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Abstract

1. bttroduction 2. System of equations

Air infiltration progl¿uns establish i¡rfiltration a¡d ventilation rates in a building by the solution of aThis paper discusses n method
of the ¡esulting tinear
to sorve the sysrem ,il"""jT

Taking into account the
Cholesþ's method for the
zurd it appears to be very

The choice of an under-
TVo different methods a¡e
two steps of fixed-point iteration to calculate the starting va.lue for the next step of the process. The

Newton_Raphson
ional function. In
similar regarding
the resolution of
nonlinear solver.

Infiltration progr¿uns establish the inûltration and
ventilation rates in a building by the solution of a
nonlinear system of equations. An iterative method
can be used in which a linear system of equations
is solved in each step of the process.

The Newton-Raphson method is often used for
this kind of problem and usually it works satisfac_
torily although the convergence is sometimes slow.
The approach here is to use Newton-Raphson but
to modify the method in exceptional cases.

This paper discusses va¡ious modiûcations of the
Newton-Raphson method and the special cha¡ac_
teristics of the resulting linear system of equations.
TVvo modifications are outlined, coded, and timed.
Some directlinearmethods are describeá and several
of these a¡e also coded and timed.

aVisiting Scientist with the Enerry performance of Buildings
Group, Lawrence Berkeley Laboratãry, Berkeley, USA.

The network consists of pressure nodes and links.
A mass flow balance must exist in each node as
described by the foilowing flow bala¡rce equation,

r@:Z*ro (1)
¿

and in vector form for all nodes,

JV):o Q)
An appropriate function describes the flow rate

as a function of pressure d.ifference for each link.
Nonlinear expressions of the following type are the
predominant,

th:C(Lp) (B)

or more precisely,

rh,:C sisn(þ)lþl* G)
where 0.5<n < 1.0.
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Equation (2) is obviously a nonlinear system of
equations.

The following analysis is, in general, not limited
to this particu_lar function although airflow functions
are always nonlinear. A nonlinear system of equa-
tions is usually solved with an iterative method that
uses a linear process in each step.

The system has the following general structule
for two zones (Fig. 1), four fixed pressures, and
ûve links,

f.@) : c o t(p o - p t)n" Í c oz(p o - pz)n-,

I Coø(P.- Po)n-o : O (5)

.fo@) : C,u(p u - p o)*o I C on(p, - p n)*o

*Cas(Po-Pe)no":O (6)

The equations are formulated systematically. A
flow out from a zone is positive. Again the system
can be written more conveniently as vectors,

JTÐ:O G)
The Newton-Raphson method, which is the most

fundamental and widely used, flnds the next ap-
proximation in the one-dimensional case through
the following iteration function h@.),

J(p.)
.f'(p")

where ;f is the derivative of ;f.
This disregards everything except the constant

and linea¡ terms in the Taylor expansion. A multi-
dimensional case is similar,

J(p")
J(p") (e)

where corr is the Newton-Raphson corrections of
the pressures. Note that this system of equations
is linear. Flom now on, in order to simplify, the
(p) in J(p) and/[p) witl occasionalìy be dropped.

3. Special characteristics of the Jacobian
matrix

Some of the most frequently cited books in Linear
Algebra have been reviewed for the preparation of
this Section t1-61.

The Jacobian matrix has, as a rule, two important
features in airflow problems - it is symmetric and
positive deûnite. To prove the latter it is necessary
to look at determinants and eigenvalues.

The Jacobian matrlx in our example is,

J: (1 1)

Remembering the limits of n the derivatives of
(8) the frst row are,

aÍ, ah
ùpo ùpa

ô.fo ð.fo

ùp, Øo

Fn+t:Pn-

# 
: Cotflotlp o- p rl^, - 1 + C orno2þ o - p2l,u'z - r

* Coono6þo-pol*-,

* 
: - coano¡lpo- pal*o- '

(12)

(13)
Pn+t:Pn-

where J is the Jacobia¡r matrix.
The Jacobian matrix is obviously simi_la¡ to;f, in

the one-dimensional case; the matrix consists of
the partial derivatives of all the flow balance equa-
tions¡f regarding all pressures p.

