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CFD ATGORITHM FOR PREDICTION OF ROOM AIR MOTION

A. f. Baker, P. T. Williams and R M. Kelso
College of Engineering and School of A¡dritectu¡e

The University of Teruressee
Knoxville, TN, USA

SUMMARY

#'e r +3

This paper presents theoretical, practical and validation issues on
develòpment of a time-accurate, unsteady, stable and mathematically
robust finite element CFD algorithm for prediction of room air motion.
The incompressible Navier-stokes equations a¡e dosed for the constraint
of continuity via a penalty and/or Poisson variable. Their approximate
implementation within a CFD theory is modulo the dissete divergence

operator Vå, with intrinsic dispersive (dreckerboa¡d) error mode, the
control of whidr is critical to numerical stability.

Upon verification of problem statement well-posedness, the ¿rror
created by constructing any approximate solution, to the developed
conservation law system, is extremized via a Galerkin weak statement.
This integral expression forrrality produces a time-dependent ordinary
differential equation (ODE) system, amenable for any integration
algorithm. A specific selection produces the terminal non-linea¡
dgebraic eguation system, which is solved via appropriate quasi-Newton
iteration elgorithms.

In this paper, the weak statement implementation employs a finite
eler¡rent spatial semi-discretization using low degree tensor product basis
functions on 2D quadrilateral- and 3D elements'
Time integration is via the second-order rule, and
no artificial diffusion is explicitly added. ian, quasi-
Newton iteration procedure r¡ses GMRES and PCG sparse solve¡s. The
paper concludes with select 2D and 3D problert statement solutions,
ãomparable to experimental data and/o¡ alternative numerical
predictions.





L97
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INTRODUCTION

Obtaining an accurate understanding of the distribution cha¡acteristics of
indoor ai¡ is crucial to the development of sEategies to efficiently control
indoor air quality. The effectiveness of installed ventilation systems is
subject to the location of supply outlets, windows, doors, toom geometry
and exhausts, and interior furnishings, as well as by design of the
building heating and cooling systems.

Therefore, one key objective is development of a predictive, comPuter-
based methodology to simulate the movement of indoor air under
mixed convection conditions. The mathematical/computational
requirement is attainment of accurate approximate solutions to the
incompressiblethermal, Reynolds-averaged Navier-Stokes equations for
flowfields in genuine, threedimensional ¡oom geometries. This field is
called "computational fluitl dynamics" with aconym "CFD."

The development and assessment of CFD algorithms, for incompressible
or mildly va¡iable density viscous flows, as characterued by sizeable
Reynolds number but negligible Mach number, has been underway for
almost three decades. The Imperial College group pioneered in the
small memory-compatible, semi-implicit steady-state incompressible
CFD algorithm "SMPLE" [1]. Time-accurate, erçlicit integration CFD
procedures were developed in parallel, e.9., the MAC method l2),
streamfunction-vorticity and penalty methods, c.f., and the pseudo-
compre*sibility steady-state method [4].

Each of these CFD formulations constitutes the attempt to enable
computer€eneration of an approxi¡rate solution to ttre governing, non-
linea¡ \Iavier Stokes (NS)" partial differential equation (PDE) system.
This PDE system is considered universally valid; however, many
approximations must be made to produce a computationally ftactible
CFD statement. Room air motion flowfields are ty?ically only weakly
tu¡bulent, except near the supply diffuser, and non-isothermal, hence a
statistical manipulation is required to produce the computable
"Reynolds-aoetaged" NS form. This introduces a "Re¡rnolds" stress
tensor and heat flux vector, requiring a mathematical model for dosu¡e.
Secondly, room air velocities are low subsonic, hence the air behaves
essentially as an incompressible fluid. Pressure thereby becomes
decoupled from the therrnodynamics, and requires special CFD model
handling as a kinematic variable.
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The¡eafter, a (any) CFD algorithm,.ca,nrat þest.gençrate an approximate
solution to this developed non-linear PDE model system. Numerous
theories are available induding "finite difference," "finite volume" and
"finite element" methodologies, each of which ernploys a discretization
of the PDE statement domain. These methods universally use relatively
simple local functions to support the approximate solution, with the
result that ¡esolution of phenomena on the scale of the mesh is
impossible. Inadequate mesh resolution further enhances the
underlying (dominating) dispersivetype error, the control of which is
central to stability, both nr¡:nerical and algebraic.

