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DEVELOPMENT AND VALIDATION OF A FINITE ELEMENT
CFD ALGORITHM FOR PREDICTION OF ROOM AIR MOTION

A.]. Baker, P. T. Williams and R. M. Kelso
College of Engineering and School of Architecture
The University of Tennessee
Knoxville, TN, USA

SUMMARY

This paper presents theoretical, practical and validation issues on
development of a time-accurate, unsteady, stable and mathematically
robust finite element CFD algorithm for prediction of room air motion.
The incompressible Navier-Stokes equations are closed for the constraint
of continuity via a penalty and/or Poisson variable. Their approximate
implementation within a CFD theory is modulo the discrete divergence

operator V4, with intrinsic dispersive (checkerboard) error mode, the
control of which is critical to numerical stability.

Upon verification of problem statement well-posedness, the error
created by constructing any approximate solution, to the developed
conservation law system, is extremized via a Galerkin weak statement.
This integral expression formality produces a time-dependent ordinary
differential equation (ODE) system, amenable for any integration
algorithm. A specific selection produces the terminal non-linear
algebraic equation system, which is solved via appropriate quasi-Newton
iteration algorithms.

In this paper, the weak statement implementation employs a finite
element spatial semi-discretization using low degree tensor product basis
functions on 2D quadrilateral- and 3D hexahedron-shaped elements.
Time integration is via the second-order accurate trapezoidal rule, and
no artificial diffusion is explicitly added. The segregated jacobian, quasi-
Newton iteration procedure uses GMRES and PCG sparse solvers. The
paper concludes with select 2D and 3D problem statement solutions,
comparable to experimental data and/or alternative numerical
predictions.
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DEVELOPMENT AND VALIDATION OF A FINITE ELEMENT
CFD ALGORITHM FOR PREDICTION OF ROOM AIR MOTION

A.]J. Baker, P. T. Williams and R. M. Kelso
College of Engineering and School of Architecture
The University of Tennessee
Knoxville, TN, USA

INTRODUCTION

Obtaining an accurate understanding of the distribution characteristics of
indoor air is crucial to the development of strategies to efficiently control
indoor air quality. The effectiveness of installed ventilation systems is
subject to the location of supply outlets, windows, doors, room geometry
and exhausts, and interior furnishings, as well as by design of the
building heating and cooling systems.

Therefore, one key objective is development of a predictive, computer-
based methodology to simulate the movement of indoor air under
mixed convection conditions. The mathematical/computational
requirement is attainment of accurate approximaté solutions to the
incompressible-thermal, Reynolds-averaged Navier-Stokes equations for
flowfields in genuine, three-dimensional room geometries. This field is
called “computational fluid dynamics" with acronym "CFD."

The development and assessment of CFD algorithms, for incompressible
or mildly variable density viscous flows, as characterized by sizeable
Reynolds number but negligible Mach number, has been underway for
almost three decades. The Imperial College group pioneered in the
small memory-compatible, semi-implicit steady-state incompressible
CFD algorithm "SIMPLE" [1]). Time-accurate, explicit integration CFD
procedures were developed in parallel, e.g., the MAC method [2],
streamfunction-vorticity and penalty methods, c.f., and the pseudo-
compressibility steady-state method [4].

Each of these CFD formulations constitutes the attempt to enable
computer-generation of an approximate solution to the governing, non-
linear "Navier Stokes (NS)" partial differential equation (PDE) system.
This PDE system is considered universally valid; however, many
approximations must be made to produce a computationally tractible
CFD statement. Room air motion flowfields are typically only weakly
turbulent, except near the supply diffuser, and non-isothermal, hence a
statistical manipulation is required to produce the computable
"Reynolds-averaged" NS form. This introduces a "Reynolds" stress
tensor and heat flux vector, requiring a mathematical model for closure.
Secondly, room air velocities are low subsonic, hence the air behaves
essentially as an incompressible fluid. Pressure thereby becomes
decoupled from the thermodynamics, and requires special CFD model
handling as a kinematic variable.
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Thereafter, a (any) CFD algorithm can.at hest generate an approximate
solution to this developed non-linear PDE model system. Numerous
theories are available including "finite difference,” “finite volume" and -
"finite element” methodologies, each of which employs a discretization
of the PDE statement domain. These methods universally use relatively
simple local functions to support the approximate solution, with the
result that resolution of phenomena on the scale of the mesh is
impossible. Inadequate mesh resolution further enhances the
underlying (dominating) dispersive-type error, the control of which is
central to stability, both numerical and algebraic.

