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SUMMARY

Numerical simulation of air flow patterns in rooms has made considerable progress in
recent years. However, for real applications in rooms, an important problem remains
the accurate prediction of heat flux at the walls. Due to grid resolution, wall functions
have to be used for the correct representation of the boundary conditions. Improved
wall functions allow a better trade-off between reasonable computing time and
accuracy, in particular for 3-dimensional calculations.

New wall functions in conjunction with a low-Reynolds-number k-€ model are
proposed to improve the calculation results. New wall functions are developed for
velocity, temperature, turbulent kinetic energy, and dissipation rate of turbulent kinetic
energy. It is shown that they are valid for a wide range of wall distances.

The model is applied to flat plate cases and to an air-filled closed cavity case. The
comparison of numerical results with experimental data indicates that the new wall
functions can improve the prediction of air flows in the cases considered, and at the
same time, save expensive grid lines.
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NOMENCLATURE

Meaning

a constant in Equation 1

a constant in Equation 1,

specific enthalpy of ﬂuxd _ ‘
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turbulent kinetic energy

dimensionless turbulent kinetic energy k/u,2
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local Reynolds number yuyfv
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turbulence dissipation rate

dimensionless turbulence dissipation rate ve/u?
moelecular viscosity
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turbulent viscosity
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INTRODUCTION

Numerical simulation of air flow patterns within buildings has made considerable
progress in recent years. The computational fluid dynamics (CFD) techniques may be
used to predict air velocity, temperature,-and contaminant concentration distributions as
reviewed by several researchers [1, 2). However, for real apphcanons, an important
problem remains the accurate prediction of heat flux at the walls, since heat transfer is
not only related to the room air mean and wall temperatures but also to the local

temperature and velocity profiles. {

The boundary layer on the walls in rooms is turbulent and the heat transfer is by natural
convection (or forced convection when the supply inlet is close to the wall). As there are
no appropriate wall functions for natural convection when the standard k-€ turbulence
model is applied to room air flows, forced convection wall funcuons, or traditional wall
functions are normally employed. As a result, the predicted heat transfcr is very
sensitive to the computational grid spacing near the wall. The coarse gnd gives too-low
convective heat transfer and vice-versa, as reported by Chen'[3] and Li [4]. That means
that the standard k-€ model in conjunction with the traditional wall functions can not
predict the wall heat flux in room air flows.

Low-Reynolds-number k-€ turbulence models are considered to be able to predict wall
heat flux in natural convection, since the models are also valid in the near wall region,
hence the wall functions are not necessary. However, at least 10 grid lines [5], or even
20 1o 30 [2] are required in the near-wall region, which significantly increases the
computing cost, and limits a practical wide applicability of the models,
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Is there any approach to predict wall heat flux
without too much computing cost? To study one
such approach is the aim of this paper.

Figure 1 shows velocity and temperature
profiles near a heated wall. The typical

value of the distance from the wall to the
position of maximum velocity is about 5 mm
and the local Reynolds number, yt, is less

than 20 for room air flows. Choosing a mesh
system with the nodal point of the first cell near
the maximum velocity position will not cause
too much computing cost, and will also be
expected in order to-obtain sufficient information
from the result of CFD. But appropriate wall Figure 1 Velocity and temperature
functions are then necessary. profile near a heated wall
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NEW WALL FUNCTIONS

New wall functions for velocity, temperature, turbulent kinetic energy, and dissipation
rate are developed in this section. Because of the complexity of natural convection, the
new wall functions were deduced on the basis of forced convection, but a variable
turbulent Prandtl number is applied and much attention was paid in the low local
Reyriolds number region.

Turbulent Prandt! Number

Turbulent Prandtl number, Pry, is defined as the ratio of the eddy diffusivity of
momentum to that of enthalpy.

