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COMPâ,RATTVE STUDIES OF SELECTED DISCRETIZATION
METHODS FOR THE NUMERICAL SOLUTION

oF RooM AIR FLOW PROBLEMS I

T. Skalickj, G. Morgenstern, A. Auge, B. Hanel, M. Rõsler
Dresden Uuiversity of Technolog¡r

Dresden, Germany

SUMMARY

Three discretization methods and their implementation in computer codes are des-

cribed:
o Finite Volume Methods with the vari¿bles velocity aud pressure or vorticity

and süreamfunction, respectively, and

¡ a Fiuite Element Method employing the G¿lerkiu/least--squares approach.
This method embodies a süraightforw¿rd extension of the Streamline-upwind
Petrov-G¿lerkin (SUPG) method resulting in a very stable disc¡etized scheme.

Statements concerning capability to predict ¿ir flow patterns within rooms are pre-

sented.
The same terms of the Reynolds-averaged Navier-Stokes equations and the stan-

dard lc-e turbulence model are used for all methods. Two simple twe-dimensional
test cases (turbulent room airflow with one inlet and one outlet device at opposite
walls and laminar convection within a square room with different wall temperatures)
are calculated to compare accuracy, convergency and dependence of grid spacing of
the algorithms.

tÎhe rc¡e¡rch ú0s suppoÌted by the Bundermini¡tcrium fúr Forschung und îochlologie u¡der
the cotrtrtct 0329016D.
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COMPARATTVE STUDIES OF SELECTED DISCRETIZATION
METHODS FOR THE NUMERICAL SOLUÎION

OF ROOM AIR FLOW PROBLDMS

T. Skalick¡f, G. Morgenstern, A. Auge, B. Hanel, M. Rösler
Dresden University of Technology

Dresden, Germany

INTRODUCTION

Three computer codes for prediction of room air flows have been developed and
maint¿ined at the Institute of Fluid Mechanics at the Dresden University of Tech-
nology. In two of them Finite Volume Methods are implemented (one with primitive
variables and another one with the variables stream function and vorticity), the third
is based on a Galerkin/least-squares Finite Element Method. Different solvers for
the algebraic equation systems are imple¡neuted. Stimulated by ANNEX 20 activi-
ties, the codes have been tested for their capability to predict room ¿ir flows with
natu¡al and forced convection, that is the Nielsen test case 2Dl [9] and a closed
cavity problem. In addition, accuracy, expeDce and dependence of grid spacing of
the underlying metlrods are examined.

BASrC EQUATIONS

The basic equations are the Reynolds averaged Navier-Stokes equations and further
transport equations, for instance the equation of energ¡r transport. By using of the
assumption of incompressibility, Boussinesq's approximation of buoyancy and a k-e
turbulence model, the following system of differential equations can be presented:
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and appropriate initiàl and boundary conditiodi and'mor"over a set of èonstants,
see table l. I | '' tt

Cp cr Pr, Prp <Ërt
0;09 1,j44 1,92 -lr3 1,0 0,77 ,

Table 1: Set of cônstants for /c-e)turbulence mod"l 'i

Equations (1), (2) and (3) with v"¡¡: u ate used for laminar flow problems.
iìl' r;:', e ì*, 

"

-. J¿ NUMERICAL METHODS

Finite Volume Method ù,ith primitive $åriables

Discretization

This me procedure.t It is based'on the aigorithm of tlieMAC-m lch [2]. The basic idea of the solufion proc"duie'
can be p

o Integration of equation (l) and (3) over a time step
' ; -.' uri^+t = w:+ I:.'*'(,",,(8.*))-W- *e, :î

- s;1(T : To) dt
(e)

'(ro¡ .,

Tflt+r - T.l:'L'(;",,P)-ff+T, li' , :: -;.li 
1

(lr)

o Approximation of the integrals with arsimple expliçit Eule¡ scheme

q, = 4'i:ar ln*(,",,'(8,:'*)) _ Atit; _ AP
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Treatment of qquali'ons (4)'and (5) is analogously. (Anqther, more exact approxi-
mation one caù fif,l ,in [12].) Calculul¡6i¡--of prrissüre P using'equation of mass

conservation (2) is based on: 
: 

"ô2T t aW ô l o '( (ôÚ, ,47j\\ aÚiti
æ = ñar,*arlart\*t'\a"r*ô"))-E :;

-si.t(T- a)l- (14)
I

After the calculation of pressure, oéi" u"to"ity, temperature aud further transport
quantities are determined.