The terminal expression created by any CFD algorithm constitutes a non-
linear algebraic equation system requiring matrix iteration to solve.
Candidate methods include stationary iterations (Picard, Gauss-Seidel,
SOR,...), line relaxation methods (ADI, approximate factorization, ...) and
sparse matrix methods (preconditioned conjugate gradierit, GMRES, ...).
All constitute approximations on a Newton iteration statement, as the
general theoretical foundation, and ultimately the resulting CFD code
reflects the sum total of all specific approximations and choices.

PROBLEM STATEMENT
A. Reynolds-averaged Navier-Stokes equations

A statistical manipulation of the incompressible Navier-Stokes (INS)
equations yields a PDE system amenable to digital computing. The
essence is to resolve the state variable into a mean component, time-
dependent in the large, and a higher-frequency component fluctuation
about the mean. The terminal Reynolds-averaged INS system in tensor
notation form is

Lo w2 a
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Y|
[
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ot ox ox;
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[(1') = 5 + —;(u’ + ulT b - ’) ST 0 (3)

where Z(*) denotes a differential equation including all data. The

statistical mean flow variables are (constant) density (pp), velocity vector
(u;), pressure (p) and temperature (T). - That density is not uniformly
constant is reflected only in the gravity body force term in (2), where g; is
the gravity vector. The material properties of the fluid (air) are
kinematic viscosity (v), thermal conductivity (k), and specific heat (cp),
and sT is an energy source if present.
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The correlated vanables (w1th super§cr1pt bar) are Reynolds stress tensor

(u.u,) and heat flux vector (u,T) The 51mplest (Boussinesq) closure
model con_sptutes the “constitutive” law form, c.f., [3)

ou; B ou; N
o oxi,

where kEIE u;u;, is called turbulen_r kine‘ti_c energy, ‘while \(‘ is the
unknown turbulent kinematic "eddy viscosity.” The turbulent Reynolds'

T,.s %kS - v‘( @)

number definition is Re' _(V’/v) which is a measure of the flowfield
turbulence level (distribution). The turbulent heat flux’vector is
typically correlated to v* via a turbulent Prandtl number Pr‘=Pr. Finally,
the k term in (4) is usually "lumped" into the pressure in (2), leavmg 4@
implemented as a deviatoric stress constitutive model.

4

B. Closure for Incompressibility

Substituting (4) into (2) - (3), using the definition of turbulent Reynolds
number, assuming that the turbulent and laminar Prandtl numbers are
identical, and non-dimensionalizing by suitable reference length,
velocity and kmematlc viscosity scales, yields the Reynolds-averaged INS

system as -

249)= +——(j, f, ) -5=0. (5).
ot dxj )

along with the continuity equation (1). The state variable g(x, t) in (5)

contains the NS dependent variables as the array (u1, u2, 43, ©, ..}7,

where u; = u3i + upj +uzk is the non-dimensional velocity vector field

and © = (T - Tmin) / (Tnax - Tmin) is the potential temperature. The
definitions for the kinematic and dissipative flux vectors, and the source
array, in (5) are

0
Uy + Pdy; Ey
fi= gy ’ ff:lixei ’ ! e AEG (6)
uju3 + Pdy; y 54
u;© Prlo Q/ax,'
The non-dimensional groups in (6) are,
Re EuL_ s GrEg B(Tmax'Tmin) L3 ’ Prgw ' __Gr_ (7)
v v k Re?

the kinematic pressure is P = P/po +2k/3 , and the mean flow symmetric ‘

strain rate tensor definition is Ejj= au/ ox; + a“i/ ox; -
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Implementing the continuity constraint (1) is intrinsically connected to
the determination of the kinematic pressure P in (6). The penalty model
is strictly algebraic, hence the simplest to code-implement with the
definition '

