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NUMERICAL SIMULATION OF HORIZONTAL NONISOTHERMAL
3-D JET IN ROOM BY DSM

Shinsuke Kato, Shuzo Murakami, Ryozo Ooka
Institute of Industrial Science
University of Tokyo
Tokyo, Japan

SUMMARY

A three dimensional nonisothermal jet in a room is analyzed numerically by the
standard k — £ EVM (Eddy Viscosity Model) and two Second Moment Closure Models,
i.e. Algebraic Stress Model (ASM) (Hossain and Rodi (1982)) and Differential Stress
Model (DSM) (Launder, Reece and Rodi (1975)). Numerical results given by these
turbulence models are compared with experimental ones and the prediction errors
existing in the results are examined, thus clarifying the relative structural differences
between k— £ EVM and two Second Moment Closure Models. Since the Second Moment
Closure Models clearly manifest the turbulence structures of the flowfield, they are
more accurate than k — € EVM. A small difference between DSM and ASM is also
observed, one based on an inappropriate approximation for the convection and
diffusion terms in the Reynolds stress transport equations in ASM.
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NUMERICAL SIMULATION OF HORIZONTAL NONISOTHERMAL
3-D JET IN ROOM BY DSM

Shinsuke Kato, Shuzo Murakami, Ryozo Ooka
Institute of Industrial Science
University of Tokyo
Tokyo, Japan

1.Introduction

It is self — evident that accurate prediction of room airflow and temperature
distribution is required for rational design of indoor air climate in a room. A great
deal of effort has been devoted to advancing numerical prediction techniques for
airflow in rooms. The standard k — & Eddy Viscosity Model (k — € EVM) [1] has made
many contributions to simulating room airflow with a certain degree of accuracy [2].
However, since the k— &£ EVM is based on the concept of locally determined isotropic
eddy viscosity assuming the simple gradient transport hypothesis. this model is not
so efficient in flowfields where the Reynolds stresses (— uu;) and heat flux (uf) are
significantly anisotropic. Yet such flowfields which include recirculation, supply or
exhaust openings or with buoyancy effect are often obscrved in a room.

On the other hand, Second Moment Closure models, which do not use the concept
of eddy viscosity and gradient transport hypothesis, i.e. DSM [3] or ASM [4], do not
suffer from the many problems which originate from the gradient transport model.
The Algebraic Stress Model (ASM) [4] [5] [6], which is one of the Second Moment
Closure models, has been proved to be a more accurate turbulence model than the
k — & EVM [7] [8]. However, it is also pointed out that the approximation of
convection and diffusion terms in the uu, transport equation is inappropriate in a
complex flowfield [9].

In this paper, a nonisothermal jet in an enclosed space is analyzed by the standard
k- ¢ EVM, ASM and DSM [3) [10], focusing particularly on the anisotropic property
of the flowfield and on the convections and diffusions of second moment quantities
in turbulent statistics like uu; or W 6. The structural differences among the three
turbulence models are then examined in detail.

2. Model flowficld

The configuration of the enclosed space or room model used here is shown in Fig.
1. A cold jet is discharged in the center of the left-hand wall. The right-hand wall,
with an exhaust opening at each corner, is heated. The dimensions of the model are
shown in Fig.l. The Archimedes number of the supply jet is 0.016.
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.Values are made dimensionless by .
30 . . L, (one_side of supply or exhaust opemng)
| . | U, (velocity at supply. opening).
20 symmetrical plane 48, (temparature difference between exhaust and
Y e ——— supply).
@In the experiment, Us=10m/s, L,=004m, A8:=122 C.
Consequently at the supply opening,
_g!-ﬁ.Ae[.[_‘,
Ua?
and Reynolds number R, = 2.7 x 10",
The scale of the enclosed space used for
experiment : 1.2m(x) x 0.8m(x,) x 0.8m(xJ.
@ In the numerical simulation, it is assumed that
X Le=Uc=46:210. Thus A=-g.-f and

A, is given the same value as in the experiment,
X 0.016.
g is deflined to be negative in this papen
xl

Fig.1 Space Mode! for flowfield with buoyancy
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Table 1 Basic Equations of Differential Stress Model