The terminal expiession created by any CFD atgorithm constitutes a non-
linear algebraic equation system requiring matrix ite¡ation to solve.
Candidate methods include stationary iterations (Picard, Gauss.-Seidel,
SO&...), line ¡ela¡<ation methods (ADI, approximate factorization....) and
sparse matrix methods (preconditioned conjugate gradierit, GMRES, ...).
All constitute approximations on a Newton iteration statement, as the
general theoretical foundation, and ultimately the resulting CFD ;code
¡eflects the sum total of all specific approximations and droices.

PROBLEM STATEMENT

A. Reynolds-averaged Navier-Stokes equations

A statistical manipulation of the incompressible Navier-Stokes (INS)
equations yields a PDE system amenable to digital computing. The
essence is to resolve the state variable into a mean component, time-
dependent in the large, and a Ngher-frequency component fluctuation
about the mean. The terminal Reynolds-averaged INS system in tensor
notation form is

/tPol
ðri
ðti =Q
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where á.) denotes a differential equation including all data. The
statistical mean flow variables a¡e (consta¡rt) density (po), velocity vector
(ui), pressu¡e (p) and temperature (T). That density is not uniformly
constarit is reflected only in the gravity body force term in (2), where g¡ is
the gravity vector. The material properties of the fluid (air) are
kinematic viscosity (v), therrral conductivity (k), and specific heat (cp),
and s¡ is an energy sor¡Ìc€ if present.
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The correláted variables:.{with'supêrdcript ba¡) a¡e iteynótaststress tensör

mod.gJ consFtutes the jrconstitutive" law form, c.f., [3]

wl =348v- ",(H.#J. 
' (4) r

1

where k= , u¡u¡ is called turbulent' kinètic energy, while vJ is the
unknown tLbulent kinematic "eddy oiscosity.'i The turbulent $cynolds'

number definition is Rer = 
(u/u) which is a measu¡e of the flowfield

turbulence level (distribution). The turbulent heat fiux'vôcto¡ is

typiçaly correlated to vl via r Prl=Pr. Finally,
the k term in (4) is usually " in (2),.leavirig (4) '

implemented as a dæiatoiic ' 
,

B. Closure for Incompressibility

Substituting (4) into (2) - (3), using the definition of turbulent Reynolds
number, assuming that the h¡rbulent and laminar Prandtl numbers are
identical, and non-dimensionalizing by suitable reference length,
velocity and kinematic viscosity scales, yields the Reynolds-averaged INS
systemas L , | '

àaA
=J+ 

-at àri
tlq) V ¡-ff )-s = o

along with the continuity equation (1). The state variabld 4(x, f) in (5)

contains the NS dependent variables as the array (r¡, uZ, tt3, O, ..)f,
where uí= utî * uf *u3Ê is the non-d.imensional velocity vector field
and O = (T - Tà¡rJ I (T^o, - Tm¡ì is the potential ternperature. The
definitions for the kinematic and dissipative flux vectors, and the source
array, in (5) a¡e

¿U

E4

Eq

e errèdax¡

The non-dimensional groups in (6) are,

(5)

uiu+Pù¡

u¡uz+Põ4

uíus+Pùj
fj= /l=#

ne=$, "r=S,*=T,*=# v)

the kinematic pressure is P = P/go + 2kþ, and the mean flow symnetric '

strain rate tensor definition is Ery= ar/ar¡*èui/At,.
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for ¿ >> 1, and ite¡ation supersctipt "p " denotes the current CFD
approximation. The ps odel
form (5), but is,li¡nited tions
form replaces P in ( conssatisfYing 