A Finite Volume Method on a staggered grid is used fol the spafi4l discretization.
By integration over each control volume, application of Gauß' theorem and local
approximatio¡ls one get a syst_em of _difference equations.

According to the topical pioblem, bounda:y conditions have to be discretized in
the same manner. Additioq-â-l^ grid points-were introduced at the physical boundaries
for Dirichlet conditions. Boundary conditions for the pressure are necessary to solve

the Poisson equation. One can.deduce bou"dary conditions fror,n equation (12), see

[11].

'') " \)'r r, I i

Solution of the algebraic equation system

Following the above mentionéd algorithní, new veloóity,'témperature and further
transport quantities are calculated.by 1n.,egqs- of explicjt equatigns. Thç Poisson

equation for pressure is solved by a inultìgrid method at each time step. It consists
of a so called V-cycle on 3 or 4 grid levels. Smoothing iteration is a Gauß-Seidel
methodn the equation system on the coarsest grid is solved by the Cholesky factori-
,rti¿;. : ' r

Code

Currentìy the PASCAL code 'ResCUE runs under UNIX operating ryrt"-r.t It
consits of about 6 000 lines'source code. The ¿mount of occupied memory is about
280 bytes pi:r lrid pôint.

Finite Volume Method with variables r,",ú '

Diff-erential equations, böundary conditions

For a steady flow clescril¡e¿ wiil the'variables'stre¿m function rú and vorticity ø,
defined by

-IJt
av ,,' '' 0;v " au, 'au,
E't.'=-,ã¡'t=E.r-6, (r5)

the differential equations I and 2 lead to

(16)
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Problems of laminar flow can be solved also by equations (16), (17) and (3), if
u.!! = u.

The relatively difficult boundary .onilition, for r.r and ll¡ are defined using relation
(15), the non-slip-conditions on the walls and assumptions about velocity profiles in
the vicinity of walls, given velocity profile on inlet, and the assumptions of a fully
developed flow in tlre outlet, see [t0].

Discretization

An orthogonal grid is used for the discretization. Each iifierential equation is in-
tegrated over rectangular control volumes, values of functions and their derivatives
ori'the bourrdary of control volutnes are interpolated and expressed using values of
adjåicent nodes.

For stabilizing the discrete equations, simple upwind differences arê used for the
convective terms.

Solution of the algebraic equation system , , ,i

The system of'discrete equations is solved successively. The connection of variables
is giveu'through au outer iteratiou loop.

The system of linear equati'ons for each variable is solvèd by a modified blocl<-
Gauß-Seidel method (liue by line). This method is stáble on nón-uniform grids if
the aspect ratio of control volumes is 0.1 < *& a 10, cf. [lB].

Code

Thecomputer code "PSIOM2DI which consists of about 4 000 lines of FORIRdN 7z ,

ruiis on workstations under.,U;NIX operating systems. Approximately,lT2ibytes,
memory spêce are required per grid node., :: : : , : :

:

Finite Element Method with primitive variables
).

Galerkin/least-squares formulation of the governing equ,ations : r.l

i I Çva,ur (u o V)u * Vp) o rn do : 
2 Ir,! 

o,út dît (18)
l=t rQ'
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(l e)

,ú) =. 7D + 61(-u!ut* (øoV)t *Vq)
q - g*.ó2(V.ou)

i,

It should be mentioned tllat only 2D laminar and steady flow problems are

considered at this stage of research.

Discretization of boundary conditions

The boundary conditions are formulated in an integral form,-.i.e. nodewise give-n

Dirichlet-boundary values a¡e piecewise integrated gver the boundary.edges of the

filite elenrents. As well prescribed Dirichlet conditions as homogeneous antl no-n-'.

homogeneous Neumann conclitions can be employed..

Spatial discretization and choise of elementary shape functions

An arbitrary 2D domain can be discretized using an unstructiirêd t.!iúgt" based '

mesh. Iu case of a.reetangular domain as in,.the e¡<¡mples prose¡ted, here, only

structured orthogonal triaugulations are applied. Flor.simplicity and computalional
convenience, we restricted the implemBntation to piecewise linear figite elements for
vqlocity, prepsure, and tenrpç¡ature approximation, respectively.