(Continuity Eq) 22t=0 () Gu ==g, BT @ e Zese @
DU, 18P &
(Momentum Eq.) E-—Ia-ﬁ-g.w @ O = O+ On + Dy + O Oien 22)
(au,-Eq.) % =Dy + P+ 0, +Gy—t, B G- —c.f(ru, - %ave) 23)  ®ue=-CiP, - %G,P.) (24)
(-Ea) X D ECPACLCo) @ Ou=-CiGu- 2560 @9
(6-Eq) 2 L-w ) - e £ CI @R N 028y~ St
. .6 _— . »
(@8-Eq) B e DutPas+Prat 044G ® —%uﬂ,-n."-n.")-(—:‘_ih—.:e 26)
(@-Ea) %‘; =D, +P,- 2+, M G- gc.‘m.-nr-nr-a,-%o.,_‘.-
' vy ® P.=ip ® B TN Wi @n
. i P 7 Oumen ™) _
1 8 . — 00—
Gum 3G (100 D= 3-CTTZTT) () O =Ous+ Gont O+ O, 8)
D= CHTgE) 1D Dor LCATATD (19 Ouyn-Coki @9 Gm’-Culrn (30)
i oY U, .
D, aL(C.u.u.a‘_‘) 14 p, thaI UG (1) Qupp =-Cula 30
Werrrcac) ' iy 1.1 £ k
Peu u.u.a 16)  Pup=-udll = 1D 0 = ECuLouBnrnr T @2
.53 s .LE
2- uﬂan (18}  Gy=-uf-g,8-ul-g-8 (19) ¢, RE® (33)

Table 2 Numerical Constants in Second Moment Closure Model

C, :18¢C :06C,:06C’':05¢C':00¢C :02 C,: Q.16 C., 1 144 C,, : 192
Cis : 144 (when G, >0) 0.0 (when G.S0) C, : 0.5 Cip, : 30 Cuz : 05 Coa :.03
Ce! : 05 R :08C,:015C,: 25 N

3. Outline of numerical method

The commonly adopted formulation for DSM [3] [8] utilizes the equations shown in
Table ! (cf. Appendix 1 and 2). The formulation for ASM uses approxxmatlons for the
convection. and diffusion terms in Uu;-equation (Eq.(3)) and U 6 — equation (Eq. (8))
in the formulation of DSM (cf. appendix 3). Density fluctuation is neglected except
in the buoyancy term (Boussinesq approximation). e

The contribution of the generation by buoyancy effect to the transport equation of



97

Nomenclature
U =average velocity component in ,i direction u, = fluctuating velocity component in i direction
U, = velocity at supply opening ) Lo = length of one side of supply or exhaust opening
-Uu, = Reynolds stress component P =average pressure
C, =convection term of uuy, 8 D, = diffusion term of Wy,
P, = generation rate of uu, due to velocity gradient Gy = generation rate of uu, due to bouyancy effect
e, =dissipation rate of uy, @, = pressure — strain correlation term
k = turbulent kinetic energy C. = convection term ol k
P, = generation rate of k due to velocity gradient D. = diffusion term of k
G. = generation rate of k due to bouyancy effect ¢ = dissipation rate of k
© =average value of temperature 6 = fluctuation of temperature
AB: = temperature dlflerence between exhaust and supply g = gravitational acceleration in i direction
wd = turbulent heat flux in i direction C,o= convection term of U, 8
D = diffusion term of w8 P.s = generation rate of w9
G« = generation rate of W @ due to buoyancy effect ®,, = correlation term of pressure and scalar gradient
@' =mean square of scalar fluctuation C, =convection term of §°
D, = diffusion term of 8* P, = generation rate of §°
¢, =dissipation rate of §%/2 A. = Archimedes Number (= =g, 8 - 46, * L/(UJ")
R. = Reynolds number at supply opemng(-Ug lJv) h® = vertical distance from the-w —th wall
0. = turbulent Prandtl number for k' o, = turbulent Prandtl number for ©
R =lime scale ratio ( (8%2) /e.)/(k/¢) v, =eddy viscosity
Superscripts
® T =averaging operation "wo” =total number of boundaries which enclose
“(w)”  =the w—th wall each region
Subscripts
i. j. k = spatial coordinate indices 1 : streamwise direction (jet discharging direction)