Equation (9) can be rewritten in the following

where the frst equation represents one diagonal
element a¡rd the second equation one non-diagonal
element in the matrix, whichmeansthatthe elements
of the matrix are negative except those on the
diagonal.

3.1. Sgrum,etry
A symmetric matrix A is a matrix with the property

A(i,, j):A(1, z) or A:Ar. In our case this is the
s¿une a^s saying that the partial derivative of zone
i \Mith reference to zone j is equal to the partial
derivative of zone j with reference to zone i. i

Formulating the equations in the same way as in
the preceding Section we have,

ô
J(i', i) : 

W 
Cnt@r. - P¡)ui : - C¿¡n¿¡þr - P¡l-t -'

(14)

wâY'

J(p")con: -.f(p-) (10)

Pri iPs

F.rg. 1. A two-zone building.
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(15)

These derivatives are in general not defined for
the case p¿:p¡. Except in this exceptional case the
Jacobian matrix is synrmetric. Non-defned deriv-
atives are a potential problem but one which can
be avoided in several ways. The airflow function
can be linearized behveen zero and a certain very
small pressure difference which also is physically
consistent with flow behaviour. It is also possibìe
to disregard every tink with a very small pressure
difference which will not change the result signif-
icantly.

If no leak is defined betr¡¡een tr¡¡o zones i and j,
the element J(i, j): O because the flow balance
equation for zone i does not include zone j and,
in consequence, the derivative of i with reference
to zone j is 0. This is also the case when a fixed
flow is deûned betr¡¡een two zones.

,A.gain, the elements J(i,, i) are all positive which
follows from the rÃ/ay we formulated our equations,

J(i, i) : 
à *, C,¡(?¿ - p¡)' :2Cn¡nn¡b 

n - p,l*,-,

(16)

where j ate zones or ûxed pressures with a con-
nection to zone i. Equations (14), (15), and (16)
give directly,

J(i, i)r- 2l;(¿,Ðl (1?)
i,i +i

with equality only when zone i does not have any
connection to a zone with fixed pressure.

The last equation is important when we want to
show that the Jacobian matrix is positive deûnite.

3.2. Positiae defi.nite
Gerschgorin's theorem can be used to locate the

eigenvalues. This theorem states that every eigen-
value of the matrix lies in at least one of the circula¡
discs, in the complex domain, with centres J(i,, i,)
and radii >lJ(i,, j)1,

l6r

condition for a matrk to be positive definite is that
all the eigenvalues of the matrix shouìd be > 0.

Every general non-singuìar matrix can be trans-
formed into a triangular matrix and every symmetric
matrix into a diagonal one. These similarity trans-
formations play an important role in the computation
of eigenvalues because they leave the eigenvalues
of a matrix unchanged. The diagonal elements in
these matrices are the eigenvalues of the matrices.
This follows from the deûnition of eigenvalues and
expansion by minors.

The definition of eigenva-lues e of a matrix A is,

det(A-el):g (20)

where I is the unity matrix.
It follows directly from the deûnition of deter-

minants that the value of the determinant for a
diagonal or triangular matrix is the product of the
diagonal elements, i.e., the determinant of a matrix
J is the product of its eigenvalues, i.e., det(J):
fI eigenvalues.

det(J):0 means that the matrix is singular by
deûnition. No unique solution exists, possibly due
to modelling or round-off errors. If one or several
nodes are completely isolated from other nodes and
constant pressures, the system of equations is sin-
gular.

The conclusion is that the Jacobian matrlx must
be positive detnite except when no unique solution
exists.

A necessary but not suffcient condition for
det(Q,:0 is,

J(i, i,): >
i,i + lJ(i, j)l

for one or several rows in the matrix. Gerschgorin's
theorem states merely that the eigenvalues must be
on the discs - not exactly where.

Any symmetric positive definite matrix A has a
unique decomposition in the form,

A:GGr (22)

where G is a triangular matrix. The consequences
of this will be discussed in the next Section.

