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SUùfNIARY

A three dimensional nonisothermal jet in a room is analyzed numerically by the

standard k - e EVM (Eddy Viscosity Model) and two Second Moment Closure Models,

i.e. Algebraic Stress Model (ASM) (Hossain qnd Rodi (1982)) and Differentlal Stress

Model (DSM) (Launder, Reece and Rodi (1975)). Numerical results given bv these

turbulence models are compared with experimental ones and the prediction errors

existing in the results are examined, thus clarifying the relative stn¡ctural differences

between k- e EVM and two Second Moment Closure Models. Since the Second Moment

Closure Models clearly manifest the turbulence structures of the flowfield, they are

more accurate than k - e EVM. A small difference between DSM and ASM is also

ohserved, one based on an inappropriate approximation for the convection and

diffusion terms in the Reynolds stress transport equations in ASM.
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l.Introduction

It is self - evident that accurate prediction of room airflow and temperature
distribution is required for rational design of indoor air climate in a room. A Sreat
deal of effort has been devoted to advancing numerical prediction techniques for
airflow in rooms. The standard k- e Eddy Viscosity Model (k- eEVM) [l] has made

many contributions to simulating room airflow with a certain deg¡ee of accuracy [2].
However, since the k-eEVM is based on the concept of locally determined isotropic
eddy viscosity assuming the simple gradient transport hypothesis, this model is not

so efficient in flowfields where the Reynolds stresscs (- u¡r) and heat flux (i,á) are

significantly anisotropic. Yet such flowfields which include recirculation, supply or

exhaust openings or with buoyancy effect are often obscrved in a room.

On the other hand, Second Moment Closure models, which do not use the concept

of eddy viscosity and gradient transport hypothesis, i.e. DSM [3] or ASM [4], do not
suffer from the many problems which originate from the gradient transport model.

The Algebraic Stress Model (ASM) t4l tSl t6l, which is one of the Scrond Moment

Closure models, has been proved to be a more accurate turbulence model than the

k- e EVM t7l t8l. However, it is also pointed out that the approximation of
convection and diffusion terms in the Ñ transport equation is inappropriate in a

complex flowfield [9].
ln this paper, a nonisothermal jet in an enclosed space is analyzed by the standard

k- e EVM, ASM and DSM [3] [10], focusing particularly on the anisotropic prop€rty

of the flowfield and on the convections and diffusions of second moment quantities

in turbulent statistics like uTq or F. The structural differences among the three

turbulence models are then examined in detail.

2. IVIodcl flowfield

The configuration of the enclosed space or room model used here is shown in Fig.

l. A cold jet is discharged in the center of the left-hand wall. The right-hand wall,

with an exhaust opening at eâch corner, is heated. The dimensions of the model are

shown in Fig.l. The Archimedes number of the supply jet is 0.016.
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30 ..

O Values ar€ made dimensionless by
L (one.. side ol. supply or exhaust opening). 

_

Un (velöcity át'supply opening).
A8o (temparature diffeience between exhaust and
supply).

Oln the experiment. Ud=tomis, L=0,O4m, AQ=122I.
Consequently at the supply openinB.

Archimedes r.ru.u".,r,- -s"1ù3P.'L - o oro,

and Reynolds number R = 2.7 x lC.
The scsle of the enclosed space usd for
experiment : l.2m(xJx08m(x)x08m(xJ.

O In the numerical simulation, ¡t is assumed thât
L-U.-ôA- | 0. Thus .{.=_s!.p and
À is given the såme value as in the exper¡menl,
0.016.
gr is detined to be neSative in th¡s Þaperr

x 1.0)
N
O

supply
of cold

(1.0 x

Fig.I Spacc Model tor tlow!îelil |9ith buo)anc!

Table I Basic Equations of Differential Stress Model

(Continuity eo.l ff-O
(Momcntum r'.) o# - - ì#,-* u,*

^,..(u,u,-Eq.) !-Du+Pn+@u+Cn-¿,

(c-Eq.) Dfi -o,*irc.t,,c,ß,-c,*l
(e-Eq.) # -*,,-"u

n.a
(uf -Eq.) "ff - D.+ P-"+ Pa+ O"+ G.

