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NUMERICAL COMPUTATION OF FLOW AND HEAT TRANSFER
IN AIR-CONDITIONED ROOMS BY A SPECJAL
VELOCITY-PRESSURE ITERATION AND A MULTIGRID METHOD!

Markus Rosler and Bernd Hanel
Dresden University of Technology
Dresden, Germany

SUMMARY

Starting from the basic equations for the calculation of turbulent flows a velocity-
pressure iteration is presented. Main part of this algorithm is a Poisson equation
for pressure. A multigrid method is applied to solve this equation.

The strategy was used to investigate laminar as well as turbulent flows in ven-
tilated rooms. For a laminar nonisothermal flow a comparison is given between a
coupled and a uncoupled solution on two grids concerning number of time steps,
maximal velocity, contraction rate of the multigrid solver and mean Nuflelt number.
Furthermore, two isothermal turbulent flow situations were simulated. For the test
case 2D1 specified by Nielsen (1990) 2D and 3D simulations were carried out and
evaluated. A similar situation, which was investigated by own experiments, was cal-
culated and compared in terms of agreement with the measurement and influence
of numerical parameters.

Simulations were carried out by a research code developed by the authors and
their co-workers on workstations under UNIX.

tThe research was supported by the Bundesministerium fiir Forschung und Technologie under
the contract 0329016D.
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NUMERICAL COMPUTATION OF FLOW AND HEAT TRANSFER
IN AIR-CONDITIONED ROOMS BY A SPECIAL
VELOCITY-PRESSURE ITERATION AND A MULTIGRID METHOD

Markus Rosler and Bernd Hanel
Dresden University of Technology
Dresden, Germany

INTRODUCTION

During the last years numerical computation has been established as a powerful tool
for investigation of flow and heat transfer in air-conditioned rooms. Nevertheless,
there are some unsolved problems concerning evaluation of numerical data. The
comparison of numerical results with experimental data is restricted to a relatively
small number of investigated flow situations. Therefore, it is important to know
which parameters (number of grid points, initial values, time step, weighting fac-
tors, etc.) considerably influence a numerical solution. Starting from a laminar flow
in a simple model room, some situations are numerically investigated and evaluated.
The research code "ResCUE” is used for the simulations. It is based on an explicit
velocity—pressure iteration and a multigrid method. In terms of velocity, tempera-
ture and other transport quantities a combined one/two-step method is applied, the
multigrid method is used to solve the Poisson equation for the pressure.

BASIC EQUATIONS, SOLUTION STRATEGY AND
DISCRETIZATION

As basic equations we consider the time averaged transport equations for an in-
compressible fluid. By means of Boussinesq’s eddy viscosity concept, Boussinesq’s
approximation of buoyancy and a k-¢ turbulence model, the following system of
differential equations is formed:
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In addition, appropriate initial and boundary conditions have to be specified.. The
set of constants of the turbulence model is shown in the table below.

Cp | C4

Cy | Pry | Pr, | Pry

0,09 [ 1,44

1,920,771 1,3 | 1,0

Instead of solving the fully discretized and linearized equation systém (1)-(5) we
use an explicit Velocity-pressure iteration which is based on the algorithm of the

Matrker And Cell Method 1.
following manner:

‘Our strategy of solution can be presented in the

o Integration of equation (1) and (3) over a time step and weighted approximqtiﬁn
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with & = 1,¢ = 0 for the Euler method and §; = 3/2,£, = —1/2 for the two-step
method of Adams-Bashforth.

¢ Analogous treatment of the equations (4) and (5).

e Calculation of pressure P using equation of mass conservation (2):
P 1 U, @ ] aU; dU; aU;U;
9z7 = &AL oz +6_z.-{ [azJ ("‘” (EJ’ ax..)) ~ s,

—9:7(T - To)] i | (13)
- _ —— . oadl m—1
¢ R o (2 )- 5 L)

(One can get boundary conditions for the pressure from equation (11).)