2 : lateral direction 3 : vertical direction. »
Values are made dimensionless by L. U, and 48, (cf. Appendix 1)

Table 3 Boundary Conditions (expressed by dimensionless value)

(Boundary at supply opening) Un=10 wu.=00012 £=0325 6.=00 uu=00
(Boundary at exhaust opening) Uanr = 0.25 U £, 0 : free slip condition  wu, =00
(Wall boundary) The wall shear stress t. is given by equation(®, following Launder and Spalding (1974).
Velocnty gradient at the wall is given by equation@, which is used to calculate the generation
term at the fiear — wall node. The value of ¢ at the near— wall node used for the transport equation
for normal stress is expressed by equation @ as a form averaged in a control ~ volume and defined
as ¢. The value of normal stress at the wall is given by free slip condition. The value of ¢ at the
near — wall node used for the transport equation of ¢ is defined by equation@.

o _/p)(C.""k)"'- ln[w] ® {(vm R ®

= c'-w' E-(h/2)- (C."'-k)"' crn
—_— '[ N ] L/ b i) . ®

Heat fllux‘ at heated wall : T, 8=~ 0.0025. Heat flux at other walls & 8= 00.
x=04 C.,=0038, E=90, ve I/R, = 1/{27x10), v, =C.k'/ ¢

Table 4-Grids and Schemes for calculation

The computational domain is discretized as 35(x)x22(x)x54(xJ.

One side of the supply and exhaust openings is divided into 4 grids Minimum grid size is 0.25 and maximum
is 1.0.

One-half the space I'u\ the x, direction is calculated, considering the symmetrical property of the flowfield

The oonvecuon term of all quantmes is caiculated by means of the QUICK scheme. except for the area just around
the supply and exhaust opemngs where the first — order upwind scheme is used

Theé generation of g due to §° was not idered, b this g jon was estimated through preliminary
analysis to be much smaller than the generation due to velocity gradient or temperature gradient. Consequently,
calculations for §7 and &, are not made,
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e (Eq4) is taken into account, following the method proposed by Viollet (1986) [11]
(see Appendix 4).‘ The standard k — € EVM is shown in Appendix 5.

Table 2 shows the various numerical constants used in the model, which follow
those proposed by Launder, Reece, Rodi (1975) [3] and Launder (1983) [10]. The
boundary conditions are shown in Table 3. Table 4 denotcs gr1d5 and schemes: for
calculation.” 8

In order to stabilize the numerical integration of momentum and temperature
transport equations (Egs.(2) and (5)), we have introduced the pseud viscosity method
proposed by Huang and Leschziner (1985) [12] (Appendix 6).

A wall boundary using wall function is adopted, following Launder and Spalding
(1974) [1]. At the heated wall on the right-hand side, the value of the heat flux is
given as a boundary condition. .

Grid discretization is 35 (x,) X 22 (x;) X 54 (x,). Here x, denotes the horizontal
direction of Jet dxscharge and x, means the vertical direction. One-half of the space
in the x, dlrectlon is analyzed, considering the symmetncaT property of the flowfield.

A staggered grid system is adopted. For the transport equatlons of all quantities,
a second-order upwind scheme (the QUICK scheme) is applied for the _convection
terms. The Adams- Bashforth scheme is used for time marching. The numerical
integration is conducted following the ABMAC method (simultaneous iteration method
for pressure and velocity).

4. Outline of modecl experiment

The scale of the model used in the experiment is 1.2m (x,) X 0.8m (x:) X0.8m (x3),
as shown in Fig.l. The outside of the model is thermally insulated.

The accurate measurement of air velocity in a 3-D nomsothermal flowfleld s very
difficult. Average velocity is measured with a thermistor ° anemometeru‘, in this
experiment. A 3~ D ultrasonic anemometer of 5cm span is utilized for ﬂﬁctuating
velocity. One shortcoming of the latter anemometer is the wideness of the averaging
length (5cm), thus the values of uw, k etc. are given as the average for 5cm.
Therefore the measuring space-intervals of thdse quantities are of niecessity much
larger than those of average velocity or temperature, as shown in Figs. 4, 5 and 6.

Temperature is measured by C,— C, thermocouples. The heat generation rate at the
right-hand heating wall is measured by an electronic power meter.