(er-Eq.) ffi -o,,r,-2.,,
t-

h - iu,u, (8) p,-;p.

c,-þ. oo) 0,,-ftctt.,,{"øl

(r) G" - -s:Ê.d (zo) ,"- l.a*
(21 @¡ - O"u + O.n + 6- +O.,"+(È*

(3) o",,--c,lø",-taAøt o,,,"--c,tP"-36,p,t

(4) o!,:-c,t;.-+6,ß,t est

(5) . aË.,, = t c,'å(ä. nr'. n:,. a" - li/,.ni. ni.

QD

t22t

(24t

D,-

D.-

_ _óro
OI,

-AP, --2'uß?
ort

A .^-ôc.
-(LJ-U,-)ot. ort
a.^-ae,.

'^-(L¿J,:-,
oz. ort Oqn - -CJ.

_ r!*,.nrrnrr,eh
c- - ! c,'(o-,. n,-. r.-.0,,- f o.-'2,-.h,-

-lø,^.n:"t.,it.{**
Oá -Or',+O.i+OÐ+Oi,,

@,^,¡- -C.,i-uô o-'l'-c-¿-
â 

-â:ttzt Dt-fi¡.{ca.u,þ,uñ

(r4) P.--t,e!-*,YÈ, ort

(t6) ,---úu#,
(r8) G.--iõ.0,.þ-iÃ.c¡ß tts)

(6)

0)

€)

0t)

03)

05)

(l7)

(29)

(3r)

(26)

Q7t

QBl

(30)

(32)
Èn

o||, = t C-'i.uß.¡.-'.n,-.*-jt R L..¡¿

,, -*T, (B)

Table 2 Numerical Constants in Second Moment Closure Model

C' : 1.8 C¡ : 0.6 C. : 0.6 C,' : 0.5 C,' : 0.0 C, : O.22 C

C,' : 1.44 (when G.>0) 0.0 (when G,SO) C,: O.lS C,¡r

C,¡,' : 0.5 R : 0.8 C. : 0.15 Ç : 2.5

r -Q.16 C,., : .1.44 C,¿ : 1.92

3.0 G¡, : 0.5 G," : 0.3

3. Outline of numerical mcthod

The commonlv sdoptd formulation for DSM [3] [8] utilizes the equations shown in
Table I (cf. Appendix I and 2). The formulation for ASM uses approximatiàns for the
convection and diffusion terms in u--r¡-equation (Eq.(3)) and ilã--equation (Eq. (8))
in the formulation of DsM (cf. appendix 3). Density fluctuation is neglected except
in the buoyancy term (Boussinesq approximation). .

The contribution of the generation by buoyancy effect to the transport equation of
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Nomenclature

p, - avenge velæity cdmponênt in ,¡ d¡tætioiì

U" = velæity ât suDply opening

-[1¡- = fi¡ynolds stres component

u - lluctuating velæitt-êomponent in i dimtion
L - lensth of one side'of supply or exhâGt opening

P = aveGge pßuE
C, - convætiòn tem of u-u, ' D, - diffusion tem óf üu,-

P, - generation mie of Ñ due to velæity Bradient Gr - geneËtion mte of -iõ due to bouyancy eflæt

ê ¡ = disipation mte of U-r.¡, Où - preSup - Stm¡n Coælation tem
k = turbulent kinetic energy C, = convætion tcm o[ k
P, - genemtion rate of ù due to vplæity gÊdient A - ditfusion tem of : k

G. = gêneration nte of k due lo bouyåncy effæt ¿ - dissipation nte of k
e E aveÉge value of tempeÊtuæ A - fluctution of temD€nture';.:
ôe. = tempe6ture diffeence b€twæn exha6t and supply g - gnvitatioml æleration in i dimtion

F - turbulent heat flux in i direction q.'ænvætion tcm of ilá
D. -diffusion tem of F P,. -B€nention mte of ilã
G,. = gcnerat¡on nte of ffi due to buoyancy effect O,.- corelation tem of pEsure and slar f,rad¡ent

T = mean square of salar lluctut¡on C. - convætion tcm of -F

D. = diffusion tem of F P. = Epneration nte ol -F

¿. =disipation n¡eolll/2 À -ArchimedesNumber(=-9,.p.4ê..U{UJ')
R. -fi¿ynolds numbcr at supply op€ning(ru.'t /v) tf'-vertiel distaßæ trcm the w-th wall

ot -tui¡uteni Päirdtl-number for k o. -turbulent Pmnátt numuer fói I
R = t¡me scale ntio < (T/Ð / ¿,1/(k/ e) v, -eddy vtsæity
Supeeripts
' 