The research on turbulent Prandtl number is very active and a great number of
publications are available [6-22]. The behavior of turbulent Prandt] number is complex,
it depends on the type of flow (wall flow, core flow, or free flow), molecular Prandtl
number, Reynolds number (or Rayleigh number for natural convection) and position.
Figure 2 and Table 1 show the curves of Pr, versus y* and their conditions. It is
obvious from Fig. 2 that Pr, levels off within a band from 0.7 to 1.0 when y*+ > 120.
Therefore a constant Pr, is a reasonable choice in numerical simulation of room air flows
in this region. When y* < 40, Pr; values in Fig. 2 vary in a large range. Since the value
of y* of the near-wall node in numerical simulation of room air flows is normally less
than 40, the variation of turbulent Prandtl number should be taken into account.
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1 Cebeci, 1975

2 To, 1986

3 Snijders, 1983
4 Kays, 1988

5 Hammond, 1985
6 Antonia, 1991

20+

-

0.0 r T
0 100 200 y*
Figure 2 Turbulent Prandtl number functions
Table 1 Details of the Pr; functions presented in Fig. 2

| Curve| Author and year | Approach Flow type
1 Cebeci, 1975 analysis forced and natural, flat plate
2 | To, 1986 calculation natural, heated vertical flat plate
3 | Snijders, 1983 measurement mixed, heated flat plate
4 | Kays, 1988 measurement forced, flat plate
5 | Hammond, 1985 | analysis based on log-law wall function
6 | Antonia, 1991 calculation forced, channel flow

In the present study, we adopt the suggesuon of Cebeci [8]. He pmposed that turbulent
Prandtl number is a function of y*, ie.,

Pr,= K(1 —exp(-y'/A")) _ $1) R
K'(1 -~ exp(-y*/B"))

whcn;q K, K, A+, and B+ are constants. Their values are given below Eq. 8.
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The New Wall Functions for Velocity and Temperature

For a two-dimensional boundary layer, under the assumption that the variation of u, h,
and p with x can be neglected (couette flow), the Reynolds equation can be expressed
by:

du_ 0 du) dp

pvw = 'Ty(p.eﬁw) . 'a—x @
odh 9 (MK oh

o =S5 oty) ®

in terms of Reynolds-averaged variables. It follows from mass continuity that pv = 0.
When

Egs. 2 and 3 become

a1 @
dy+ U'+
ar’ _ Sen ®)
dy+ |»1+
If the van-Driest's hypothesis [23] for p,,
2 +
wr=1+K4%"(1- exp(—y;'/A*’))zd—u+ ()
dy
is used and substituting Eq. 1 into Eqs. 4 and 5, we obtain
' 2 %)
i 2
dy" 14 {1+ 4K%* 11 - expl—y 7AD"
3 -1
a1t _ ( 1, 2KK'y" [1-exp(=y"/AN(1 ~ expl=y"/B")] ] ®
= Pr. 2
dy" Pry 1+ {1+4K%* [1- cxp(—y+fA+)]z}05

Supposing K = 0.435, K'=K/0.9, A+ =26, B+ = 37, and Pr = 0.71, numerically
integrating Eqgs. 7 and 8, and then fitting curves piece-wise, we obtain the velocity and
temperature distributions, i.c., the new wall functions, as follows:



ut=y" for 0<y*<5

ut=4.82Iny* ~2.75 for 5<y"<16
ut=3.47Iny* +098 for 16<y" <422
u*=2.32Iny* +5.27 for y'>422

T'=Pry* for 0<y' <5

T =4.15Iny* - 3.13 for 5<y*<18.6

T* =3.60lny" — 1.52 for 18.6 <y’ <44.5

T =2.13Iny" + 4.05 for y'>44.5

©)

(10)

A similar fitting procedure was proposed by Chen [24] who connected the linear law
with the traditional log-law by a logarithmic segment.

”'meexact curves obtaified by numerical integration and the new wall functions are
pﬁiéd in Figures 3 and 4. It can be seen from the figures that the fitted curves
approximate the exact ones very well.

20

10 ~

= traditional wall function
new wall function
memcpe=.e  EXact, from Numerical integration

10 100 y

Figure 3 Wall function for velocity

T
traditional wall function
w—————eee  pew wall function
90 o =r=rw-r- exact, from numerical integration
10
0 T
1 10 100 +

y

Figure 4 wall function for temperature
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In order to see the difference between variable turbulent Prandt! number and constant

turbulent Prandtl number, the traditional wall functions [25] are also plotted in Flgures 3
and 4. The traditional ones are:

wt= %ln(9y*) (11)
T" =Pr(u* +P) (12)
1 1
*Y2 (P Pr,\7
(A (B 1)
4sin(n/4)\ K Pr, Pr,
The curves plotted in the figures are with K = 0.435, A+ = 26, Pr, = 0.9 and Pn =
0.71, namely,
u" = 2.30Iny* + 5.05 (14)
T" = 2.07Iny" + 2.81 (15)