5. Results and discussion

5.1 Distribution of mean velocity U, (Figs.2,5) ., .

The distributions of scalar velocity (./fIZ+U +U%) and velocity vector at the central
vertical section are illustrated in Figs. 2 and 5.

Above the centerline of the jet, the vertical temperature gradient is positive and the
flow is rather stable. Below the centerline, the temperature gradient is negative and
the flow is unstable to some degree. From this point of view, the velocity value in
the area around the center of the jet is very important. In this area the values given
by k— & EVM are generally larger than those given by the other ‘Second Moment
Closure models. This tendency corresponds to the smaller values of Reynolds stress
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Figure 5 Distribution of velocity vectors Figure 6 Distribution of temperature 68

(result of DSM at center section). (result of DSM at center section)
supply velocity ——

given by k- ¢ EVM in comparison with those given by ASM and DSM. This
inadequate lower level of the Reynolds stress implies insufficient diffusion of the
mean momentum, which gives rise to larger mean velocities at the centerline. In the
area just after the jet discharge, the values given by DSM are a little higher than
those given by ASM. However in the downstream region, the centerline speed of the
cold jet given by DSM has lower values than does ASM. The position of the geak
speed observed in DSM is located lower in the x, direction than in ASM, that -is, the
jet predicted by DSM drops faster than does that predicted by ASM. The agreement
between DSM and the experiment is the best among the three models. This is
attributable to the fact that the evaluation of uuy, in the momentum equation given
by DSM is more accurate than those given by the two other models:-A comparison
of uy; of these models is described below in § 5.5.

5.2 Distribution of mean temperature 0 (Figs.3, 6)

The temperature distributions at the area around the center of the jet are also very
important. Except for the area just after the jet discharge, the distributions given by
both ASM and DSM generally show less steep gradients than those given by k—¢
EVM. This tendency is caused by the difference in the evaluation of the turbulent
heat flux u 6. Since ASM and DSM predict larger values of u; 6 than does k— ¢ EVM
(Fig.11), the diffusion of the temperature difference around the center of the jet in
the case of ASM and DSM is more active than that given by k — ¢ EVM.

There is little difference between ASM and DSM. However, if we are forced to
compare them, the distribution given by DSM shows a slightly steeper gradient in
this area. This denves from the fact that the absolute value of u; @ given by DSM
is lower than that given by ASM at the upstream area of the jet (Fig.11). However,
the results of DSM show slightly poorer agreement with thé experimeiit heré than
does ASM. Generally, the results of all three models show poor agreement with the
experimental results in the areas below and above the jet just after the discharge.
Some comments concerning theseé poor agreements are given in Appendix 7.

5.3 Distribution of turbulent energy k (Fig.4)

In the area just after the jet discharge, where all three turbulence models predict
steep gradients of velocity and temperature, the predicted values of k given by ASM
and DSM are larger than those given by k — ¢ EVM. However, in the downstream
region of the jet, the values of the two Second Moment Closure models are to the
contrary smaller than those of k — & EVM. This is due to the fact that the Second

o
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Moment Closure models _predict Reymnolds stress (uu;) more accurately, smce they are
not based on 1sotrop1c eddy viscosity 'and consequently predict the value of kinetic
energy generation by mean shear P, more accurately than does k— ¢ EVM. The values
predicted by DSM generally tend to be a little larger than the experimental data.
Some comments cénceming this difference are given in Appendix 8.

e
¢
0481 E G : % A
= = _ . asn 390
=T, »
oies 000 0 008 s =
= e S
(1) DSM (2) ASM (3) k- € EVM
Figure 7 Comparison of generation term of k (P\)
(1-a) (2-a) G, (3-2a) uur
[-E-h b ] 00«1 2020
\m / 0032 éh \cm b}
o /
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0016 a0 ooy °
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(1111 0.022 006
0016 005
005 a2z pon
—]
(2i=d)_ u,u,

F/(o'im;d).. u.l.l:

(1) .DSM

(2) ASM

(3) k~ € EVM

.+ Figure 8 Comparison of Reynolds stress ru,
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5.4 Distribution of P, (Fig.7) ;

The values of P. given by the two. Second Moment Closure models become larger
in the area near the supply opening and smaller in the downstream area compared
with those given by, k — ¢ EVM. Comparing DSM and ASM, the value of P, given by.
DSM is a little smaller in the area near the supply opening:and a little larger in
the downward area. These differences are caused by the differences in uu, between
DSM and ASM, as is explained in the following section.