(18) 4. Linear solvers

(1e)

This Section is mainly based on refs. 1 and 7.
A direct method, compared with an iterative

method, solves a system of equations in a certain
finite number of steps. Direct methods are usually
the most efrcient methods for small- to medium-
size full systems. If special characteristics of the
matrix are t¿ken into consideration direct methods

(2r)

lz-J(i,Ðl< >
i,i +

We lmow that,

J(i,, ¿)> > lJ(i, j)lr-\" -J(i,, i)li,i +n

that is, all values on the disc are positive or zero,
i.e., all eigenvalues ) 0. The matrix is said to be
positive semi-definite. A necessary and sufficient

lJ(i, j)l
?
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can also be efficient for larger systems. Very large
and spare systems are best solved with iterative
methods. The number of operations using a direct
method is proportional to À/3 and, using an iterative
method, N2 where À/ is the order of the matrix. It
is easy to show that if more than À/ iterations are
needed the iterative method is not appropriate.
Obviously the iterative methods become more at-
tractive for a larger matrix. However these methods
will not be discussed here.

Our concern is with matrices solved by Gaussian
elimination, LU-factorization, Cholesþ's method,
and the inverse. This inctudes studies of general,
symmetric, and positive defnite matrices. Band and
sþline methods are used to improve the solvers.

The number of operations required for some
rnethods has been estimated with finite sums. ,.Op-
eration" is deûned here as one multiplication and
addition - a useful measure.

4.1. Gaussian elirnination uith back
substitutian

A triangular matrix can easily be solved with
backr¡¡ard or forward substitution depending on
whether the matrix has an upper or lower triangular
form. A general matrix can therefore be solved if
it is û¡st reduced to a triangular form.

The Gaussian elimination method reduces a gen-
eral matrix to a triangula¡ form. The technique is
to eliminate car.rt of the system J com: -/from
the last ÀI- 1 equations by subtracting multiples zz
of the frst equation. Thereaftê'r cu/.r.2 is eliminated
in the s¿une way from the last ÀI- 2 equations. This
procedure is repeated until we have an upper tri-
angular form with elements ø. The diagonal elements
are called pivotal elements.

The compact scheme for Gaussia¡r elimination
can be written,

uo:ir-riffitr%n¡ k:1, ...,N j:k, k+1,. M

-t
coT'f¿: i:N, N- 1, ..., I

,(25)

Forward substitution is done in a similar u/ay.
The total number of operations for large À/ and

one right-hand side is approximately N3l3 +Nr/2.

4.2. Piuoting
If a pivotal element becomes zero the Gaussian

method obviously does not work since division by
zero is not a defined mathematical operation. To
solve the problem we can interchange roït¡s or
columns. In this way it is possible to find a non_
zero pivotal element as long as the matrix is non_
singular. Any non-singrrlar system can thus be re_
duced by Gaussian elimination with pivoting. pi_
voting requires a large number of logical operations.

4.3. LU-Jactorization
The LU-factorization decomposes a matrix A into

a lower L and an upper U hiangular matrix,

A': LU Q6)

Then the system Ax:b is equivalent to LUx:b
which can be solved as two triangular systems Ly:t
and Ux:y. For every non-singrrlar matrix a LU-
factorization exists. In fact there is an equivalence
betr¡¡een Gaussian elimination and LU-factorization.
The elements in L are the multipliers nr and the
matrix U is the upper triangular matrix. Equations
(23) and (24) arc therefore also valid for LU-
decomposition.

The LU-decomposition requires Ns¡B-N2¡Z op-
erations and the two friangular systems JVz oper-
ations, i.e., the sarne as Gaussian elimination.

4. 4. Chol,esky's method,
For a positive definite matrix, Gaussian elimination

without pivoting is always possible, i.e., no pivots
are zero as follows from e)0.'We can show that
if Gaussian elimination can be carried out without
pivoting for a symmetric matrix then there exist
transformed elements m and z which form a sym-
metric matrix. This follows from eqn. (22).

Thus, if the mahix is symmetric positive definite
we have only to compute L and the number of
operations is approximately halved to N3l6 com-
pared with the general Gaussian elimination without
pivoting. A symmetric positive definite matrix does
not require pivoting to conhol round-ofr errors.

