern (cf. fig. 2, 3) — are compared by
velocity and temperatur profiles along the horizontal and vertical midlines, cf. fig. 4.
The coordinates x and y are nofmalized by the cavity lenght L; the velocity by the
characteristic conduction velocity a/L. One can see that predicted velocity and
temperature distribution are qualitatively fairly 51m11ar for all tree dlscretlza.tlon
methods. :

- L L
y=3 z=3
100 T T T T 1 T
80 | ReSCUE — 3
PSIOM2D =-=-: Al
60 |- NG =evee ~ 0.8 I .
40 -
o 20 d N 0.6 - b
~ A
— 0 ;
*o20F 0.4 | e
-40 : *
T ! i ResCUE,
-60 I (1 0.2 2" i PSIOM2D ==-=
-80 | o R £ NG imens
100 I 1 L 1 ¥ g 0 I i
0 0.2 0.4 0.6 0.8 1 . -40 -20 0 20 40
x/L u.L/a
1 L] L] L ¥ 1 L]
ResCUE =——
PSIOM2D -=--:
0.8 0.8 L
9
£
E 0.6 A 0.6 -
= N
2 0.4 0.4 -
\
e %
= ResCUE —
0.2 0.2 PSIOM2D -—-—
- = Ns -----
o 0 L .I i L
0. 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x/L {T-TC) / {TH-TC)

Figure 4: Profiles of velocity and temperature along the horizontal and vertical
midlines 7+ K ' '

- The ¥akae and-position of maximal‘velocities orr the midlines are surfimarized in
tab.-3. This tablé contains also the comparison résiilts'of Hortmann et ali[4], *grid-
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independent’ solution was yielded by extrapolation of the solutions on two grids
with 320x320 and 160x160 control volumes. With this solution one can investigate

L

code i grid | tumarL/a| Ymaz/L | Vmatd/a | Tmaz/L

" ResCUE 16x16° || 36.4799 | 0.84374 | 66.0278 | 0.03124

32x32 " || 35.9944 | 0.85937 | 66.9722 | 0.07813"

16x16 41.2881 | 0.87500 | 66.3700 | 0.06250

32x32 37.5260 | 0.84374 | 67.7142 | 0.06250

FOIONCED 64x64 36.1235 | 0.85937 | 68.3207 | 0.06250

128x128 || 35.5027 | 0.85937 | 68.6258 | 0:06250

16x16 28.6578 | 0.81250 | 50.9485 | 0.06250

NS ' 32x32 32.4431 | 0.84375 | 66.4092 | 0.06250

48x48 33.7588 | 0.85417 | 68.1954 | 0.06250

64x64 34.1771 | 0.85938 [ 68.5306 | 0.06250

of. [4] 320x320 || 34.7414 | 0.85468 | 68.6187 | 0.06719
indep. || 34.7399 -— 68.6396 —_

Table 3: Maximal velocities on the midlines
the convergence. The estimated error for e.g. tpmq., defined by
Umaz =~ u:nuz

-
uma:

E(umez) =

where u; .. is the ’grid-independent’ value, is shown in figure 5 as a function of mesh
parameter h, using logarithmic scale. The solution converges for all discretisation

Yoo

0.01 . Sy ’ L
0.001 0.01 0.1
h/L

—=— ResCUE  —+ PSIOM2D -—%- NS

Figure 5: Estimated error of tmqes

methods. - The slope- of the curves can be used to estimate the convergence order.
The order-of 1.15 obtained by PSIOM2D'is slightly better then the theoretically
estimated for first orderiapproximation of convective terms. “For NS'theé ordef is ’
about 1.55 and:agrees with'a-analysis: [6] vety well> : AL N DI



Room air flow .: w2 - =« vt ae "

A simple two-dimensional test case specified by Nielsen [9] was choosen to validate
the programs PSIOM2D and ResCUE for their ability to predict the isothermal
two—dimensional turbulent flow in. a ventilated room. The geometry of the testroom
shown in figure 6 is L/H = 3,h/H = 0.056 and ¢t/H = 0.16." The helght of the room
H is 3.0m in the present work’! In addmon the expected ﬁow pattern is shown in
figure 6. i 3 = - : i

////////////////
ket 1 1 x é
-';H = Ol;t]Jet t
/////////////// /

L

Figure 6: Geometry and expected flow pattern of the test room
In the ‘ip]et,ifollov_il/ihg boﬁr’i‘dary condiffbns are given:
up = 0.455m/s
ko = 1.5(0.04 - Up)?
€0 = 0.09-k}%/(k/10).