5.5 Distribution of Reynolds stress m (Fig.8)

In the distributions given by both DSM and ASM, the anisotropic- property of
normal stresses uu is reproduced very well, as is shown in Fig 8 The value of:
uu, becomes about two times larger than wu, and uu, in the case of the Second
Moment Closure models, while k — ¢ EVM fails to reproduce this anisotropic property.
Fig. 9 illustrates the difference between the Second Moment Closure model and k ~ ¢
EVM in the evaluation of uu, Comparing DSM and ASM, the absolute values of each
component of Eﬁ'. given by DSM are generally smaller in the area near the supply

(k- £ EVM) Rl ?‘:’;;f‘_.c_“j;fe_ _“l‘id;‘r’ _______________ .
r-----ag-- p- :P.. - -2( = +u¢u,—+ wu ) < Production of U} !
EU=-3"-67+ 2 'P -2(uu—+uﬁj—'+ﬁau)‘=Product|on of ul :
: ! k-4 1 laLxI laxau ? ngxj‘ + 2 :

-— TR Joedet BT ot i u!
| P a{g g+ ) = Producton of |
1 ‘ .
I [0 F | 1 v |
-u‘—u;hu, ! i ox,’ B, S predominant |
) iin region of jet mixing layer,
: Apparent isotropic;,  —e-STooaTo it
1 . .
: result is given, : P..»P,, Pu|
] reflecting large ! “";"'
| value of k : i ud,u

Figure 9 Difference of evaluation of uu, between k — &¢ EVM and Second Moment Closure model

= = —— — =
,(l—s§'~c{.+0.. fga Q{_r—b} —Cu+ Dy g_’v )(l-c) —Cn+Du =

3 -0112

(1) DSM

(2=c) =Cu+Dy

=-015)

P
(2-2)” =Ci + D J

(2) ASM

Figure 10 Comparison of convection and diffusion term in uu,~ equation ; — C;+D,
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opening and larger in the downstream area. This is attributable to the fact that DSM
evaluates convection and diffusion terms in the uwu,-equation moré: accurately than
does “ASM. In the  modeling -of ASM, it is assumed that the flowfield in concern is
almost in the state of local equilibrium i.e. the convective and diffusive effect is
small, so the convective and diffusive transport of the second moment quantities could
be evaluated proportionally to that of turbulence energy which ‘is equal to the
imbalance between turbulence energy production and dissipation. Consequently, the
distribution of uuw; given by ASM is determined mainly by the production and
pressure- strain correlation terms (see Appendix 3, Eq.®). In this context, the
distributions of uu; in ASM are influenced too strongly by the evaluation of the
production term. On the other hand, in the case of DSM, the distribution of uy; has
a larger value at the ceriterline of the jet in the downstream area compared with
ASM because the’ uwu; generated just after the jet discharge is transported to the
downstream region by the accurately predicted convective and diffusive terms. This
is illustrated in Fig. 10 where the convection and diffusion terms in the wu;-equation
predicted by the two Second Moment Closure models are shown. Obviously, DSM
predicts the effect of convection and diffusion to be more active in the ‘downstream
area than does ASM. Therefore the amount of uw; generated just after the jet
discharge is transported further downward in the case of DSM.

5.6 Distribution of turbulent heat flux u, (Fig.11)

The difference of u; @ between the two Second Moment Closure models and k — &
EVM -is very large. In particular, the difference for streamwise heat flux wao is
remarkable. The value of u, @ predicted by k — e EVM is much smaller than the
results given by both DSM and ASM. Since u, 8 is calculated with — v/0,°88/3x, in
the case of k— € EVM, and 88/x, is rather small in this flowfield, the predicted value
of u, @ naturally becomes small. However, in the case of Second Moment Closure
models, all terms of generation by temperature gradient P., y and velocity gradient
Pie @ are evaluated exactly:

(1) DSM (2) ASM (3)k— € EVM

Figure 11 éomparison of turbulent heat flux, uf
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—00 —3d8 —38

Pwu:"‘ula X Uluzax l-ll\-ha)h ’ (34)
A i A U Ry A
P =—-uf 6 X, zgaxz ﬁax’. ‘ (35)