PPz-4 i @& -

for a >> 1, and iteration superscript “p” denotes the current CFD
approximation. The pseudo-compressibility model employs a PDE of the
form (5), but is limited to steady-state applications. A Poisson equation
form replaces P in (6) with a solenoidal constraint determination

satisfying 1
P IR AL S ©)
ax,‘ ox;
The discretized form of both (8) and (9) introduce a dispersive error,
modulo the mesh measure, producing mesh-wavelength oscillations
previously cited as requiring stabilization. An alternative is to replace
this solution (PP) with a (smooth) solution to a pressure Poisson
equation, obtainable from (2) using the divergence operator. The
resultant PDE is

PP dfou;| R 1+ Re' )[ou;  du; L) V
P) = —— 4+ —{—L alj - L ON-GL = _ o (10
=k ox? o ax.-) T ox;x; T Re ox; " ax.-) Re? 9xg (10

Both (9) and (10) require enclosing boundary conditions for well-
posedness. The dot product of (2) with the unit vector, pointing
outwards from the domain, provides a Neumann boundary condition
for (10). The Neumann condition for (9) is homogeneous on all
boundary segments where throughflow is specified as data.

FINITE ELEMENT CFD ALGORITHM

A. The Weak Statement
The Reynolds-averaged INS conservation law system contains the state
variable q(x, t)=(u1, uz, uz, 6, }T satisfying (5) - (6) and perhaps an’

auxiliary variable g, (x, t)={¢,P} satisfying a quasi-linear Poisson
equation, e.g., (9) and (10). A CFD construction seeks generation of an
approximation to q and q,, the associated error in which is under the
control of the algorithm designer. Any such approximation is
expressible in the form

N
q(x, )= gN(x, t) = Y, Wi, £) Qi(t) (11)

i=1
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The superscript N in (11) distinguishes the approximate solution, which
is the sum of N products in an assumed known function set ¥i(x, t) and
a set of unknown coefficients Q;(t) that are at most time-dependent.
Since (5) is separable initial-value, it is logical to assume that space and
time are also separable coordinates. Hence, ¥i(x, t) —» ¥i(x) is
appropriate, and Q;(t) then totally supports the time dependence.

Since the "trial space” Wi(x) is assumed known (specified), the choice is
essentially limitless, e.g., trigonometric functions, Fourier series,
Legendre polynomials, Chebyshev polynomials, Lagrange or Hermite
interpolation polynomials, etc. The quality of ¢N(x, t) depends most
fundamentally on this choice, but the existence of (11) .does not infer
how good any specific gN is. Since gV is an approximation, it cannot
satisfy either (5) or (9)-(10) identically, hence, f(qN) # 0, is a measure of
the approximation error eN=q-4N associated with any specific gN.

It makes sense to require that this error be absolutely minimum among
the specific choices available. The weak statement is the functional
expression that admits such a condition. The generic weak statement is

jnw(x, t) Z@N)dt=0 L fér any w(x, t) . ‘ (12)

which must hold for any "test function" w(x, t), since (12).certainly
vanishes when the correct solution g(x, t) is substituted for gN.

Upon selection of the trial space Wi(x), and the test function
w(x, t), completing the integrals in (12) produces an ordinary differential
equation (ODE) for (7), and an algebraic system for (9) and (10). Hence,
(12) constitutes an integral transformation of a system of PDEs, with
solution g(x, t), into a (much) larger system of mixed ODEs and algebraic
equations written on Qi(t), the approximation expansion coefficient set.
Any discrete time :integration method is applicable to the ODE system,
e.g., Adams-Bashforth-Moulton, Runge-Kutta, Euler family, leapfrog, etc.
Upon implementation, the ODE system becomes an algebraic statement.