¿bP) = u- * ú =o (e)
ùi' â¡¡

./ tn¡ =#. *{**J * fif,u,,, qPff . 
*4) 

- ## = 0 (10)

FINITE ELEMENT CFD ALGORITHM

A. The Weak Statement

The Reynolds-averaged INS consenration law system contains the state

variable q(t,t)=1u1,u2,rr,O,...)t satisfying (5) - (6) and perhaps an,

auxiliary va¡iable Qo(x,tl={Orp}t satisfying a quasi-linear poisson
equation, e.9., (9) and (10). A CFD construction seeks generation of an
approximatíon to { and {e, the associated error in whiih is under the
control of the algorithm designer. Any such approximation is
expressible in the forrr

N
q(x, t)= qN(x, t) = ) Y¡x, r) Qlr)

i=1

(11)
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The superscript N the apyoximate solution, which
is the sum bf N pr knoun fuàctiòn set Yi(x, t) and
a set of unknown t are at' most time-dependent.
Since (5) is separable initial-value, it is logical to assume that'space and

time are also separable coordinates. Flence, Yi(x, t) + Y¡(x) is
appropriate, md Q¡(t) then totally suPPorts the time dependence.

Since the "trial space" Ylx) is assumed known (specified), the choice is
essentially limitless, e.g., trigonomet¡ic functions, Fourie¡ series,
Legendre polynomials, Chebyshev polynomials, Lagrange or Hermite
interpolation polynomials, etc. The quality of qN(x, t) dePends most
fundamentally on this choice, but the eústence of (11) :does n'ot infer
how good any specific qN is. Since 4N is an approximation, it cannot
satisfy either (5) or (9Þ(10) identically, hence, &qN) * 0, is a measure of

the approximation error eN = Q -qN associated with any specific 4N.

It makes sense to require that this error be absolutely mínimum among
the specific choices available. lÏte weak statement is the functional
expression that admits such a condition. The generic weak statement is

!nw&, t) ./ (qN) dr = 0 , for anY w(x, t)

which must hold lor any "test function" ür(x,l), since (12),certainl'|
vanishes when the correct solution g(x, ú) is substituted for 4N.

Upon selectio¡i of the trial space Y¡(x), and the test, function
w(x, t), completing the integrals in (12) produces an ordinary differential
equation (ODE) for (7), and an algebraic systen for (9) and (10). Hence,
(12) constitutes an integral transformation of, a system of PDEs;.with
solution q(x,t), into a (much) larger system of mixed ODEs artd algebraic
equations w¡itten on Qlt), the approximation expansion coefficient set.
Any discrete time:integration method is applicable to the ODE system,
e.g., Adaurs-Bastrforth-Moulton, RungeKutta, Euler fanily, leapfrog, etc.
Upon implemmtatiory the ODE systern becomes an algebraic statement.

One specific development is required for (12) to become a practical
numerical recipe; specifically, that (12) must hold f,or any test function
must become deterninistic. Any known function can be represented by
an interpcilation; hence, selecting another space of suitable functions
e¡(x),any interporatio" " 

I 
*1"* 

*
w(x, t)Z uM(x,O = ) olx) W¡(r) (13)

i=1

where superscript M denotes "interpolation." Once the set O¡(x)'is
tor w(x, l) is distinguishable

Thereby, that (12) must hold
requiring this integral to be
exttemum, the computable

weak statemenLdenoted t4¡5N, is simply
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wsN 'ø;(x) /(qN) dr = a, for anyo¡¡1 sisM (14)

Neglecting some boundary condition theoretical details, M is equal to N,
hence (14) produces an ODE system with orde¡ equal to the N unknown
coefficimts Q¡(l) in any approximation (11).