Solution procedure

The linear algebraic equation system resulting from the GlS-discretization of tlie
suc'èessive linearized'(witlr respect to all 'non-linearities) p.d.g: system (t)'(3) has

a significiànt.block,structure.,,Each bleck consists of ba¡ded sparse matrix of di-

meusion n (n:amount of nodes). A particular block iteration procedure in whicb
all unknowns of a single node are treated simultaneously is applied to this equation
system. This very simple procq{ure þas been successfully tested up tosystems with
some 7 000 nodes, i.e. sonre 30 000 equations. Tùe successive approximation process

was stopped aftei'200 cycles'òr wher¡ the relativedifferenci of two following ôyöles

becalne less than 1017.

ä1,,o 
ou)'qaa::= o

Corfipute.r code

Th'è systenr is
some

are

These are tùo

at run time. 'Thå ioäé 
"liti¡i'stt

piogram "NSn.
whole memory
of aboud'5'000

abdut 312 bytês per ioäe, whereus'T\e

arç

lines. "'M"nio.y' t.q
designed for flexibility and is not optimized for storage.

code is



232

CQMPUTATToNS 
,

Laminar natural convection in a qquare cavity' 
'' 

'
'ì 'ilr' .4,. i ¡. , l

Flow in a cavity is qften used to validate numeriçal methqds. Here the computational
domain consists of a closed two-dimensional square (cf.. fig. l) rryith a hot (?¡1) and
a cold (?6) vertical wall. The horizontal walls are isqlated.

Ra' 105

Pr 0.71 '

s
,|

u

o
L

.AT
Ta
Tc

10.0 m/s'
3.6 l0-3 l/K
15.00 l0-6 m2/s
21.13 10-6 m2/s
0.05605 m
5.0 K
280.3 K
275.3 K

Figure l: Geornetry of cavity Table 2: Parameter of computat'ions

Two dimensionless parameters are essential for flow and iemperatur field - the
Prandtl numlrer Pr = ulø and the Rayleigh number Ra = (g1ls lvz\ LT Pr. P'e-
striction to the laminar case (fta < lOt) allows investigations of some properties of
discretization methods, e.g. stability and convergency, almost independent of turbu-
lence modelling. Resulting frorir the same structure of the difrerential equationq, the
achieved piece of knowledge can be useful also for solving turbulent flow proËlems
with natural convectiou.

1

0.5 y /L

1

0

0.s y/L

0

0 05 0 0.5
xlL

Figure 3: Isotherms

1

x/L
, 1ì ,!.

Figure 2: Streamlines
rt

A lot of n.r¡merical results of laminar flpw exists, çf¡r [4], [Z],, [15], [B]. Hgçtmann
et al.,[4] gbtainqd very,acc¡rrate ¡esults (estimated accuracy, 0..0170) as solution on

T¡¡

Uru

xru

#=o ' '

9Tc

# =0

L

/ r/ /,/,/ ,/ /,/
L
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very fine grids (320x320 and 640x640 òohtrol'vôlunies, respectively) for Rayleigh
numbers 104, 105 and 106 and Prandtl number O.Z.t. lh¡V a¡e used as a basis for
comparison for all of the discretiiation methods deécribäá in the previous section.

Comþutationr of thir problem' have been'carried out with 'palameters shown'in
tab. 2. The computational domain was discretized using'a uniform grid (see tab.
3). Criterion of accuracy was specified by l0-5t

The results - flow and temperatur pattern (cf. fig. 2, 3) - are compared by
velocity and temperatur profiles along the horizontalphd vertical rnidlines, cf. fig. 4.

The coordinates x and y are nqÍmalized by the cavity lenght .û; the velocity by the
clraracteristic conduction velocity af L. One can see that predicted velocity and

temperatuiê distribution are qualitatively fairly similar for all tree discretization
methods.

^_Lù- 
2a=1,

100

80

60

40

!20
tl0

' -20

-40

-60

-80
-'100

,¡

0.8

0.6

' 0.2

o Í..0.2 0.4' 0.6 0.8 1
xlL

t 
ot'

1

0.8

0,2

U
u I,/ê

40 20 20 0

4

F
I

F

F
F

I

60.6

o.2

00
o 0.2 0.4 0.6 0,8 1 0 o -2 0 .4 0.5 0.8

(T-TC) / (TH-TC)
1

Figure 4: Profiles of velocity and temperature along the horizoutal and vertical
midlines t ' ':

. The {ahre artd.position of màxi.mal'veloëities ou the midlines are suÉllnarized iD

tab,'3..Thïs tablè'contäir¡s albo the cbmparisontésù1ts)Òf llörtmann et ali.t4],rgrid-''
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independent' solution was yielded by extrapolation of the solutions on two grids
with 320x320 and l60xl60 cont¡ol volumes. With this solution one can investigate

li I

code 'u^o"Lf ø 1l^n"lLt u^o¿:Lf a

ResCUE
16x16 36.4799 0.84374 66.0278 0.03124
32x32 35.9944 0.85937 66.9722 u.07El3