One specific development is required for (12) to become a practical
numerical recipe; specifically, that (12) must hold for any test function
must become deterministic. Any known function can be represented by
an interpolation; hence, selecting another space of suitable functions

®@;(x), any interpolation is of the form

M
wix, ) wM(x, ) = ), Dix) Wilt) (13)

i=1

where superscript M denotes "interpolation." Once the set ®i(x) is
selected, any specific interpolation wM(x, t) for w(x, t) is distinguishable
only by the (known) coefficient set Wj(t). Thereby, that (12) must hold
for any test function can be enforced by requiring this integral to be
stationary with respect to all Wi(t). This extremum, the computable
weak statement,denoted WSN, is simply
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WsN = f . d),-(x)Z(qN) dt = 0, for any ¢;;1<i<M (14)
Q

Neglecting some boundary condition theoretical details, M is equal to N,
hence (14) produces an ODE system with order equal to the N unknown
coefficients Q;(t) in any approximation (11). ’

While (14) cleanly resolves "for all w(x, )" in (12), it has introduced
another function set ®;(x) requiring a decision. The best choice, in the

sense of error, is that the set ®;(x) be identical to the trial space ¥;(x),
which produces the Galerkin weak statement

GwsN =f Yix) Z(qN)dt =0, for1<isN=M (15)

Q.
Mathematically, the GWSN is optimal in the sense the approximation X
error in gN(x, t) is required to be orthogonal to every member of the’
space of functions supporting ¢N for'any choice of trial space. In
distinction, the more traditional CFD numerical algorithm construction
is called "finite volume (FV)," which reproduces finite differences on
regular meshes. In the context of (11)-(13), a FV algorithm for any
approximation (11) is (13) with w(x, t) the set of all constants. Hence,

®i(x) = 1, for all i and (14) becomes

FVWSN = | Z@VMdt =0 (16)
Q
B. Finite element GWSN sgemi-discretization

For any approximate solution (11) to (5), the GWSN terminal form is

GWSN =l ¥(x)Z @V dt =0, forall 1Si<N

[0}
(@™ N | o) ana)
_L{\P,}(a—t Sy‘t n?—w(ﬂ ‘,‘)Nd‘t

+§ {‘I’,‘}(fi-f‘” ﬁ,-do ={0} | (17)
f: W~ o]

Note that the last term in (17) provides the venue to analytically impose
any consistent set of boundary conditions for the NS state variable. The
GWSN is a function (only) of the approximation solution trial space

¥i(x) and associated boundary conditions. A finite element semi-
discretization expresses each ¥(x) as a sum of kth-degree polynomials
with compact support. This requires forming a spatial discretization QF,
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of the domain Q on which (5) is valid. The geometrical shape of
element domain £, depends on the dimension n of Q,-and on the
degree (k) of the local polynomial. The familiar shapes are triangle and
quadrilateral in 2D, and the tetrahedron and hexahedron in 3D. Other
shapes are specifically derivable, and element sides (or faces, in 3D) may.
be planar or curved. =

The local (FE) polynomials spanning an Q. usually have knotsi .
coinciding with geometrical distinctions, e.g., vertices, mid-sides, etc. .
State variable member approximation expansion coefficients Qj(t) are
usually assigned to these locations, which are called "nodes" of the
mesh. It is convention to denote this element-level expression for
unknowns as the array (column matrix) {Q(¢)},. Similarly, the array of
kth degree FE basis polynomials is given the label (Nk(n;)}, where

Mi=ni(x) is the normalized intrinsic coordinate system spanning Q..

This "finite element methodology" directly facilitates evaluation of the
integrals in the GWSN, (17), by focussing on one (the generic) finite
element domain Q, within Qh. The approximation expression (11) for
any FE semi-discrete approximation becomes

g(x, )= gN(x, t) = gh(x, t)—u ge(x, t) | .. (18)

where Qf= U.Q,, and U, denotes "union" over the FE mesh. The form *
for g, (x, t) on any (all) Q, is then

qdx, t) ={NnGo) {QM). (19)
and the GWSN becomes specifically evaluable as

GWsH sf Wix) Z(gh)dt =0 , forall 1SisN onQ'Z=Q
o' '
_ 99 _ (N} lTl. (F d
,{L‘{N l{a }ﬂ L‘ on; fipas

Niffi- ff Lndo (0
+LMQ‘ +l; f’wo):” (20)