-' - averaging opcråtion 'wo' - totål numb€r of boundåries which enclæ
'(w)' - the w - th wall each re8ion

Sub*ripts
i. j, k - spatial cæ¡dimte indies I : steämwie diGtion (þt dishargins diElion)

2 : lateæl dimtion 3 : vertiel d¡Ëtion. i'

Values aæ rude dimensionles by L U. and AO" (cf Appêndix l)

Table 3 Boundary Conditions (expressed by dimensionless value)

(Boundary at suDply oDen¡ns) U"- f.0 iG-0.ætZ e -0,325 €"-0.0 Ñ-O.O
(Boundary at exhaut opening) Uø - 0.25 Ñ, ¿, € : fæ slip condition Ñ - O.O

(Wall boundary) The wall shear st6 r, is given by eqution(D, following låunder ud Spalding (1974).

Velæity Srad¡ent at the wall is given by eqution@. which is uscd to calculate the lpnemtion
tem at the íear - wall node. The value of r at the near - wall node Ed for the tmNgori equåt¡on

for noffil stEss is cxpEss€d by Êqustion O as a fom avrngld in å contrcl - volume md delined

æ 7. The value of noml stGss ¡t the wall is giwn by fÊ slip ændition. The velue ol 6 åt the

near - wall node ed for the tmEport equation ol ¿ is defined by cquation@.

,,-ol.t,".-r.,ltesryl o {t*øff}1,-=.ro ø

i-ffirrlT#l @ '''#*uo @

Heat itux at heåted wall : u7--00025. Heat llux at other wålh FÍ-0.0.
ß-0.4. c.-0.09, E-9.0, y - l/R - yl¿Txt0'¡. v, - c-k / c

Table'¡h-Grids and Schemes for calculation

The æmputåtioml domåin is discæti2ed æ 35(xJx22(rJx&lhJ.

One s¡de of lhe $pply ¡nd Gxha$t oæn¡n8s is divided into 4 grids Minimum ¡rid size is 0.25 and ruximum

is ¡.0.

One-hatf the sÞafp¡uì;tÀe x' dimtion is ølculated, oroidering the symmetricâl groperty of the flowfield

The,ænvect¡on t€m of all quåntiti6 is caþulat€d by mrß of thc QlJlCK schere, 
"xept 

for the ¡æa just mund
tne slltptv 

"ni 
.ri**i 'iip.iings wherc tìe first-order upwind scheme is used

Thi ¡pnemtion oflã due to? wæ not æsidercd, becau thh Sien€mtion wäs .stimted through DrcI¡mimrv

smlysis to be mùch snrtller than the çmntion due to volocity 8rådþnt or tcm9eEtuæ Sndient. Cons€qunt¡v,

elculatioß for -F ¡nd r . re not mde
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e (Eq.4) is taken..into account, following the method proposed by viollet (19g6) tlìl
(see Appendix 4). The standard k - e EVM is shown in Appendix 5.

Table 2 shows the various numerical constants used in the model, which follow
those proposed by Launder, Reece, Rodi (l9ZS) [3] and Launder (19g3) [10]. The
boundary conditions are shown in Table 3. Table 4 denotcs grids and schemes.for
calculation. 

- i

In order to stabilize the numerièal integration of momentum and ternperature
transport equations (Eqs.(2) and (5)), we have introduced the pseud viscosity method
proposed by Huang and Leschziner (198b) [I2] (Appendix 6).

A wall boundary using wall function is adopted, following Launder and Spalding
(1974) [l]. At the heated wall on the right-hand side, the value of the heat flux is
given as a boundary condition.

Grid discretization is 35 (x,) x22 (xr) x s4 (x¡). Here x¡ denotes the horizontal
direction of je-t--lischarge and x3 mea-ns the vertical direction. one-half of the space
in the xz direclion is analyzed, consideringi the symmetrical property of the flowfield.

A stpggered grid system is adopted. For the transport equations of all quantities,
a second-order upwind scheme (the eUICK scheme) is applied for the convection
terms. The Adams- Bashforth scheme is used for time marching. The numerical
integration is conducted following the ABMAC method (simultaneous iteration method
for pressure and velocity).

4. Outline of model expcriment

The scale of the model used in the experiment is l.2m (x,) x O.gm (xr) x O.gm (x¡),
as shown in Fie.l. The outside of the model is thermally insulated.