The New Wall Functions for k and ¢

Patel et al. (1985) {26] reviewed experimental data on the turbulent kinetic encrgy and
dissipation rate, and presented the distributions of k and € in the near-wall region, as

shown in Figures 5 and 6. The uncertainty of the experimental data is about 30%.

x* e’
|
i
i ~———— experimental data
4 0.4 - ! s——meme=  traditional wall function
I ........ new wall function
s o i
3+ 03 - i
i
i
i
) ]
24 experimentai data 0.2 i
—=%t— iraditional wall function ’
=+=w=-= new wall function
1= 0.1+
0¥ L B S S | T v 0.0 4 ' ' i . i
0 20 40 60 80 v 0 20 40 60 80 *

y

Figure 5 Wall function for turbulent Figure 6 Wall function for dissipation rate
kinetic energy
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The traditional wall functions for'k and € are also plotted in Figures 5:and 6 from which
it can be seen that the traditional wall functions are not valid in the region of y* < 10. To
complement the functions in this region, the suggestion by Sirkar and-Hanratty [27] for
the function for k is employed and the function for £ is obtained by means of curve fit.
We impose new wall functions as

k* = min{3.33, 0.05y*+?) (16)

42
o+ 0.1+ 0.003y

- 17
1+ 0.00125y"

L]

They are also shown in the figures.

VALIDATION OF THE NEW WALL FUNCTIONS

In this section the results of numerical simulation based on the two kinds of wall
functions -- the traditional wall functions and the new wall functions -- are compared
with the experimental data of forced convection on flat plates and natural convection in a
closed cavity.

Forced Convection on Flat Plates

Moffat and Kays [28] presented a heat transfer equation in terms of local Stanton
number for a smooth, flat plate of uniform temperature,

St P, ¢ = 0.0287Re, %2 (18)

which is the best fit of the experimental data for Reynolds numbers from 2x105 to
3.6x105. Here, x is the distance from the flat plate leading edge.

The two kinds of wall functions in conjunction with the standard k-€ model are applied
to calculate the turbulent boundary layer for 5 cases. The main parameters of the 5 cases
are listed in Table 2.

The comparison of calculated total heat transfer between the two kinds of wall functions
is presented in Figure 7. From the figure it can be seen that the calculated values based
on the new wall functions are in better agreement with the experimental data in the range
of 2.4x10°5 < Re < 3.6x106. Figure 8, the comparison of local heat transfer, indicates

Ity
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Table 2 The main parameters of the test cases

cue | ot | Lombotenie | gy iy,
1 18 0.2 238,000
2 18 0.5 594,000
3 18 1.0 1,190,000
4 36 1.0 2,380,000
5 36 1.5 3,570,000

Temperature of free stream = 25 iC

Temperature of the plate surface = 35°C

Width of the plate = 1 m

2

QW] q [W/m*] ; y—
=*=+@="= new wall functions H
~~=-— taditional wall functions |
Equation 18 1000 i}

--------- new wall functions
emme——e traditional wall functions
Equation 18

1000 -

200

0 L] L] L 0 M L] 1 Ll L v T .
0.00e+0 1.00e+6 2.00e+6 3.00e+6 Re 0.0 0.2 04 06 0.8 x[m]

Figure 7 Comparison of total heat transfer ~ Figure 8 Comparison of local heat flux
with measurement with measurement for Case 3

that the new wall functions give better results. Figure 9 shows the variation of the
calculated total heat transfer of the platc, Q, with the distance of the near-wall mesh. The
horizontal coordinate represents y*,, the distance between the wall and the first grid .
node near the wall in the 1/2 length of the plate. Qm is the total heat transfer of the platc
calculated from Eq. 18. Within a wide region, 45 < y*;, < 800, the calculated heat
transfer changes less than 10 %. That means that the calculated heat transfer is almost
independent of the computational grid. The same independence was fourid for case 1, 2,
4, and 5. ' : ;
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ﬂxlm
Re = 1.2E6
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= raditional wall function X L
—t—  new wall function y
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———
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Figure 9 Variation of total heat transfer with  Figure 10 Sketch of the air-filled
the distance of near-wall mesh, cavity, Ref. [29]
Case 3

Natural Convection in a Closed Cavity

The experimental resuits of natural convection in a air-filled closed cavity published by
Cheesewright et al. [29] are also used to validate the new wall functions. The cavity is
2.5 m high and 0.5 m wide, as shown in Figure 10. The top and bottom walls are
insulated. The temperature difference between the hot and cold walls is 45.8 K.