All integrals are now performed only on Q,, and on its boundary 9%,

when it coincides (intersects, "n") with 9Q, the boundary of Q. These
integrals are easy to evaluate analytically or by numerical quadrature.
The net result is creation of a library of finite element matrices, one for
each term in (5)-(6) as it appears in (20). An FE CFD code is then basically
a DO loop of products between element data, and element-independent
(FE matrix) data, which is then row-summoned ("assembled," denoted
"Se") to form (20). These operations, detailed in [3, 5], communicate the
elegance of the GWS! to a practical code.
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Since the time-dependence in any approximation (11), specifically (19),
remains continuous, assembling the element-rank expressions in '(20)
over all Q, produces the matrix ODE system

cws' =22, (riq)) = 0 1)

In (21), [M] dnd (R} are global rank square and column matrices,
respectlvely, ‘and [Q(t)] is the’ approximation state variable semi-
discretization at the nodes of Q%. The residual [R) is a non-lmear
function of {Q}, and contains contributions from all terms in (21) except
the lead (unsteady) term. Any ODE algorithm utilizes (21) to evaluate
derivatives in a Taylor series; for example, selecting the 6-implicit, one-

step (Euler/trapezoidal) ODE method, for tp,+1=ty+At and using (21) yields

(FQ) = [M] {Qu1 - Qn) + AHB{R} p1 + (1-6) (R},) = (0) 22)

The GWSh is similarly formed for any auxiliary Poisson equation, e. g
for the continuity constraint and/or pressure, (9)-(10). Both are quasi-
linear in their dependent variable, and the FE procedure employs all
developed. mgredxents except the ODE step. The terminal algebraic
equation system is of the form

: (FQa} = (D] (Qa} - (S(Q()) = (0) (23)
where {Q4) is the mesh nodal array for discretized auxiliary variables ¢/ -
and/or Pk, with (S(Q(t))) containing the coupling dependence to
appropriate members in g

C. Linear algebra, equation solving

The GWS" FE methodology produces the non-linear coupled algebraic
equation systems (22) and (23). Any linear algebra procedure can be
interpreted as a quasi-Newton iteration, wherein the jacobian is
approximated. The generic Newton iteration algorithm statement for
(22) is

AR (s P rertp
0] (8Qhi =-{FQ) (24)

the convergent solution of which yields the p+15t solution esnmate

M + 6At

(QP"I = ‘Q}" 2{8Q1I+1 25)
Here, p20 is the iteration mdex, and convergence occurs for

max | (QJP+1] <e for somee. Any quasi-Newton method amounts to
replacement of (24) with some less complicated left hand matrix, and
many methods in numerical linear algebra are apphcable, along thh
appropriate insertion of solutions of (23).
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D. Theoretical, accuracy and i:onve‘r'gence

The selection of trial space Wi(x), 1<isN, hence FE trial space basis
(Nk), is the absolutely fundamental choice. Accuracy and rate of
asymptotic convergence to the exact solution (algorithm "order") are
correspondingly bounded. The NS system contains PDEs of two types,
i.e., quasi-linear elliptic and non-linear initial-boundary value
statements modulated by a single" parameter (Reynolds number).
Mathematically rigorous asymptotic erfor estimates are available only
for the linearized forms, c.f., Oden and Reddy [6]. For error defined as
eh=g-gh, the asymptotic ¢ error estimate for a GWS" algorithm (23) for (9)
and/or (10) is

Il ek Iy < C k(i fu,m, + IIgIIH'(ag)) l (26)

In (26), HP denotes the p-Sobolev norm, defined e1ther on the solution
domain (Q) or its boundary (3Q). Within the norm (notation |||}, f and
g are corresponding data of smoothness r>0 on Q and s21/2 on Q2. For
sufficiently refined discretizations Q", C is a constant independent of hp,

the extremum mesh measure, and k is the completeness degree of the FE'

trial space basis {Nj].