U¡¡"COT7'¡
k

U¿¿

7fù¡¡:

P'l

k-l
; -SJih .¿.¿ |lù¿pU,p*

o-l

(23)

i,:k+l,...,ff. (24)
7l**

where j, rÍ1, and z a¡e the elements in J, L, and
U respectively.

The backward substitution ca¡r be written in com_
pact form,



Equations (23) and (24) are now simplified to,

toó

the band starbs for the specific row. This explains
the reduction in time.

4.6. Skgli.ne
The sþline method takes into account variable

lengths of non-zero rows and colurnns in a matrix.
All the elements below a non-zero element in the
upper triangular part are taken into consideration,
these non-zero elements forming a sþline proûle.
The lower trianguiar part is treated in a similar
way, all elements to the right of a non-zero element
being taken into consideration. Zero-elements out-
side the profile are not considered while zero-ele-
ments inside are. In this sense the sþline can be
thought of as an irregular band. If there is one zone
that has corurections to almost all other zones, the
best sþline is achieved if this conunon zone is
placed as the last zone.

For a s¡rmmetric matrix we need orùy to handle
the lower (or upper) part of the matrix and the
diagonal. The sþline is therefore deûned by the
array of row lengths in the lower part of the matrix.

Again, the lower limits of the sums are changed
in eqns. (27) and (28). The lower limit will follow
the sþline. This means that the sþline method
always requires equal or less number of operations
than to consider the matrix as a band matri¡. The
execution time depends on sparsþ and cannot eásily
be generalized as in the case of the band matrices
above. However, some exalnples are presented in
Section 6.3.

4.7. Itruerse
The system of equations J corr: -/can be solved

directly as corr: -J-y. This requires the calcu-
lation of the inverse of the rnatrix J followed by
a multiplication.

The calcr¡lation of the inverse requires Nt op-
erations and the multiplication N2, in tot¿l N3 +N2.
This should be compared with the fewer iterations
of the preceding methods. The calculation of the
inverse is therefore not recornrnended when solving
systems of equations.

Another disadvantage is that the inverse of a band
matrix does not in general have a band structure.
Gaussian elimination a¡rd LR-factorization on the
other hand preserve the band structure.

6. Non-Hnear eolvers

This section is based on refs. 8-11.
The Newton-Raphson method can be modified

to avoid occasional problems. In principle, most

k-l
TTL.rc:6uu- ) rnkoz)o'' k:I, ..., N (27)

P-L

k-r
jou- 2rR¿pr/14,

p:1 'i:k+l, ...,JV. (28)TfL¿¡":
TtLt*

This is Cholesþ's method. The first equation
calculates the diagonal elements and the second
calculates the eìements of the lower triangle.

4.5. Barld, rna,trices
The non-zero elements in a band matrix are

arranged in a diagonal band of width 2M + 7 where
,¿lr' is the half band width.

In Fig. 2, the LU-factorization metJrod has been
adusted to various matrices and a comparison made
of the number of operations involved solving the
system. The cuwes have been estimated with fnite
SUInS.

The number of operations for the symmetric case
is approxim ately NMz /2 - M3 ß . Note tha.i the num-
ber of operations is based on the decomposition
orìly - backr¡¡ard and forward substitutions are not
included although in this case it is just a fraction
of the total number of operations. Administration
in the program also is not i¡cluded so that these
curves are very much simplified. Nevertheless we
can expèct a large reduction in execution time if
we take the special characteristics of the matrix
into account.

The lower limits of the sums in eqns. (27) and
(28) a¡e increased according to the band width.
The lower limit wiü not be 1, but instead where

Relative Execurion T¡me l-l

Band, non-symmetric

Fu

Band symmehc

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

o.2

r) I

0.0

0 l0 20 30 40 49 H{ lf
Band w¡dth l-l

Fig. 2. Relative time for LU-decomposition on different matrices.
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Peztrøpoloted,: Pn+ I *
Pn+I- Pn

modifications deal with finding an appropriate over_or under-relaxation coefficient À foi eqn. (g),

Pn+t:Pn-^ffi es)
The Newton_Raphson correction corresponds toÀ: 1.0.
Our lir¡ks have a type of flow function that, u¡dercertain conditions, creates very slow convergence.If Newton-Raphson converges a particular functionand both the f¡st and second derivatives are con_tinuous then it is a second order method, i.e., theasymptotic etror constant is 2. The method doesnot converge at all if the flow balance equation issymmetric and has a flow exponent of 0.5. Thetangent of the function has, in this case, the samevalue in each step of the iteration process andconsequently no convergence can be expected.