After calculating the pressure, new velocity, temperature and further transport
quantities can be determined.

This explicit strategy is applicable both to steady and unsteady problems. The
clearness of the algorithm is an advantage, i.e. every step of the algorithm is easy
to understand and this strategy avoids the neglecting of any terms as it is done in
other velocity-pressure iterations (e.g. [2]}, but the restriction on the time step due -
to the explicit method is a .disadvantage of it. : i 2

For the spatial discretization we employ a Finite Volume Method on a staggered
grid. Simple upwind differences are used to discretize the convective terms. Some
investgations concerning consistency and stability of the difference equations are
presented in [3].

The linear equation system resulting from the discretization of the Poisson equa-
tion is solved by a multignd method. By numerical studies we; found out that it .
is the best way to solve large difference equations systems, above all in terms of:
permanently increasing grid point numbers. We use a so called V—cycle with the,z
Gaufi-Seidel method as a smoothing iteration and the Cholesky method for solving
the correction equation on the coarsest grid [4] In case of uniform grlds the con-
traction rate of this multigrid method (rate of reduction of the defect between two
multigrid iteration steps) is nearly independent of the grid point number (e.g. see
next section). But for calculation of flows in air conditioned rooms a uniform grid
is unfavourable, because the supply opening is very small compared to the height of
the room. To ensure the efficiency of the multigrid method, the simple Gauf-Seidel
method is no longer a suitable smoothing iteration. At present we have been using
a SOR iteration for smoothing, but it seems to be not the optimal one because the
aspect ratio of the grid is restricted by approximately 1:3. Following the literature
(e.g. [5]), a block iteration method does not suffer from the aspect ratio of the grid.
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Fignre 1: Gedmetry and bound'ar_yponditions of a simple 3D model room (Twa”_=
2000, Tbucicwall b 30001 Tin = 3000) .

minar nonisothermal (uncoupled and coupled) situation (Re=205, Ar=1.16, Pr=0.7)
we investigated the influence of the grid point number on the numerical solution.
At the inlet, the outlet and the walls we applied Dirichlet boundary conditions for
velocity. For temperature we used Dirichlet conditions, too, except at the outlet,
where a homogeneous Neumann condition was given. The simulation was started
with the flow at rest. Some results are shown in figures 2 and 3 and the next table.
As it is shown by the figures the flow patterns of the 123 and 243 case are nearly
identical. Nevertheless, there are some differences in predicting local properties. -

Criterion / Computersimulation || 12%uncoup. [ 123coup. | 24%uncoup. | 24%coup.
Number of time.steps 598 1113 1104 2040 ¢
Time step in [s] - 0,053 0,053 0,024 0,024
Maximal velocity in [ms] 0,071 0,079 0,072 " 0,083
Contractionrate of MG 0,049 0,045 0,051 0,048
Nuflelt number back 'wall + - 5,6 15,3 8,3 19,6

The predicted maxiiral velocity in the inner flow domain is located in all cases near
the inlet. It is shown, that the finer grid produces a higher velocity. The effort for
the coupled solution is approximately twice as high as the effort for the uncoupled
solution. The mean contraction rate of thie'multigrid method is neerly the same for
all cases. The mean Nufielt number was calculated only at the hot back wall of the "*
model room. The influence of the grid point number is considerably high compared -
to the influence of the makimal velocity. Generally we can state, that this two
meshes show the different influence of the grid on various quantities. Never theless e
more computatlons are’ necessary to recogmze a clear tendency :

i B 2 b , A 5 1Y)
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Figure 2: Velocity in the medium x-y-plane of the uncoupled case
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Figure 3: Velocity in the medium x-y-plane of the coupled case

Tt is almost impossible to get experimental data about such a situation, therefore
we turned to another situation, which is well investigated from the experimental as
well as the numerical point of view. We calculated the isothermal test case 2D1,
proposed by Nielsen in 1990 [6]. The geometry of this test case is shown in:figure 4.
It is specified by the following values and boundary conditions at the inlet: T

H=30m,L=90m,h=0168m,t=048m  and
uo = 0.455m/s, ko = 1.5(0.04 - uo), &0 = Cp - k/h/10.