The companion, linearized asymptotic semi-discrete approximation
error estimate for the GWSh algorithm (21)-(22) for (5)-(6) is [6]

i

I eh (nAt)"Hl(Q) <G hﬁ Il g(nA)ligegq) + Ca At 1 Qo ey . (27)
Here, At is the integration time step, Qo is the interpolation of q(x, t=0)

onto Qh, and Cj and C; are constants for sufficiently refined Q#. Thus,

for the exact solution g possessing k+1 derivatives that are square

integrable, the approximation error will converge in H! as the extremum °

mesh measure hys to the exponent k, the trial space basis degree.

iy

DISCUSSION AND RESULTS

A. Benchmark Validations

The close-coupled step wall diffuser is an isothermal flow benchmark
containing clearly distinguishable solution character as a function of
Reynolds number Re. Figure 1a sketches the geometry and illustrates
essential flow recirculation patterns as measured experimentally (for
h/H=0.485 and H=1.01) for 100 < Re < 7500 based on inlet duct hydraulic
diameter [7]. Figure 1b summarizes the measured loci of primary and
secondary recirculation region attachment coordinates on the duct
symmetry center plane. The flowfield is essentially 2-D for Re < 400,
whereupon an axial vortex pair becomes created yielding a fully 3-D flow
character with additional upper surface separation region. The flow trips
to 3D turbulent at Re = 1200, and is fully turbulent for Re > 6500,
thereupon returning to an essentially 2D character with a single
recirculation region. Comparing the associated attachment coordinate
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X1, for the laminar.and fully turbulent flowfields, indicates that the
assocxated turbulent Reynolds number i5 of the order Ret=(vt/v) = 30.

Over the range of Re for which the step-wall diffuser flowfield is verified
laminar and 2D, both the penalty and continuity constraint G WS
algorithm solutions, as well as the continuity-exact streamfunction-
vorticity formulation, produce essentially identical solutions on an
adequate mesh. These solutions are in excellent agreement with the

data, Fig. 1c, using an Q# =20 x 70 axially-nonuniform discretization.
The streamfunction and continuity constraint GWS# algorithms further
produce smooth, steady-state 2D solutions to Re = 1000 that are
essentially identical, and contain a secondary, and eventually a tertiary,
recirculation bubble, c.f., Fig. 1d. These occurrences are in qualitative
agreement with the experiment, even though the actual flowfield has
become 3D, see Fig. 1b. The penalty GWSh algorithm solution process,
without the addition of artificial diffusion, becomes corrupted by the
modulo Vh dispersive error mode on this mesh, recall the comments
with regard to (8).

Laminar:
2D, Re s 400
3D, Re < 1200

Tranositiona!, 3D
1200 s Re = 6600

Turbulent, 2D
Re > 7000

x II.

Expected
Separation

Reynolds No.- Re

e T

Fig. 1. Close-coupled stepwall diffuser, a) geometry [7], b) GWSh

predictions for X1, c) flow field character with Re, [7], d) GWS# 2D A
simulation at Re=1000.

The fully 3D GWSk simulation process employs the continuity-
constraint with genuine pressure algorithm construction. Figure 2a
illustrates the prototypical discretization of the symmetric half-duct
containing approximately 20,000 domains Q.. For 100 < Re < 400, the '



201

associated steady-state solutions are in excellent -agreement with the data,
Fig. 1b-c. Figure 2b. graphs, select cutting planes of the computed velocity
vector field at Re=400, which appears free from mesh scale oscillation
and confirms essential 2-dimensionality .of the recirculation region
across ~80% of the duct half-span. The GWSH solution process is now
proceeding at Re=500; whereat the experiment confirms the move
towards fully 3D flow and creation of a secondary recirculation region.on
the top wall. This secondary separation region has occurred, and Fig. 2c
graphs the complex-local flowfield computed in the step-sidewall near-
region, with associated initiation of the 3D vortex roll-up and multi-
dimensional stagnation points.. This computational validation process
will continue to Re=1200, in increments of 100, to quantize the associated
3D separation phenomena.

Fig. 2. Close-coupled
stepwall diffuser, a)
representative mesh
Qh, b) GWSH solution
at Re=400, ¢) GWSH
step-sidewall velocity
field close-up, Re=500.

The benchmark thermal problem statement is natural convection in a
2D and/or 3D square cavity. The penalty and continuity constraint
GWSHh algorithms, on a modestly non-uniform Q% = 162 mesh, both
produce 2D results in excellent agreement with numerical data [8] for 103
< GrPr < 106. The continuity constraint GWSh 3D algorithm solution,
for GrPr = 104 and QF = 163, compares exactly to the 2D solution. (Space
limitations prevent inclusion of the associated graphics.)