Hence, the contribution of the predominant term of the temperature gradient?d©/dx,
and the predominant term of the velocity gradient dU,/dx; to the production of u, 8
is reflected correctly. Thus the value of u, @ given by the second moment closure
models becomes large. Comparing DSM and ASM in the same way as was done above
in the analysis of uy;, the absolute values of each component of w6 given by DSM
are also smaller in the area near the supply opening and larger in the downstream
area compared with those ngen by ASM, because the evaluation ‘of the convection
and diffusion process is @ —ﬁmo..
more accurate in DSM
than in ASM ( cf.
Appendix 3 Eq.).

The convection and
diffusion terms! in the
U 0 - equation ‘predicted
by DSM and ASM are
shown in Fig. 12. Here,
DSM predicts the effect
of convection and
diffusion to be more
active, in particular in
the u,6 component in the

'Té"_‘b;“ =Lse+ Dss ‘

.
—

DB g

downstream area of the (1) DSM (2) ASM

jet, than does ASM. Figure 12 Comparison of convection and difusion for ub; ~ Co +D, 4

6. Conclusions

A three-dimensional anisotropic flowfield with buoyancy is analyzed by k- £ EVM,
ASM and DSM and the numerical results are then compared with the experimental
ones.

(@D The predicted distribution of U, given by DSM has the best agreement with the
experiment among the three models used here.

@The numerical results of € given by DSM and ASM have better ag'reement with
the experiment at the center of the jet than does k — & EVM.

@The anisotropic property of uy; in the jet region is well reproduced by DSM and
ASM, while k — £ EVM reproduces nothing of this characteristic.

@The difference in uf predicted by the Second Moment Closure models and k — &
EVM, in particular the difference in streamwise heat flux u,6, is remarkable; because
k — e EVM does not include the contributions of the predominant terms of the velocity
and temperature gradients.

®Values of second moment quantities, i. e. Gy, , v, 6 , predicted by DSM have larger
peak values in the downstream area compared with ASM.
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Appendix 1 .

The equations in Table 1 are not expressed in dimensionless form. For example, the
buoyancy term (—g- 8- ©) is expressed as (Ar-: ©’) by normalization. Here ©° is
the dimensionless temperature.

Appendix 2 : ) I ,

&% is not involved.in this calculation. This is because the Gibson— Launder (1978)
model of @Y« which is most common at present, appears to have some shortcomings
in the analysis of a flowfield; with impinging [5]. The reason is as follows.

Let us imagine a situation of impinging in which a mean flow (U,) attacks the
opposite wall existing in a x.— X, perpendicular plane. In this situation, ®f« may be
represented in the following manner :

‘D'i'lm=2CzCz'(Pn"2/3pn)'f|.
Oh = Qo =-CLS (P:,—2/3P.) fi
Here - B
Si= k“”/(C ce-h)). . ;

@Y is the term that should decrease U} according to its original definition, since
O is the -normal perpendicular to a wall. Thus, in this case, (P,—2/3P,) must be
negative. However; on the- centerline of the impinging jet, P, is large. Therefore, it
does not take a negative value. Hence in this model, ®¢ works to increase ul,
contrary to its origmal meaning. As a matter of fact, when @7 is involved in the
calculations, the normal stress perpendicular to the rwall becomes excessively large
near the exhaust opening and the solution diverges..

Recently T. J. Craft and B. E. Launder have proposed a new model of @, which
is applicable to an impinging region [13] [14].

Appendix 3 ,

In the formulation of ASM, the convection term Cy and the diffusion term Dy which
include derivatives of uu; and u; @ are expressed in a simplified way as shown in
Eqs.® and @ following the method of Rodi (1976) [4] and Gibson and Launder (1976)
[5.