While (14) ç¡¿"t¡t resolveS "for all w(x, Ð" in (12), it has introduced
another function'-set tDdx) requiring a decision. The besú choice, in the
sense of error, is that the set O;(x) be id.entical to the trial space Y¡(x),
which produces the Galerkín weak statement

r
cwsN= | Y¡6)/QN)dr=0, forl<ísN=M (15)

J"
Mathematically, the GWSN is optimal in the sense the approxirration
error in 4N(x, t) is required to be orthogonal to every member of the '

space of functions supporting qN for any choice of trial space. In
distinction, the more traditional CFD numerical algorithm construction
is called "finite volume (FV)," which reproduces finite differences on
regular meshes. In the context of (11)-(13), a FV algorithm for any
approximation (11) is (13) with u(x, t) the set of all constants. Ffence,
tD(x) =r 1, for all i and (14) becomes

I^
FVWSN = t?\¿r = o

B. Finite element CWSN semi-discretization

For any approximate solution (11) to (5), the GWSN terminal form is

=l^GWSN YiQ)/QN)dr =0 , f-all 1sí<N

(16)

--l r*r(#"þ, l+ry v -rty a,

. 
f*-., lv,\¡¡- ¡lliî¡do =(s) |07)

Note th¿t the last te!:Er in (17) provides tùre venue to anal¡ically impose
cny consistent set of borndary conditions for the NS state variable. The
GWSN is a fi¡nction (only) of the approximation solution trial space
Yi(x) and associated boundary conditions. A finite element semi-
disc¡etization expresses each Y¡(x) as a sr¡m of &th-degree polynomials
with compact súpport. This requires forming a spatialãiscräfi.ation Ol,,
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of the domain O on which (5) is valid. The geometrical shape of
element domain O¿ depends on the dimension n of ÇL,.and on the
degree (k) of the local polynomial. The familia¡ shapes are triangle and
quadrilateral in 2D, and the tetrahedron and hexahedron in 3D. Other
shapes are specifically derivable; and element sides (or faces, in 3D) may
be planar or curved. ,. . l

The local (FE) polynomials spanning an O, usually have knotsí'.
coinciding with geometrical distinctions, e.g., vertices, mid:sides, etc. ,

State variable member approximation expansion coefficients Qlt) are
usually assigned to these locations, which are called "nodes'l of the
mesh. It is convention to denote this element-level expression for
unknowns as the ar:ay (column matrix) (Q(ú))c. Similarly, the array of
kth deg¡ee FE basis polynomials is given the label (Nt(nÐ), where
î¡=qlx) is the normalized intrinsic coordinate system spanning Or.

This "finite element methodology" directly facilitates evaluation of the
integrals in the GWSN, OZ¡,6, focussing on one (the generic) finite
element domain O¿ within Oft. The approximation expression (11) for
any FE semi-dissete approximation Þecomes

q(x, t):4N(x, ú) = qh(x,l) = LJ q"(x, t) (1S)

where Qrr= u¿O¿, and u¿ denotes "unic,n" oJè, tt 
" 

FE mesh. ït¡e form ì

f,or qe(x, t) on any (all) C¿ is then

. qlx, r) = {¡v(q('))lr{otoÞ (1e)

and the GWSN becomes specifically evaluable as

c wsh =/ , 
*,o, l(qh) dr =o , fo, all 7 3í s N on oå =o

='ú,"-{* -,þ" - [ H N*,- ¡tþt

./r,,-.. t*J¡¡¡-¡lla¡"Fr, 
(20)