The accurate measurement of air velocity in a 3-D nonisot\ermal-flowfield,is very
difficult. Average velocity is measured with a thermistor anemometer... in ihis
experiment. A 3 - D ultrasonic anemometer of 5cm span is utilized for flúctuating
velocity. one shortcoming of the latter anemometer is the wideness of the averaging
length (Scm), thus the values of u--r,", k etc. are given as the average for scm.
Therefore the measuring space-intervals of thcise quantities a¡! of necessity much
larger than those of average velocity or temperature, as shown in Figs.4, s and 6.

Temperature is measured by c" - c" thermocouples. The heat sen;lãtion rate at iire'
right-hand heating wall is measured by an electronic power meter.

fr

5. Results and discussion

5.1 Distribution of mcan velociþ Ur (Figs.2,5)
The distributions of scalar velocitv fIr¡'+Ui-E) and velocity vector at the central

vertical section áre illustrated in Figs. 2 and S. :

Above tàe centerline of the jet, the vertical temperature g¡adient is positive and the
flow is rather stable. Below the centerline, the temperature gradient is negative and
the flow is unstable to some degree. From this point of view, the velocity value in
the area around the center of the jet is very important. In this area the values given
by k - ¿ EVM a¡e generally larger than those g:iven by the otherrSecond Moment
Closure models. This tendency corresponds to the srnaller values of Reynolds stress
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x,=2.5 7.5 12.5 17.5 22.5 27.5

Figure 5 Distrihut¿on olvclocity vcctors
(result ol DSM at centet section).
supply vclæity 

-

Fìgurc 6 Dßtribution of temperaturc A
(result ol DSM at ccntcr secrion)

given by k - e EVM in comparison with those given by ASM and DSM. This
inadequate lower level of thd Reynolds stress implies insufficient diffusion of the
mean momentum, which gives rise to larger mean velocities at the centerline. In the
area just after the jet discharge, the values given by DSM are a little higher than
those given by ASM. However in the downstream region, the centerline speed of the
cold jet given by DSM has lower values than does ASM. The position of the peak
speed observed in DSM is located lower in the xr direction than in ASM, that-is, the
jet predicted by DSM drops faster than does that predicted by ASM. The agreement
between DSM and the experiment is the best among the three models. This is
attributable to the fact that the evaluation of ñ in the momentum equáiion given
by DSM is more accurate than those given by the two other models:'A comparison
of u,u¡ of these models is described below in S 5.S.

5.2 Distribution of mean tempcrature O (Fies.3, G),r
The temperature distributions at the area around the center of the jet are aìso very

important. Except for the area just after the jet discharge, the distributions given by
both AsM and DSM generally show less steep gradients than those given by k - e

EVM' This tendency is caused by the difference in the evaluation of the turbulent
heat flux ffi-. since ASM and DSM predict larger values of ülã- than does k - e EVM
(Fis.ll), the diffusion of the temperature difference around the center of the jet in
the case of ASM and DSM is more active than that given by k - e EVM.

There is little difference between ASM and DSM. However, if we are forced to
compare them, the distribution given by DSM shows a slightly steeper gradient in i

this area. This derives from the fact that the absolute value of ilã- gi.'en by DSM
is lower than that given by ASM at the upstream area of the jet (Fig.ll). Hóïevér,
the results of DSM show slightly poorer agreement with thê'exirerimeät heiè than
docs ASM. Generally, the results of all three models show poor agreement with the
experimental results in the areas below and above the jet just afte¡ the discharge.
Some comments concerning thesé poor ag¡eements are given in Appendix Z.

5.3 Distribution of turbulent energy k (Fig.4)
In the area just after the jet discharge, where all three turbulence models predict

steep gradients of velocity and temperature, the predicted values of k given by ASM
and DSM are larger than those given by k - e EVM. However, in the downstream
region of the jet, the values of the two second Moment closure models are to the
contrary smaller than those of k - e EVM. This is due to the fact that the second
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Moment Closu¡.g mode-lp--pçediçt Reynolds stress (u--q) more accurately, sirtce they are

not based on isòtroþic-eddy viscosity'and consequently prcdict the value of kinetic
cnergy generation by mean shear P. more accurately than does k-eEVlr4. The values
predicted by DSM geqerally tend to be a little largcr than the experimental data.

Some comments concerning this difference are given in Appendix 8.