Tlvo different methods will be discussed that, attimes, can accelerate the rate of 
"á.,*.g"n"" ofNeWon-Raphson.

5. 1. ErtraXtolated, rela,øati,on coeficients
The rate of convergence of Neurtãn_Raphson cansometimes be accelerated. Steffensen iteration con_sists of two steps of ûxed-point iteration and there-after the use of the three availa¡te ìiårates pn_',p:, and pn+L to get the starting value for the nextstep.

on h(p)
a good
e sìope

theirerarionñrncrion*åi""olriJ"r'"';Jlîffï:
expected to give a good approximation of the root.

To determine the roots in a multidimensional caseto the function g is the same as determining theminimum of the scalar function G defined as]

lac ac \"s: l:-,:-, ... I- 
\ôpn ' ùp"' "' I (33)

G can be expressed as a function in the va¡iableÀ only. This means that G(À) i. u or,"_Ai^ensional
function. It can be shov ìiut tt i"ìrrnction has aunique minimum.

The minimum cannot be determined analyticallybut the function G(À) can ¡u upp.o*i*ated with apolynomial,

p(ì): a+bÀ+ cÀ2 (84)

Ilj"\ for exampte, inrerpotares G(O), G(0.5), andG(1.0). The minimrT, À-,., of thù polynomial iseasily determined and can iepresent ine minimumof G. The next approximation is taken as,

Pn+ t:Pn- ì-¡n.n# (85)

. Nole that À-¡. has to be determined in eachiteration step n. This means ttrat in ãch iterationstep a Newton-Raphson solution and three evalu_ations of G are required.
The function -F of a one_dimensional function,

t:ì", sisne)-Ðlp-pjl, (s6)

is,

r,-\ Ci r ,o:?ñle-p¡l^'*' (Bz)

where j are zones with fixed pressu¡es and haveconnections to the zone.
A mr¡ltidimensional case is simi-lar. The functionG of the vector function g is,

G:> àffibn-It'ln"*' (38)

where j are zones or fxed pressures with a con-nection to zone i.
The example given in eqns. (5) and (6) is,

-c'4'coc: ,hfr lp.-ptl"'*'* ffilpo-prln"*t
C". ffi. lpo-poln"*,- #lpr-pnl^*,

.c5* 
; lpa-Ful"u*' (99)

lp--p.-r\
\p*r-r")

(30)

-1
The method studied here is closely reìated to thismethod. The approach above being äOO,ru¿ to eachnode and each node being nuutå -¡rfuependenfly

of the other nodes. There-are th;;"f;, as manyunder-rela><ation coeffici-,nts 
" m"." *" nodes.

5. 2. Optimi,zed, rel.a,sati.on coefficients
To determine the root in a onó_¿imensional caseto. tfe firnction;f is the sarne as O"iãr ,"r"g theminimum of the function f ¿enneJ as,

-f :F' 
(gt)

where

F': dF/dp (32) where ?o md pb ca;n be expressed in À.



Determining this function involves about the same
amount of work as determining the derivatives. It
can be important to use ,,double precision,, when
implementing this algorithm u" *"ll as in the rest
of the solver.

A strictly convex function has a unique minimizer.
This in turn rneans that the equation g:0 has a
unique solution.

6. Timing of solvers

The aim here is to provide an overview of the
behaviou¡ of various solvers in typicat airflow ex_
amples.

system. As two programs were used a signiûcant
amount of work was done to ensure that aI input
was identical.
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(2) l}-Netu.tork

ratio of 40 000. An additional example, with all
links equal to 0.001 kg/s pa", was atso used. Outer
pressures are 50 a¡rd - 50 pa. Figure 4 shows the
network.