B. Room Air Motion Predictions
Zhang (9] has measured room air motion in the full scale, essentially 2D

room geometry shown in Fig. 3a. The supply duct was diffuserless, as
was the room exhaust, and Re ~6000 based on supply duct cross-section
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(5 am) and velocity (350 fpm).. For Re=6000, a non-isothermal test was
conducted for Ar = 0.02. The experimental data confirm both flowfields
are unsteady, in the large, with the eye-level supply flow attaching to the -
ceiling, and separating thereafter as a function of time and'Ar. Loy

Figure 3b is a snapshot, of the continuity-constraint GWSh élgogifiim

solution for the isothermal test at At~50 s, for Ref=5, which compares
well with the experimental mean flow velocity field,

h, =120 0.063 0.250 0.500 0750 ;
[ Pa=12% 000 hias 0375 0625 ogrsoges XV
0 F E E |: r : =T
*r'—” E [ t E : ' '
"d’q:'z;'f F i [ [y'Ts
a) L [ >
0.50 b r ! 1‘ H=56°
W =g
[ ]
075 | [
4 t bt
E N L L
: t t ot
w=216" ,|
y/H]

b) —

<)

0

Fig.3. Full-scale room air motion characterization, a) Univ. Illinois
experiment, [9], b) measured velocity field with time-variation
illustrated, [9), ) GWSH prediction, At~50s, Re!=5, Q = 50 x 60.
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Fig. 3¢, with-its large-scale unsteadiness denoted: thereon via the gmiall-
scale ‘arrow: clusters.” The CFD data indicate a relatively long wavelength
oscillation ‘ini the’ ceiling jet layer, a firm:indication that the separation
coordinate will be time dependent. The action of the CFD drag bdundary
conditions in modulatmg the wall jet profiles is quite evident. In the
near-supply region, the comparison of hot-wire measurements with the
CFD prediction of the ceiling jet attachment, Fig. 4a-4b, is quite good.
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Fig. 4. Full scale room air motion near-field flow characterization,
a) experimental hot wire data, 9], b) GWSsh predxctmn, At=50s,
Ret=5, Q" = 50 x60.

Spitter [10] reports data for a full scale 3D room air experiment with
strong thermal bouyancy effects. For the air change/hour (ACH) rate of
15, the cold jet injection into a hot room occurs at Re=15,000 and Ar=22.
For the ACH=30 case, the jet and room are initially isothermal,
Re=30,000 and Ar=4 for the heated walls. The CFD simulations employ
the 3D continuity constraint GWSH algorithm on a mesh containing
~20,000 . again including discretization into the supply and exhaust
ducts. Figure 5 summarizes the essentially steady-state CFD solution for
velocity and static pressure distributions for both cases. For the ACH=15
simulation for Ref=14, the cold jet literally "crashes" onto the floor,
hence spreads radially inducing multiple stagnation points and wall
thermal boundary layers. The ACH=30 test case CFD simulation at
Ref=29 produces a much different velocity field, while the pressure field
is distinguished only by the absence of the floor stagnation region. These
predictions are in excellent quahtahve agreement with the (relatively
sparse) expenmental data in [10].
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Fig. 5. GWSh algorithm solution for velocity and pressure distributions,
Q" ~20,000, ) ACH=15, Ar=22, Re!=14, b) ACH=30, Ar=4, Re!=29.

SUMMARY AND CONCLUSIONS

This paper has presented theoretical, practical and validation issues for a
time-accurate, unsteady, stable and mathematically robust weak
statement CFD algorithm for prediction of room' air ‘motion. The
incompressible Navier-Stokes - equations appear best closed for' the
constraint of continuity in 3D via a Poisson variable. For this paper; the
weak statement employs a finite element semi-discretization using
tensor product basis functions on '3D hexahedron-shaped elements.
Time integration is via the second-order accurate trapezoidal rule, and
no artificial diffusion is explicitly added. Algorithm performance has
been verified for select 2D and 3D benchmark and room air motion
problem statements.
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