Qo-
(1) DStl ì (2) ASH

Figure 7 Comporison ol generotion term oJ k (P)
(3) k- ¿, EvH

(t - a)

(l -b) ñ

(2-a) ñ

q032

(2 - c) u'u,

qo22

(3-a) ä

A

(3-b) æ
'6

o

(3-c) il(1 -c) iñ

(2) ASM

, , Figùte I Comparison o/ReJnolds sr¡ess u¡u,

(2-b) u;;

_.d)_ ¡U¡

(r).DsM (3) k- e EVM
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5.4 Distribution of P- (Fig.?)
The values of P. given by the two, second Moment closure models become larger:

in the area near the supply opening and smaller in the downstream area compared
with those given by.k- e EVM. comparing DSM and ASlr4, the value of p¡ given by,
DSM is a little smaller in the area near the supply opening, and a little larger in
the dorvnward area. These differences are caused by the differences in u--t¡, between
DSM and ASlv'f, as is explained in the following section.

5.5 Distribution of Reynolds stress iil (Fis.g)
In the distributions given by both DSM and ASM, the anisotropic property of

normal stresses uiui is reproduced very well, as is shown in Fig g. The value of,
urur t)ecomes about two times larger than [D and u¡u¡- in the case of the Second
Moment closure models, while k - e EVM fails to reproduce this anisotropic property.
Fig. 9 illustrates the difference bctween the Second Moment closr¡re model and k - e
EVM in the evaluation of ñ. Comparing DSM and ASM, the absolute values of each
component of r¡u¡ given by DSM are generally smaller in the area near thc supply

(k - ¿ EvM) (Second Moment Closure model)

r---
iuï--
I

lG=-
I

¡ui--
I

: - _¿rl
iP, ñH) eProducrion of li

it" ""!{) -r'"aucrion or ii
lP" -E#) -pr"¿uction of Ii

--i---=-----
t r

r ui+ulèui ;
ll

I Apparent isotropicl

I result is given, i

I reflectins tarse 
i

I value of k i

fril-;.|'l.l
___t___
i¡i>ui.nti

tn

Figurc 9 Ditlcrcncc o! cvoluation ol fi1 b¿tw¿¿n k- ê. EyM ond SccondMomcntClosur¿ móàel

(r) DsM

(2) ASM

Figurc I0 Conparison ol convcclion and diflusioa tcn in upr- ¿qualion ; - C¡+D,

+ (l -c-+D-

(2 - a)- +o Q-br +O.
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op€ning and larger in the downstream area. This is attributable to the fact that DSM

evaluates convection and diffusion terms in the Ñ-equation morè accurately than

does'ASM. In the,modeling,of ASM, it is assumed that the flowfield in concern is

almost in the state of local equilibrium i.e. the convcctive and diffusive effect is

small, só the convective and diffusive transport of'the second moment quantitiês could

be evaluated proportionally to that of turbulencé energy which 'is equal to thê

imbalance between turbulence energy production and dissipation. Consequently, the

distribution of u--ui given by ASM is determined mainly by the production and

pressure - strain correlation terms ( see Appendix 3 , Eq . O) . In this context, the

distributions of u--r-l in ASM are influenced too strongly by the evaluation of the

production term. On the other hand, in the case of DSM, the distribution of u,u¡ has

a larger value át the ceriterline of the jet in the downstream area comþared with
ASM because the.''ur-r¡ geherated just after the jet discharge is transportd.C to the

downstream region by the accurately predicted convective and diffusive terms. This

is illustrated in Fig. l0 where the convection and diffusion teirns in the Ñ-equation
predicted by the two Second Moment Closure models are shown. Obviously, DSM

predicts the effect of convection and diffusion to be more active in the'downstream

area than does ASM. Therefore the amount of Ñ generated just after the jet

discharge is transported further downward in the case of DSM.

5.6 Distribution of turbulent heat flux u,0 (Fig.ll)
The difference of ffi between the two Second Moment Closure models and k - e

EVM 'is very large. In particular, the difference for streamwise heat flux iñã is

remarkable. The value of ilã- predicted by k - e EVM is much smaller than the

results given by both DSM and ASM. Since üu7- is calculated with - vJor'ôAlôx, in
the case of k - e EVM, and dØlôx' is rather small in this flowfield, the predicted value

of ilã- naturally becomes qnatl. However, in the case of Second Moment Closure

models, all terms of generation by temperature gtadient Prc ru âIìd velocity gradient

Prr ar 8r€ evaluated exactly:

, (2)AsM _(3)b-¿EVM
Figurc lI Comporison oflurbut¿nt heat tlur, u0

(2-b) uJ

o.or: s.\

uJ

(t) DsM
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-de -ôgtlruz'ï - UrU¡-- .OXz dxl

p,*,=-ftP-æ$¡-;¡9.
OXr OXz dX¡

Hence, the contribution of the predominant term of thc temperature gradientôOlôx"
and the predominant term of the velocity gradient dU,/dx. to the production of üF
is reflected correctly. Thus the value of F siven by the second moment closure
models becomes large. comparing DSM and ASM in the same \À¡ay as was done above
in the analysis of G, the absolute values of each component of [ã given by DSM
are also smaller in the area near the supply opening and larger in the dorvnstream
area compared with those given by ASM, because the evaluation of the convection
and diffusion process is
more accurate in DSM

than in ASM ( cf .

Appcndix 3 Eq.@).

The convection and

diffusion termsL in the
ffi- equatio¡ .predicted

by DSM and ASM are
shorvn in Fig. 12. Here,

DSM predicts the effect
of convection and
diffusion to b€ more
active, in particular in
the u,9 component in the
downstream area of the g)DSM (2)AsM
jet' than does ASM' 

Figurc 12 comparison o! convcction and dilusion lor îþ; - c, 
" 

+D, u

6. Conclusions

A three-dimensional anisotropic flowfield With buoyancy is analyzed by k- e EVM,
ASM and DSM and the numerical results are then compared with the experimental
Ones. i

OThe predicted distribution of U¡ given by DSM has the best aereement with the
experiment among the three models used here.

@The numerical results of € given by DSM and ASM have better a8Teement with
the experiment at the center of the jet than does k - e EVM.

@The anisotropic property of ñ in the jet region is well reproduced by DSM and
ASM, while k - e EVM reproduces nothing of this characteristic.

@The difference in u_0 predicted by the Second Moment closure models and k - €

EVM, in particular the difference in streamwise heat flux il0-, is remarkable; because
k - e EVM does not include the contributions of the predominant terms of the velocity
and temperature gradients.

@Values of second moment quantities, i. e. il , ilã-, prcdicted by DSM have largèr
peak values in the downstream area comparcd with ASM.

Pq -ð8uí-
dxt

(34)

(35)

(2-
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? +
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Appendix I
The equations in Table I are not expressed in dimensionless form. For example, the

buoyancy term (- c,' 9'e) is expressed as (Ar'ê') bv normalization. Here ê' is

the dimensionless temperature.

Appendix 2 : :' I

Oírzr is not involved.in this calculation. This is because the Gibson'-I^aunder (1978)

model of rDilp¡,,which is most common at present. appcars to have some shortcomings

in the analysis of a florvfield;with impinging [5]. The reason is as follows.

Let us imagine a situation of impinging in which a mcan flqw (U') attacks the

opppsite wall existing in a xz-xg p€rpendicular plane. In this situation, Oir¿r maY be

represented in the followirlg manner :

Qin= 2C zC i P 
',-2/3P,)'f 

, ,

Oi,¿ = @9,, = -C,C i (P,,-2/3P,\. ! r
Here '" 1 

.l
l,=k"'l(C;c'h,). ' 1 )

<Dior is the term that should decrease üT according to its original definition, sincc

üT is the.noriial perpendieular to a wall. Thus, in this case, (P,,-213P,) must be

negative. H<¡wever; on the- centerline of the impinsing jet, Pu is la¡ge. Therefore, it
does not take a rielative value. Hence, in this mùel, Oirzr works to increase üT ,.:
contrary to its oiiginal rneaning. As a matter of fact, when Oiar is involved in the

calculations, the normal sg.f.ess perpendicular to the ¡{all becomes excessivcly large

near the exhaust opening and the solution diverges.
Recently T. J. Craft and B. E. Launder have proposed a new model of Olîrzr, which

is applicable to an impinging region USl [14].

Appendix 3

In the formulation of ASM, the cnnvection term Cu and the diffusion term D¡ which

include derivatives of u--r¡ and F are expressd in a simplified way as shown in
Eqs.@ and Ø following the method of Rodi (1976) [4] and Gibson and l¿under (1976)

t5l.

q-D,=l(c,-D.), o c-o, = f r{1c,- o.¡* }ro- o,)1.