G-D=22C-D).  ®© CoDo= 2 (-(G-DI+ :C-DY). @
As 07 is not calculated in this study, we use the following instead of @
SRR S S ®
Appendix 4

The & equation is so revised that an expression of the buoyancy generation/
destruction term is switched according to the locally determined thermal instability,
following the method proposed by Viollet (1986), as follows. When G. >0, C,=Ci=1.
44, and when Gy =0, C;=0 ar

Appendix 5
The formulatiori for the standard k — ¢ EVM is as follows H
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— 8U, au, T oyl
:I;:,- v.( +6r.)+ Sk @ - :Zﬁ—-o—o_a—r-i. PR '®
-D"‘Dx"‘ Po"‘Gl"’E. © » D_EI_D + (C.|P.+C.JG. CIzE), @
a Yy ﬁ 6 V(ﬁ
D 6:&?. ox; D= 9z, 0, 0z, ®
y.wC.?, © 6::1.0'0,:1.0 0,:1.3 C,:0.09.
Appendix 6
A diffusion equation with convection can be expressed generally in the form :
op .. 0 3% .
ot Uax = o : @

where a means a positive diffusivity of ¢ and U, is a convective velocity. This type
of equation can be solved numerically without instability if we select an appropriate
time step and an' appropriate mesh system. However, the momentum equation in thc
DSM calculation is expressed as follows (Eq.(2)),

ou; ou, P —
A UG T e e 2.

The turbulent diffusion term of this equation (d(-uw)/dx,) is not expressed
apparently as a form of a second derivative of U, ,(ad?U/dx?), the gradient diffusion
form. Therefore, Eq.® is not necessarily stable for the numerical integration.

The pseud viscosity method introduces the second derivative of U with positive
coefficient into the turbulent diffusion term in Eq.®. using the mean velocity gradient
involved in the production term of wu;-equation (Eq.(15)).

The uu;-equation in steady state can be written as follows

Ci-Dy=P, +®,—¢; . ©

In the terms C;, Dy and ®;, Uy, is included, defined at the center of a calculating
control volume (cell). Here, we decompose these terms as shown in Eq.@ so that each
coefficient such as Ac becomes positive.

C=Ci+Acruy,,  Di=D; - Ap'um, , ©,= @} - Avuiy, , @
where * denotes the remainder of each. term. ‘

With Eq.@, Eq.© becomes

(Ac+ Ao +A) U, =Py + O; +D; - Cf —¢ . ®
Consequently, uu; can be written in the form :
U-Ui‘=m‘(?u+¢n +Di = CJ ~¢q). ®

Since P; involves the mean velocity gradient (3U/dx,) as shown in Eq.(15). (only
selecting k=j component in -uu,dU/dx,), Eq.(D can be rewritten as follows, where the
velocity gradient (9U/dx;) in P, is separated from the other terms.

— 1
B At ActA,
where we have no summation. in . —u,u,t?U./Bx. for suffix j and Se ‘mearns the
remainders . Substituting Eq.® into Eq.®), it becomes g )
gg+ dU__ 6P 3 uw U _ " Se i e
' ox; G% 0%, ActAsth, 0%, T ActAA, " g :

where the coefflclent in the second derivative of U, in the diffusion term, uu,/ (A.
+ Ao + Ac) is always positive because normal stress uu - is always - positive. This
coefficient is called pseud viscosity. The term Se/(A++ Ap+ Ac) is treated.in the same-

(-ﬁ%+5e) ; ®
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manner with source term. This formulation is similar to the diffusion equation ®.
Hence we can expect numerical stability 'in the calculation of Eq.® which does not
include the second Qerivativen, with a positive coefficient (@d?U/dx?) in its.original form.

Appendix 7

Since the jet is discharged into stagnant air, the air velocity is almost zero in the
area above and below the jet just after discharge, as shown in Figures 2 and 4. The
agreement between the experiment and the numerical simulation for the temperature
distribution is poor in this area. The reason for the disagreement may be explained
as follows : ; s

1. Since the air velocxty is very low in such areas, the slow secondary flows caused
by disturbances to the experimental conditions become rather effective, giving rise to
uncertainty in the experimental results. The realization of a strictly controlled
experimental condition is very difficult for such types of flow and temperature fields.

2. Although the turbulence models are based on the assumption that the flow field
is fully turbulent, the Reynolds number in this. area is rather low and not fully
turbulent. -

3. There is some possibility that the simulation has not yet reached a sufficiently
steady state.

Appendxx 8 =l :

The average length of the anemometer is rather large (5cm) and the values of k
are averaged within this length-in the experiment. Here there is some possibility that
it fails to pick up small fluctuations. This might be' one reason why the value
predicted by DSM is generally larger: than the experimental data.
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