In each case a coarse arid.a fine grid were used to point out the effect of mesh
refinement. The simulations have been carried out with a 64x32 and 128x64 grid
for the program PSIOM2D and a 64x28 and 128x56 grid for the program ResCUE.
In accordance with experimental data from Nielsen, predictions of velocity profiles
are given at the two: vertical lines

z=H, =z ‘;j2H
and at the two horizontal lines
y=h/2,y=H—h/2
Figure.7. shows the profiles of the velocity in x-direction at x = .H. The global,
predigtion of all simulations is fairly;good. :Oply the program ResCUE, using the r

fine grid. does; not, satisfactory predict, the recirculation at.the bottom-of the room.
That could be caused by a far small time step which was used to.enspre stability of.
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Figure 8: Velocity profiles at & = 2H .1..

0 T
0.5 |
1 b=
1.5 F
PSIOM2D 64x32 —
PSIOM2D 12Bx64 ===--
2 F ResCUE 64X28B === -
ResCUE 12Bx56 ——
Measurement L4
2.5 F -
3 L i i L 1
-0.3 -0.2 0.1 0.2 0.3 0.4 0.5
u [m/s]
Figure 7: Velocity profilesat z=H
0 T
0.5 -4
3% o -
1.5 -
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Measurement [ 2
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3 1 A L -
-0.3 0.1 0.2 0.3 0.4 0.5
u [m/s]
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v PSIOM2D 64x32 — -
PSIOM2D 128x64 ---- i
ResCUE 64x28 -
ResCUE 128Bx56 —
Measurement ® -

S

% e
L L 1 A A 1 1 I DY .
0 1 2 3 4 ) 6 7 8 9
x {m]
Figure 9: Velocity. profiles at y = h/2
i L] T =1 p T - 1 L T L
o PSIOM2D 64%32 ——
PSIOM2D 12Bx64 ==
ResCUE 64x28 -%:-
ResCUE 128x56 —
B Measurement ©
pT
o® %,
R irerertt My
-3 .
L o, ._‘
©
'l A L Il L I} 1 L
0 1 2 3 4 5 6 7 ] 9
x (m)

Figure 10; Velocity profiles at y = H — h/2
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the explicit method. The criterion of Cdll‘v‘efg'é'n{‘cve, the relative difference between
two time steps (< 107%), has been achieved after about 12 000 time steps, but much
more time steps should be proceeded. This reason will be amplified by the results
shown in figure 8. The decay of the wall jet and the recirculating flow are well
predicted by ResCUE on a coarse grid. The values of velocity in the wall jg; and
the recirculating flow are too high calculated with ResCUE using the fine grid.

Figure 9 shows the behaviour of the wall jet in the x-direction.. There must be a
maximum of u greater:than ug that canibe recognized from the measurement. The
prediction of this velocity maximum by PSIOM2D using the coarse grid is too high.
This value becomes more realistic by refining the grid. In contrast to most other
computer codes [14], this velocity' maximum behind the jet entrance is predicted
only by PSIOM2D because of a special discretization for the vorticity at the corner.
ResCUE predicts values greater than ug near the inlet, but they are too low and
show only a tendency. Near the outlet, a region of recirculating flow exists which
has not been predicted by PSIOM2D but by ResCUE with values that are too low.
Figure 10 shows how the computer codes ﬁzgdict the existence of three specific flow
regions near the bottom of the room. The vortex in the lower left corner is predicted
by ResCUE with a too low intensity a a too big.dimension. The maximum velocity
of the recirculating flow is well predicted by ResCUE using the coarse grid.. Solution
by ResCUE on'‘the finer grid suffers from the very small time step, too. At the
outlet wall velocity is positive again. The fact that there is a low outlet velocity
of PSIOM2D is caused by using Neumann boundary conditions for velocity in z-
direction. In the program ResCUE Dirichlet boundary conditions are implemented
for u. t ;

CONCLUSION'AND OUTLOOK
. T ' ALEES) [ AR N] . . N .. B
Three discretization methods have been described in' this work. They have been
applied to predict room air flows with natural and forced convection. In both cases
the agreement of the computational results with experimental data and solutions of
other authors, respectively, is fairly good. It must be considered, however, that for
room air flow with regions of more complex flow like the wall jet develdpment or
recirculating flow in corners all codes predict different results. For this reason, more
simple problems like a closed cavity flow are better suited for comparative studies of
different computer codes. Numerical or analytical solutions of other authors allow
a better estimation of accuracy without employing empirical data. il
Next time the structure and properties of equation’system; produced by dis-
cretization, should be examinated in detail. Implementation of a uniform Multigrid
solver is planed. ; et ' e

o St
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