All integrals are now performed only on (l¿, and on its boundary ðO¿

when it coincides (intersects, "n") with âo, the boundary of O. These
integrals are easy to evaluate analytically or by nunerical quadrature.
The net result is creation of a library of finite element matrices, one for
eadr terr in (5Þ(6) as it appears in (20). An FE CFD code is then basically
a DO loop of products between elenent data, and elemmt-independent
(FE matrix) data, which is then row-sutnmoned ("ass¿mbl¿d," denoted
"Sr") to form (20). These operations, detailed in [3, 5], comnunicate the
elegance of the GWSå to a practical code.
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Since the time-dependence in any approximation (11), specifically (19),
remains continuous, assembling the element-rank expressions in (20)
over all fl, produces the matrix ODE system 

r

cwgl =b,rJ'#*{R(qÐ)} ={o} Ql)

In (21), tMl dnd f4) are global'rank square and column matrices,
respectively, and (Q(r)Ì is the'approximation state variable semi-
discretÞation at the nodes of Ql¡-. Ttre resiilu¿l lR) is a nonlinèar
function of {Q}, and coñtains contributions from all terms in (21) except
the lead (unsteady) term. Any ODE algorithm utilizes (21)'to evaluate
derivatives in a Taylor series; for example, selecting the O-implicit, one-
step (Euler/fapezoidal) ODE method, for tn¡1=ln+Al and using (21) yields

(FQ) = VvlllQ*r-e") + a(e{n)*r + (1-e) (R)J = (o) (?2)

The GWSI¡ is similarly formed for any auxiliary Poisson equation, e.g.,
for the continuity constraint and/or pressrue, (9Þ(10). Both are quaii-
linear in their dependent variable, and the FE procedure employs all
developed ingredients exc.ept the ODE step. The terminal ãlgèbraic
equation system is of the forrr

lFQ,¡l = tDl (Q^); (S(Q(!))) = (0) (?3)

where {Q¿) is the mesh nodal aray for discretized auxiliary variables qå .

and/or På, with (S(Q(t))) containing the coupling dependence to
appropriate menbers in q¡,

C. Linear algebra, equation solving

[r 
* ruprJtoo)# =:{Fe}P*, , 

(24)

the convergent solution of which yields the p+lst solution estimate

(o)il = (a)". Ë loollli (2s;

Here, pà0 is the iteration index, and convergence occurs for
max l(õQlP+r I s e for some e. Any quasi-Newton method amounts to ,

replaceurent of (24) with some less complicated left hand matrix, and
many methods in numerical linear algebra are applicable, along with
appropriate insertion of solutions of (27).
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The selection of trial space Yi(x), 1s¡sN, hence FE trial space basis
(Nt), is the absolutely funilamental choice. Accuracy and rate of
asymptotic convergence to the exact solution (algorithm "order") are

The NS system contains PDEs of. ¡n¡o tJpes,
c and non-linear initial-boundaill value
y a single'þarameter (Reynolds number).

Mathematically rigorous asymptotic eribr estimates a¡e available only
for the linea¡ized forms, sf., Odm and Reddy [61. For error defined as

eh=q-qh, the asymptotic error estimate for a GWSå algorithm (23) for (9)
and/or (10) is

ll eå ll¡¡,¡e¡ sCr¡I{(ll f lln,<c¡+ llgll¡¡,1¡¡) ' Q6)

In (26), HP denotes the p-Sobol"*, ,,o#, defined 
"iüår'or, 

the solution
domain (O) or its boundary (ðO). Within the norm (notation lloll),/ and
8 are conesponding ilata of smoothness r>0 on O and s¿7 /2 on âfl. For
sufficiently ¡efined discretizations Qå, C is a constant independent of h¡4,, 

,

the extremun mesh sreasu¡e, and k is the comþleteness degree of the FE'
trial space basis (Nt). t

The companion, linearized asymptotic semi-discrete approximation
error esrimate for the GWså algorithm QD-Q2) for (5Þ(6) is t6l

ll ¿å(nAú)llp\ol 5 Cr nf¡U qtntt)ll¡rt.\ç¡¡ + C2Ãt llQs lþr¡e¡ Q7)

Here, At is the integration tinre step, Qo is the interpolation of q(x, t=0)
onto Olr, and Ct and C2 are constanæ for srfficiently refined l¡å. Thus,.
for the exact solution I possessing k+1 derivatives that a¡e square
integrable, the approximation enor will converge in Hr as the extremum '
mesh measure h¡4 to the exponent k, the trial space basis degree.