6.1. Chosen natzDtrks

examples used.

(3) 45 /41- a,nd. 27 /2\-Netutorks

used to show the differences between various linear
solvers.

One study, however, proved that the most inter_
esting cases are those with tight floors because they
show the greatest difference between a band solver
and a sþline approach.

PLAN

SECTION

-JOUTER

Fig. 3. A O2-Network.

P

IN NER
LINK

OUTER
LINK

L_

LINK

+JP

P, t

P0

P8 P9

Fig. 4. lO-Network.

-50 Pâ

Fig. 5. 2?-Network.
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6.3. Linear soluers

The buildings contain a mixture of large and small
openings. Outer surfaces 0.00f kg/s, pa"; inner
surfaces 0.01; inner doors l, and shaft 10. In
addition, all flow coefficients are set to 0.001 kg/
s, Pat.

6.2. Other assu:rnptions

but one with no bancl features, and two routines
from LINPACK [14ì were timed.

The result of the influence of the order of matrix
is shown in Fig. 6.

Execut¡on Tiñe [sl

0.400

0.300

0.2(x)

0.100

0.000

J See Fig 7

Full M¿rrir

Dirgonrl Mttrix

0 I0 20 30 40 oftler I'l

Fig. 6. The influence of the order of the matrix on the executiontime for the band solver.

.T
:T

,l
g
.,q
4



Fig. 7. The influence of the half band width on the execution
time for the band routine and LINpACK.

determination of the hatf band \ ridth and the sþline
are, i-tì these cases, assruned to be done once for
every sixth iteration. This determination requfues
an insignificant amount of time for any of the matrix
sizes used here.

In Tabìe I the "Half ba¡rd width" column does
not give any information about how well the band
is organized. The "Ratio-Elem" column contains
this information. The ratio is defined as the ratio
betr¡reen the number of elements in the lower tri-
anglilar matrix, including the diagonal, that the solver
will operate on for the sþline and band methods
respectively. The lower the ratio the less organized
the band structu¡e.

It can be seen that the increase of time for the
Gaussian method is close to the cube of the order
of the matrlx as predicted in Section 4.1. The
complete pivoting is a À/3 process in logicat op-
erations which explains the subst¿ntial difference
between the Gaussian method and the band ap-
proach. The numbers within parentheses represent
the time for the sþline compared with that for the
band solver. As expected, the larger the matrix the
more efficient the sþline approach. The sþIine
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does not require significantly more time even for
a perfect band or full matrix.

The examples chosen have very poor band struc-
ture, the intention being to show the difference
behveen the band and sþline solvers. The 1O-matrix
has almost as bad a band structure as the two larger
networks. Formore realistic examples, the difference
betu¡een the ba¡rd and the sþline methods is ìikely
to be smaller although the sþline approach seems
always to equal or be faster than the band method.
The sþline-Cholesþ's method is therefore consid_
ered to be a better choice for an efficient solver.

6. 4. Nor¿-Li,near soluers
Relaxation coefficients were selected according

to th¡ee methods: Newton-Raphson, extrapolated
coefficients, and an optimized method. All methods
were initialized with tr¡¡o conventional New_
ton-Raphson iterations.

The Newton-Raphson and the optimized method
were timed in MOVECOMP-PC. The number of
iterations for the extrapolated method was deter_
mined in AIRNET. This method was thereafter as_
sumed to require the same time per iteration as
Newton-Raphson.

It was expected that the initialization might in_
fluence the number of iterations and it is therefore
important that the same initialization is made for
all test runs. If a di¡ect linearization of the original
problem is performed orùy the exponents are
changed to unity. This means, ir fact, that the
function is linearized through 0 and I pa pressure
differences. Such a direct linearization was chosen.

It is preferable, of course, to linearize each flow
equation as close to the solution as possible _ one
Pascal may seem to be too low and a factor of ten
higher is many times more likely. It is best to chose
the average pressure difference of a-lt links. However,
this average value va¡ies considerably from network
to network.