PSIOM2D

16x16 4t 0.87500 66.3700 0.06250
32x32 37.5260 0.84374 67.7142 0.06250
64xQ4 36.1235 0:85937 bE.'J207 0.0ö25u

128x128 35.5027 0.85937 68.6258 0:06250

NS

l6xl6 28.6578 0.81250 50.9485 0.06250
32x32 32.443t 0.84375 ö6.4092 0.06250
48x48 33.7588 0.854t 7 ö8. r 954 0.06250
64x64 34.t771 0.85938 68.5306 ).06250

cf. [a]
34.7414 0.85468 68.6187 0.06719
34.7399 68.6396

Table 3: M¿ximal velocitiLs on tbe midlines

the convergence. TI¡e estirriated error for ê.g. ú^o", ilefined by

where ulo" is tbe 'grid-independent' value, is shown in figu¡e 5 as a function of mesh
parameter à, using logarithmic scale. Tbe solüiion converges for all discretisation

0.0t
0,00r 0.ot

h/L
o.l

- 
tr.CltE + PS¡OIzD -r NS

Figure 5: Estimated error of u-o"

methods. Tbe slope.of the es

The orderr of l.l5 obtdiir"èd tly
estimateil'fo/)firSt order,i¿p tiv
¿Úout 1.55 and:ãfrees with'aranalySis [6] very well:, , !: /t! i ''|: , ' i' ' : ìi



235

Roorn air flow " ),. ': 'r ' t,. .:', r si ,r

A simple two-dimension¿l'test 
"""!"'rpã.ifiud 

by Ni"ir"n ts] wa, choosen to validate
the programs PSIOM2D and ResCUE*_fgr th_e-i1 aþilit¡ to predict the isothermal
two-dimensional ,turbulen[ flow in a ventilatetl roorr.' The çometry of the testroom
shown in figuie6 is LlIi ¿3,hlH = 0.056and.t/H J0.16.:TheheigËtof theroom
fI is 3.0rn in the presèn-t'work,, In acld!$ioni fþ.¡êxpëóled flow'Pättern:is shown in
figure 6 I 

.,, ,. ' 
l,t': t ,:.- 

i

. t. ,. ": ì ; , I

f

h

inlet,,

I ¡r1 -,, ll ¡i

Figure 6: Geometry and expected flgw pattern of tbe test room

In the inlet,'foilowiirg boundary condiiiäns a¡è given: ' '
. ,::i¿ , :i ;

0.455m1s

1.5(0.04.uo)'?

o.oe . eå'51(å/lo).

I¡¡ each cas¡e a coarse a¡ld,a.fine grid wete used to point out the effect of mesh

refinement. The simulâtiónsihave been carriéd out with a 64x32 and 128x64 grid
for the program PSIOM2D and a 64x28 and 128x56 grid for the program ResCUE.

In accordauce with experimental data from Nielsen, predictions of velocity profiles
are given at the two, vertical lines

g: Hr r='2H

aud ¿t the two horizontal lines

Eigure.T shows Lhe profile¡ of tþ9 velo.city in x-direction at t =,H. The global.
prediçgion o{,all sinrqlations iq fai¡ly;good,i,O,ply the progra{t ResCUE uçing thq r
fine grid do.ç¡not, satisfacJ,ory pre{ic{ the recirculation qt the þ9ltorp'of thç room.
That could be caused by a far small .timgsteP which was ugqd toeng¡rr9 st¿bility of'

uo=
Ëo=
€ol

v h12h/2,

'oúttet t
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Figure 7: Velocit¡i profiles at s = H
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Figure 8: Velocity profiles at á = 2H ,t,'
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Figure 9: Velocity,profilep at !: hl?
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Figure l0; Velocity profiles at;y = H - h/.2
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the explicit methocl. The criteriou .f à.ti;;tånl", th" relative difierence between

maximurn of u greater;thàn trs that can:;be recognized from the ¡rieasurement. T,he

CONCLUSION, AND .OUTLOOK
. '.ri.. ¡ i.ij.

Three discretization methods have l¡een described inl thi, ryork. Th.y have been
applied to predict roont air flows with natur¿l and forced convection. In both cases

a better
Next*etizati l,i,ålî

solver is .;,.,
i : ¡ i,: ,: l',:t I r .,.-i !
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