', plscussloN AND n¡surrs
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A. Benchmark Validations

The closecoupled step wall diffuser is an isothermal flow benchmark
containing clearly distinguishable solution cha¡acter as a function of
Reynolds number Re. Figure la sketches the geometry and illustrates
essential flow recirct¡lation patterns as measured experimentally (for
l¡/H=0.485 and II=1.01) for 100 s Re S 7500 based on inlet duct hydraulic
dianeter [7]. Figure lb sum¡ra¡izes the measured loci of primary and
secondary recirculation region attachment coordinates on the duct
s)mmetry center plane. Tl.e flowñeld is essentially 2-D for Re 3 400,
whereupon an axial vortex pair becomes creatd nelding a fully 3-D flow
dra¡acte¡ with additional upper surface separation region. The flow trips
to 3D tr¡rbulent at Re = 1200, and is fully turbulent for Re > 6500,
thereupon returning to an essentially 2D character with a single
recirculation region. Comparing the asgociated attachsrent coordinate
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X1, for the laurinar,and fully 'turbulent' flôwfielals, indicates that the
associated turbulent Reynolds numberiS of the ordei'Rel=(yllv) - 30.

over the range of Re for which the step-wall diffuser flowfield is verified
lamina¡ and 2D, both the penalty and continuity constraint GWSå
algorithm solutions, as well as the continuity-exact streamfunction-
vorticity formulation, produce essentially identieal solutions on an
adequate mesh. These solutions are in excellent agreement with the
data, Fig. 1c¡ using an Oå = 20 x 70 axially-nonuniform discretization.
The stre¿rmfunction and continuity consu.aint GWS¡ algorithms further
produce smooth, steady-state 2D solutions to Re = 1000 that are
essentially identical, and contain a secondary, and eventually a tertiary,
recirculation bubble, c.f., Fig. ld. These occurrences are in qualitative
agreement with the experiment, even though the actual flowfield has
become 3D, see Fig. lb. The penalty GWSí algorithm solution process,
without the addition of a¡tificial diffusion, becomes corrupted by the
modulo Vå dispe¡sive error
with regard to (8).
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Fig.1. Close-coupled stepwall diffuser, a) geometry l7l, b) GWS,I' predictions for X1, c) f,ow field dra¡acte¡ with Re, Ín, d) e,y¡gh 29 ,t

simulation at Re=lfi)O.
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associated steadyrstate solutigns S¡e in.excellent.âgleement with the data,
Fig. 1bc. Figure 2b:.gr.aphs-select cutting planes of the co.mputed velocity
vector field at Re=400, which aPPears free from mesh scale oscillation
and confi¡ms essential 2-dimensionality, of the recirculation region
across -8OVo of the duct half-span. The GWSå solution Process is now
proceeding at Re=500; whereat the experiment confirms the'lnove
lowa¡ds fuUy aO flow and creation of a secondary recirculation region.on
the top wall. This secondary separation region has occu¡red, and Fig. 2c

graphs the comple¡,local flowfield computed in the step-sidewall near-
iegion, with asáociated initiation of the 3D vortex rolllgp and multi-
dimensional stagnation points. This computational validation Process
will c,ontinue to Re=1?00, in increments of 100, to quantize the associated
3D separation phenomena. '-

b)

a)

c)

x

Fig. 2. Closdcoupled
stepwall diffuser, a)
representative mesh
O¡, b) G WSt¡ solution
at Re=400, c) G WSfr
step-sidewall velocity
field dose-up, Re=500.

for GrI'r = 104 and d2h = 7ê, comP¡ues ocactly to the 2D solution. (Space

limitations prevent inclusion of the associated graphics.)