The 27 /25 matrices have a simila¡ number of
iterations as the 46/47 matrices for alì three meth_
ods. This is a consequence of the similarity of the

U\Ëe -ì ne \

060

0.50

0.10

0. 10

0.20

0. t0

(.).(I)

L NPACÑ B

NON.BAND SOLVER

BAND SOLVER

t0
I

t5 t9

TABLE 1. Execution time per iteration for the linear solvers (s)

Matrix size Gar¡ss Band Sþline HaIf band width Ratio-Elem

45
4t
27
¡)<

10

o2

6.1678
5.2004

1.4086
t.2342

0.0839

0.0013

0.1437
0.2753

0.0688
o.o748

0.0r23

0.0010

0.0867
0.1354

0.0400
o.o494

0.0096

0.00r0

(60%)
(4e%)

(58%)
(66vo)

(78Vo)

(10o%)

I
20

I
L2

175/405 (0.43)
306/651 (0.47)

LO3/225 (0.46)
136/247 (0.56)

33/52 (0.63)

r/1 (r.00)



matrices except their sizes. The Newton_Raphson
method has problems, as expected, at high and lowratios and therefore is less useful.

TABLE 2. Number of iterations for the non-linear solvers

r68

Matrix size Newton Extrapolated Optimized

are equal the pressure where the initialization isdone will not change the result as shown below.The system of equations is unchangeJ owing to thefact that the Jacobian matrix urrd"lt" right handvector are murtipried by the same constant. It isnot trMar to compare the ¡esu-lts from the modiûedand the unmodifled examples since the modifledexamples are, in many ì¡¡ays, different from theoriginal examples. However tire column for 1 pa
shows, to some extent, the range for tf," numberof iterations when the expone;" *; given morerealistic values. It is ofinteiest to note tñe cnanges,with initiatization, for each modified example. Thepattern is, although not clear because of lineari_zations, that more realistic values will reduce thenumber of iterations. For this comparison the op_timized method was useC.

Netr¡¡orks with high ratios require fewer iterationswhen the initialization p.".r,rr" is 
-lowered. 

Theopposite is the case for the networks with low ratios.The latter networks have higher pr""r*f differencesacloss the openings with expànent 0.5 than theother networks. The 0.5 opåning" u.u the mostimportant because these wii h""Ë tfr" largest ap_proximation when they are ìinearized. This veritesthat the closer trye can linearÞe the flow equationsto the ûnal solution the fewer iterations are required.Nevertheless it seems that initialization is not criticalfor these examples and that the choicl with a directIinearization, i.e., 0,1, is u,"*onuùty good choice.other types of rinearizations of courieîìe possibre
anj. wSta probably have given other results.

The figures in Table + arã based or, àr,u nm perexample but are forced to 50 iterations and oneNewton-Raphson to sta¡t with. This prt""a*" **selectedto avoid interferen"u fro- roi_r" rubroutinesand the first Newton_Raphson it"ruti*. All cal-culations were done with the 
"tyli"ã ,ãfrr"r.

- The numbers in parenther", *ð tne cànt¡Uutionsfrom the linear solver; compare with Table l.The increased time for the optimize¿ methoddepends almost entirely on the 
-po*".-f,rnctior,",

45-10000
45-1
41-1000
41-l
27*10000
27-l
25-1000
25-7

to-40000
t0-t
02-10000
02-r000
02-100
o2-to
o2-1
02{.1
02-{.01
02-o.001
02-{.0001

> 1500
24

> 1500
27

> 1500
25

> 1500
22

> 1500
8

r5
I

t5
I

15
I

15
I

r9
8

8
o
8
6

8
6
8
6

I

6

5
7
6
5
I
5
6

5

> 1500
946
86

8
I

t0
9l

964
> 1500

l1
11

I
8
t
8
I

11
1r

TABLE 3. lnlluence 6f inifializ¿fie¡ on number of iterations

Matrix size 0.1 Pa I pa lO pa 20 pa B0 pa 40 pa

45-lOO00-mod 8
46-10000
45-l-mod 5
45-7

t0--40000
lO-l-mod
l(Ll
02-lO0OG-mod
o2-loo00
02-1O-mod
02-ro

TABLE 4. Execution time per iteration for complete solvers (s)

lG-4O00G-mod

l0

4

I

4

;