Although that is a 2D test case, we calculated a quasi 2D and a 3D situation and
assumed W = 6. Om The simulations were carried out on a 64 x 28 x 4 grid and
symmetry conditions at the right and left wall for the 2D case and a 64 x 28 x 32
grid for the 3D case. In contrast to the above presented simple model room the grid
was non-uniform, in order to get enough grid lines at the inlet and the outlet. The
simulations were started with a wall jet from the supply opening up to the opposite
wall. A convereged solution was reached after about 6000 time steps for the 2D
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Figure 4: Geometry of the test case 2D1

simulation and after about 8000 time steps for the 3D simulation. The time step
was approximately 0.05s in-both calculations. Some results are shown in the figures
5-8. The profiles are given at the vertical lines z = H,z = 2H and the horizontal
lines y = h/2,y = H — h/2. The overall agreement with the measurement is
good. Both predlctlons meet the characteristic situation and they are cqmparable
with other numerical predictions (see (8]). Except some small regions the grid seems
to be fine enough for this prgblem. Comparing the 2D and the 3D simulation, the
results show an influence of the right and left wall. The assumed relation of W/H = 2
is too small to neglect the influence of the walls. It is shown by the figures, that
the maximal velocity of the jet as well as the recirculating flow at the bottom of the
room is overpredicted by the 3D simulation. The 2D simulation meets the values of
the measurement in a satisfactory way. Both computations were carried out without
relaxation of the turbulent quantities and without any damping of the production
term. In this relatively simple situation no influence on the solution process was
necessary.

A similar situation was investigated by Hanel [7]. The room was a small model
with N

H =0.36m,L=1.0m,h=0.009m,t = 0.048m and
: uo = 4.3m/s, ko = 1.5(0.01 - uo), &0 = Cp - k3**/h/10.

The quasi 2D simulation was carried out on a 128 x 48 x 4 grid and was also
started with a wall jet from the supply opening up to the opposite wall. It takes
some 10000 time steps of approximately 0.0003s (nearly two days CPU-time on a
HP 9000/730 workstation) to get a converged solution. Some results are shown in
figure 9. Although the overall prediction of the flow pattern is satisfactory, there
are some differences between measurement and numerical solution concerning the
behaviour of the wall jet. The developement of, the jet behind the supply opening
is well predicted, but the further expansion of the jet was not represented by the
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Figure 5 Méasi;;red and simulated velocity profiles at z = H for the test case 2D1
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Figure!6 Measufed and'simulated velocity profiles at z = 2H for the test case 2D1
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Figure 7: Measured and simulated velocity profiles at y = k/2 for the test case 2D1
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Figure 9: Measured and simulated velocity profiles at s¢?veral vertical lines
calculation. The maximum velocity of the jet is displaced. Due to the relation
h/H = 0.025 the situation is more compllcated as in the above presented test case
2D1. The use of the standard k—¢ model with wall functions is not suitable for this
situation. i

By numerical investigations we found out that in this case relaxation of the
turbulent quantities and a damping of the production term during the first hundred
time steps is favourable.

CONCLUSIONS AND OUTLOOK

The presented results of the simulations show the ability of the developed research
code for predicting flows in ventilated rooms. The applied strategy is characterized
by a high level of clearness and a robust behaviour. A critical point is the restriction
of the time step, which leads to a very large number of time steps in case of very
fine grids. To overcome this disadvantage, some investigations concerning the use of
vector computers are planned. Furthermore, we want to implement a low Reynolds
number turbulence model in order to improve the behaviour of the flow near the
wall. In addition, numerical simulations of other flow situations (room with obstacle,
steps and heat sources) in connection with experiments will be carried-out:
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