B. Roost Air Motion Predictions

/,

air motion in the full
3¡. The supply {uct
-6000 based on supp
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(5 cm) and velocity (350 fpm).., For Rea6000i a non-isothermal test was
conducted for Ar 70,02. The experlmental'data confi¡m both.flowfields
are unsteady, in the. iarge, with the. eyelevel supply flow attaching to the .

ceiling and separating thereafter as a function of time and,Ar. ¡: , '

Figure 3b is a snapshot,of ihp continuity-constraint GWS,h algoritiim
solution for the isothermal test at Al:50 s, for Rel=S, which compares
well with the experimental mean flow velocity field,

ho =le' 0 938
0 969

v =36'

H=96'

v=416'

b) _+
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Fig.3. Full-scale room air motion characterization, a) Univ. Illinois
experiment, [9], b) measu¡ed velocity field with time.va¡iation
illustrated, [9], c) GWSI¡ prediction, Al350s, Rel=S, Ol¡ = 50 x 60.
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Fig. 3c, with.i.ts large"ccale unsteadineiss denoted,theieon via the ifrrialt-
scale'arrow, clusters.: The CFD data indiicate a ¡'elätively long wave{ength
oscillation inithe'ceiling jet layer, a firmrindication tha,t the sepãration
coordinate will be time depmdent. 'The action of the CFD drag bòundary
conditions in modulating the wall jet profiles is quite evident. In the
near-sûpply region, the ãòmparison of hót--ire måasurements with the
CFD prediction of the ceiling jet attachment, Flþ. 4a4b, is quite good.

203 ,.
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Fig.4. Full scale room air motion near-field flow characterization,
a) experimental hot wire data, [9], b) GWSí prediction, At=50s,
Ret=S, Ot¡ = 50 x 60.

Spitter [10] reports data for a full scale 3D ¡oom air experiment-with
strong thernal bouyancy effects. For the air drange/hour (ACH) rate of
15, the cold jet injection into a hot, room occuro, at Re=15,000 and A¡=22.
For the ACH=30 case, the jet and room a¡e initially isothermal,
Re=30,000 and A¡=4 for the heated walls. The CFD simulations employ
the 3D continuity constraint GWSh algorithm on a mesh containing
-20,000 O¿ again including discretization into the supply and exhaust
ducts. Figure 5 sumna¡izes the essentially steady-state CFD solution for
velocity a¡rd static pressure disEibutions for both cases. For the ACH=15
simulation for Rel=14, the cold jet literally "crashes" onto the floor,
hence spreads radially inducing multiple stagnation points and wall
thermal boundary layers. The ACH=30 test case CFD simulation at
Ret=29 produces a much different velocity field, while the pressure field
is 4;s¡it t rtrhed only by the absence of the floor stagnation region. These
predictions are in exCellent qualitative agreement with the (relatively
sparse) experimentâl data in [10].

.0.0 ao a0t0¡o¡.0¡0¡0
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Fig.5. 'iSWSlt igorithm solution for velocity and pressure distributions,
Oå -20,000, a) ACH=15, Ar=22,Rel=14, b) ACH=30, A,¡.={, f{sl=/!

SUMMARY AND CONCLUSIONS

This paper has presented theoretical, practical and validation issues for a
time-accurate, unsteady, stable and mathematically robust weàk
statement CFD algoritldm for prediction of rooml air'¡ribtion. The
incompressible Navier-Stokes.equations appear best closed for' the
constraint of continuity in 3D via a Poisson variable. For'this paper, the
weak statement employs a finite element semi-discretization using
tensor product basii fúnctions on 3D hexahedron-shaped'elementsl
Time integration is via the second'< rder accurate trapezciiclal rule, and
no artificial diffusion is explicitly added. Algorithm performance'has
been verified for select 2D and 3D benchmark aíd room air inotion
problem statements.
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