I

4

I

4

;

8

4

I

4

;

8

4

8

4

7

3

I

;

6

4

8
I
4
6

7

4
6

T

õ
4
5

Matrix
slze

Newton Optimized Ratio:
OptimizedÆ.lewton

45
41

27
25

10

02

0.373 (23vo)
0.392 (35%)

0.216 (19%)
0.222 (22vo)

0.075 (r3%)

0.036 (3%)

0.957 (9%)
0.955 (r4%)

0.559 (7%)
0.561 (9%)

0.168 (69o)

0.060 (290)

2.6
2.4

2.6
2.5

to

t.7
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TABLE 5. Execution time for complete solvers (s)

Matrix size Extrapolated Optimized Difierence

grams to solve the nonìinear system of equations
representing the airflow distribution in mr¡ltizone
buildings.

Taking into account the special characteristics of
the Jacobian matrix, we select a sþline-Cholesþ's
method for the linear solver. This method can be
used in a general way for the problem.we axe dealing
with and it appears to be the more efficient one.

The t¿sk is more diffcult with regard to the
nonlinear solver. Even if a generalized New_
ton-Raphson method is selected, the choice of an
under-relaxation process to ensure the convergence
and efficiency is not obvious.'We tested two different
methods, an extrapolated method and an optimized
method, of finding the under-relaxation coefficients.
Although the latter method is more time-consuming
in ûnding the relaxation coefficient in each iteration,it appears to be safer and more efficient in the
resolution of the norùinear system. In testing these
fwo methods on the same sarnple of test cases we
found that they are very similar regarding total ti¡ne.
We suggest the optimized method to be used for
the nonlinear solver.

(w
45-10000
41-l
27-l
25-1000

lo--40000
r0-l
o2-10000
02-10

Total

5.707
3.599

1.983
3.397

r.454
0.612

0.404
o.294

17.450

5.904
4.04r
I ÐO<

3.47I

0.897
0.636

o.252
o.252

t7.778

-ð
- 11

-15
-2

+62
-4

+60
+77

eqns. (37) and (38), that must be evaluated in the
optimizer.

According to the figures rvithin parentheses the
contribution of the linear solver is 2_J5o/o of the
total time in the solver.

Newton-Raphson if À > 0.95. This has two purposes,
first, it prevents unnecessary optimization and sec_
ond, it eliminates the influence of ror¡nd_off errors
in the optimizer.

If we assume that the extrapolated method does
not require any signiflcant extra time relative to

te equiv-
requires
on. This

The choice of a non-linear method is not as obvious
as in the case of the linear solver. The optimized
method always finds the solution in fewer iterations
than the extrapolated method which indicates that
the optimized method is more efficient in finding
the appropriate under-relaxations. On the othei
hand, the process of ûnding the relaxation coeffi_
cients is so time-consuming that the methods have
almost the same execution time for the test cases
based on total time for all examples. The main
argument for recommending the optimized method
for incorporation in inûltration progÌams is that the
method itself is more efficient and st¿ble. The time_
consuming process of finding the rel¿rxation coef_
ficients is a different matter, a pure numerical or
mathematical problem.

7. Conclusion

The aim of the present study is selecting efficient
and robust methods to be used in inûltration pro_

Nomenclature

com

A
C

e

-f
F
s
G
G
h
i
I
j
J
L
Tn

ri¿

M
r¿

¡/
U
u
p
P

À

matrix, general
flow coef,ñcient
conection vector
eigenvalue
flow balance fi¡nction
F':.f
flow balance ñrnction
scalar function
matrix, triangular
iteration function
node number
matrix, unþ
node number, element in J
Jacobia¡r matrix
matrix, lower triangular
element in L
mass flow
hatf ba¡rd rvidth
flow exponent
order of matrix
matrix, upper triangu-lar
element in U
pressure
polynomial
complex number
relaxation coefficient
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Su,per- a,n d, su.bscripts
a, b zones
rt, iteration number
T transpose
i, j, k, p elements in J, L, and U
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