As ?f is not calculated in this study, we use the following instead of @

. j q-p,If,tc_DJ. @

@

Appendix 4

'The e equation is so revised that an expression of the buoyancy generation,/

destn¡ction term is switched according to the locally determined thermal instability,

following the method proposed by Viollet (1986), as follows. When G' ) 0, C¡ = Cr = l.
44, and when Gi5-0, Cs=0 iì!:

Appendix 5

The formùlatiori for the standard k - e EVM is as follows :
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Appendix 6

A diffusion equation with convection can be expressed generally in the form:
ôj i" ôÓ - -õ'Ó
ã¡ 

* u,ôrç- =o drc- @

where a means a positive diffusivity of ó and. u¡ is a convective velocity. This type
of eqtiation can be solved numerically without instability if we select an appropriate
time step and an appropriate mesh system. Flowevcr, the momentum equation in thc
DSM calculation is expressed as follows (Eq.(2)),

ôu, ..du, ôP ô.-
ã[-*u,¡"_=-ô.:*¡;(_u,u,). O

The turbulent diffusion term of this equation (ôt-u¡¡llax,) is not expressed
apparently as a form of a second derivative of, lJ, ,(aôru|ôxÐ, the gradient diffusion
form. Therefore, Eq.(Ð is not necessarily stable for the numerical integration.

The pseud viscosity method introduces the second derivative of U¡ with positive
coefficient into the turbulent diffusion term in Eq.(D, using the mean velocity gradient
involved in the production term of ñ-equation (Eq.(lS)).

The Ñ-equation in steady state can be written as follows
Q,-D¡=P" *Ou-e¡ . @

In the terms Cr , Dr and Ou , ñ is included, defined at the center of a calculating
control volume (cell). Here. we decompose these terms as shown in Eq.(D so that each
coefficient such as Ac t¡ecomes positive.

q=ciî+Ac.üI D¡=D"'-Ao.ñ , ou=çu',-A..8, CD

where * denotes the remainder of each term.
With Eq.(D, Eq.@ becomes

(Ac+Ao+A¡)uu,=Pu+Oi+Df -Cí-cu. @
Consequently, Ñ can be written in the form:

ll.U¡
Ac+Ao+

+Oj+DÍ-C,î-cu). o
Since P¡ involves the mean velocity gradient (ôlJlôx¡) as shown in Eq.(lS). (only

selecting k=j component in -ñ*AU,/ô:a), Eq.Ocan be rerwitten as follorizs, wheiè the
velocity gradient @UJAz.) in Pr¡ is separated from the other terms.

ItrU¡ - ActAo+4" @

where we have no summation,. in -ñ,dulôx¡ for suffix j and se ,means the
remainders . Substituting Eq.@ into Eq.@, it becomes

4*,,,4=-dP*ar ñ au,--:se ':ii
ã=''ãf --fi+fit¡fiffia"-,t -n,*^t ' ù

where the coefficient in the second derivative of ur in the diffusion term, u;u,,/(A.
+AD+Ac) is always positive'because normal stress ñ.is,always,,positive. This
ctÞfficient is called pseud viscosity. The term Se/(Af+Ao+Ac) is treated.in the same.,

"""ff*s"l .



tp7

manner with source term. This formulation is similar to the ditfusion equation @.

Hence we can expect numerical stability''in the calculation of Eq.@ which does not

include the second dgrivative, with a positive coefficient (aô1J'lôxl) in its.original form.

Appendix 7

Since the jet is discharged into stagnant air, the air velocity is almost zero in the

area above and below the jet just after discharge, as shown in Figures 2 and 4. The

ae¡eement between the experiment and the numerical simulation for the temperature

distribution is poor in this area. The reason for the disagreement may be explained

as follows: :': ¡'|¡'i

l. Since the air velocity is very low in such areas, the slorv secondary flows caused

by disturbances to the experimental conditions become rather effective, giving rise to
uncertainty in the experimental results. The realization of a strictly controlled

experimental condition is very difficult for such types of flow and temperature'fields.
2. Although the turbulence models are based on the assumption that the flow field

is fully turbulent, the Reynolds number in this. area is rather low and not fully
turbulent.

3. There is some possibility that the simulation has not yet reached a sufficiently
steady state.

Appendix 8

The average length of the anemometer is rather large (Scm) and the values of k
are averaged within this length.in the experiment. Here there is some possibility that
it fails to pick up small fluctuations. This might be' one reason why the value

predicted by DSM is generally larger: than the experimental data.
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