The numerical results based on four models are compared with the experirental data: I:
the standard k-€ model with the traditional wall functions ('St + traditional’ for short in
Figs. 11 to 15), 2: the standard k-e model with the new wall functions ('St + new’), 3:
the low-Reynolds-number mode! proposed by Lam and Bremhorst with the traditional
wall functions ('LB + traditional'), and 4: the low-Reynolds-number model with the
new wall functions (LB + new').

Figure: 11 shows the variations of calculated total heat transfer of the cavity, Q, with the
distance from wall to the nodal point of the near-wall cell, y,. Due to heat loss from top,
bottom, and-side walls, the heat transfer on the cold wall, Q., is less than that on the hot
wall, Qy, in the experiment. If the insulation were better, Q. would increase, and Qn
decrease since core temperature rises. The average value perhaps can be regarded as the
total heat transfer. It can be seen from the figure that calculated heat transfer based on the
standard k-€ model is very sensitive to y,, while the heat transfer based on the low-
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Figure 14 Profiles of local heat flux on
vertical wall
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Reynolds-number model changes very little in the region of 1.2 < y, < 5.3 mm. The
low-Reynolds-number model with the new wall functions gives best results in this case.
Of course, total heat transfer is not a conclusive criterion of a valid model.

The comparison of velocity profiles at half-height, Figure 12, indicates that the
numerical results based on the new wall functions are close to the measured velocity
profile.

Figure 13 shows the vertical temperature profiles in the mid-section. Due to imperfect
insulation, the measured temperature is lower than the calculated temperature. From the
point of view of the terperature gradient, the results based on the new wall functions
are in better agreement with the measurements.

The local heat flux profiles are presented in Figure 14. The measured heat fluxes on
both, hot and cold walls are plotted in the figure. The predicted profile located in the
region between the measured heat flux on the hot and cold walls is regarded as good. It
can be seen that the low-Reynolds-number model with the new wall functions gives the
best result.

Figure 15 shows the turbulent kinetic energy profiles at half-height. Two peaks appear
within each boundary layer in the calculated profiles with the traditional wall functions
with both turbulence models. That indicates that the traditional wall function for k is not
valid in the region very close to the wall.

All of the calculated results shown in Figures

2

2
12 o 15 are obtained under the condition of k m 4 yo=12 mm|
same mesh system in which the value of y, =====" St + raditional
is 1.2 mm. Of the four models, the low- St + new
LB + traditional

Reynolds-number model with the new wall SR
functions gives the best results. When yy, is

increased to 5.3 mm, the calculations indicate

that the results based on all four models are in 0.006

good agreement with experimental data.

LB +new
m  Experimentaldata [ o
I

/:'I'

So far, we can conclude that the traditional 0.004
wall functions are only valid in a very
narrow range in natural convection boundary
layer, and it is difficult to apply them to
practical use. The new wall functions with
the low-Reynolds-number model gives grid

0.002

Y

independent results in the region of

1.2 < yo < 5.3 mm in the case considered. 0'00000 o2 05 o4 rm
It seems possible to predict natural ) ) ) ) ’
convection flow without using additional Figure 15 Profiles of turbulent kinetic

grids in the near-wall region. energy at half-height
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CONCLUSION

New wall functions for velocity, temperature, turbulent kinetic energy and turbulence
dissipation rate have been proposed and implemented in a finite volume fluid dynamics
code. A model for variable turbulent Prandtl numbers has been combined with an
existing standard k-¢ turbulence model and a low-Reynolds-number model in the near-
wall region. The validations with flat plate cases and an air-filled cavity case indicate that
the new wall functions can improve the numerical simulation without using additional
grids in the near-wall region. In the flat plate cases, the calculated results based on the
new wall functions are in better agreement with experimental data. In the cavity case, the
low-Reynolds-number model with the new wall functions presents the best results of the
four investigated models, and gives grid independent results for 1.2 < y, < 5.3 mm.

Since the wall functions are deﬁvecl‘l.oh the basis of forced convection, more validations
are needed before the functions can be considered generally applicable to prediction of
room air flows.
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