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Abstract

Air infiltration programs establish infiltration and ventilation rates in a building by the solution of a
nonlinear system of equations. This paper discusses various modifications of the Newton—-Raphson method
and the special characteristics of the resulting linear system of equations. The aim of the paper is selecting
efficient and robust methods to solve the system of equations representing the airflow distribution in
multizone buildings.

Taking into account the special characteristics of the system of equations, we recommend a skyline-
Cholesky’s method for the linear solver. This method can be used in a general way for these problems
and it appears to be very efficient in avoiding unnecessary operations on zero elements.

The choice of an under-relaxation process to ensure the convergence and efliciency is not obvious.
Two different methods are used to find the under-relaxation coefficients. The extrapolated method uses
two steps of fixed-point iteration to calculate the starting value for the next step of the process. The
optimized method uses a search routine where the direction of search is determined by Newton—Raphson
and the distance of movement is determined by minimization of a related one-dimensional function. In

studying the methods on the same sample of test cases, we found that they are very similar regarding
CPU time. However, the optimized method appears to be safer and more efficient in the resolution of
the nonlinear system. We, therefore, recommend using the optimized method for the nonlinear solver.

1. Introduction

Infiltration programs establish the infiltration and
ventilation rates in a building by the solution of a
nonlinear system of equations. An iterative method
can be used in which a linear system of equations
is solved in each step of the process.

The Newton—Raphson method is often used for
this kind of problem and usually it works satisfac-
torily although the convergence is sometimes slow.
The approach here is to use Newton—Raphson but
to modify the method in exceptional cases.

This paper discusses various modifications of the
Newton-Raphson method and the special charac-
teristics of the resulting linear system of equations.
Two modifications are outlined, coded, and timed.
Some direct linear methods are described and several
of these are also coded and timed.
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2. System of equations

The network consists of pressure nodes and links.
A mass flow balance must exist in each node as
described by the following flow balance equation,

S®)=2m;=0 (D
and in vector form for all nodes,

Jw)=0 )

An appropriate function describes the flow rate
as a function of pressure difference for each link.
Nonlinear expressions of the following type are the
predominant,

m=C(Ap)* - 3
or more precisely,
m=C sign(Ap)|Ap[ 4

where 0.5 <n<1.0.
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Equation (2) is obviously a nonlinear system of
equations.

The following analysis is, in general, not limited
to this particular function although airflow functions
are always nonlinear. A nonlinear system of equa-
tions is usually solved with an iterative method that
uses a linear process in each step.

The system has the following general structure
for two zones (Fig. 1), four fixed pressures, and
five links,

fa(p) = Cal(pa ."'pl)nﬂl + Ca.2(pa —pZ)naz
+ Cab(pa )" =0 6))

Jo@) = Cop(0s — Do) + Coa(Dp — D )™*
+ Cos(Pp—P5)"*=0 (6)

The equations are formulated systematically. A
flow out from a zone is positive. Again the system
can be written more conveniently as vectors,

Jp)=0 (N

The Newton—Raphson method, which is the most
fundamental and widely used, finds the next ap-
proximation in the one-dimensional case through
the following iteration function h(p,),

Jw)
J' (0

where f' is the derivative of f.

This disregards everything except the constant
and linear terms in the Taylor expansion. A multi-
dimensional case is similar,

S.)
J(@.)

where J is the Jacobian matrix.

The Jacobian matrix is obviously similar to S in
the one-dimensional case; the matrix consists of
the partial derivatives of all the flow balance equa-
tions f regarding all pressures p.

Equation (9) can be rewritten in the following
way,

J(pr)corr=—flp,) (10)

Dni1=Dp— (8

Pni1=Dn— )

TETT T OO
Fig. 1. A two-zone building.

where corr is the Newton—Raphson corrections of
the pressures. Note that this system of equations
is linear. From now on, in order to simplify, the
(p) in J(p) and f(p) will occasionally be dropped.

3. Special characteristics of the Jacobian
matrix

Some of the most frequently cited books in Linear
Algebra have been reviewed for the preparation of
this Section [1-6].

The Jacobian matrix has, as a rule, two important
features in airflow problems — it is symmetric and
positive definite. To prove the latter it is necessary
to look at determinants and eigenvalues.

The Jacobian matrix in our example is,

P
W, I,

J= o, o (11)
w. o,

Remembering the limits of n the derivatives of
the first row are,

a - -
= alnallpa_pllnm 1+Ca2nazlpa_p2|"a2 !
Wa
+Cabnab[.pa_pb|m—l (12)
a _
@ bl abnablpa_pblnab ! (13)
b

where the first equation represents one diagonal
element and the second equation one non-diagonal
element in the matrix, which means that the elements
of the matrix are negative except those on the
diagonal.

3.1. Symmetry

A symmetric matrix A is a matrix with the property
A(%, j)=A(j, i) or A=A". In our case this is the
same as saying that the partial derivative of zone
i with reference to zone j is equal to the partial
derivative of zone j with reference to zone i.

Formulating the equations in the same way as in
the preceding Section we have, -

. 3 . o
J(Z, 7)= 5; Cii(p;—p;)™ = — Cyymylp; —p;|™ "
J
(14)




J(j, 74)= —_— Cij(pj _pi)mj= i 1

0
ap, - Cijnijlpj_pi
1

(15)

These derivatives are in general not defined for
the case p;=p;. Except in this exceptional case the
Jacobian matrix is symmetric. Non-defined deriv-
atives are a potential problem but one which can
be avoided in several ways. The airflow function
can be linearized between zero and a certain very
small pressure difference which also is physically
consistent with flow behaviour. It is also possible
to disregard every link with a very small pressure
difference which will not change the result signif-
icantly.

If no leak is defined between two zones 7 and j,
the element J(i, j)=0 because the flow balance
equation for zone ¢ does not include zone j and,
in consequence, the derivative of 7 with reference
to zone j is 0. This is also the case when a fixed
flow is defined between two zones.

Again, the elements J(%, ¢) are all positive which
follows from the way we formulated our equations,

. 0 .. -
J(%, 7)= 2 g Cy(pi—p)™i= Zcijnij[pi —p™ !
Jei i Jei

(16)

where j are zones or fixed pressures with a con-
nection to zone ¢. Equations (14), (15), and (16)
give directly,

UCREICP)] an

with equality only when zone ¢ does not have any
connection to a zone with fixed pressure.

The last equation is important when we want to
show that the Jacobian matrix is positive definite.

3.2. Positive definite

Gerschgorin’s theorem can be used to locate the
eigenvalues. This theorem states that every eigen-
value of the matrix lies in at least one of the circular
discs, in the complex domain, with centres J(z, )
and radii 3|J(z, j)|,

k=J(, D)< 2 WG f (18)
],]#1
We know that,
G, 9> 2 G, D) >[e~JG, 5)| (19)
Jr2#

that is, all values on the disc are positive or zero,
i.e., all eigenvalues > 0. The matrix is said to be
positive semi-definite. A necessary and sufficient
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condition for a matrix to be positive definite is that
all the eigenvalues of the matrix should be >0.

Every general non-singular matrix can be trans-
formed into a triangular matrix and every symmetric
matrix into a diagonal one. These similarity trans-
formations play an important role in the computation
of eigenvalues because they leave the eigenvalues
of a matrix unchanged. The diagonal elements in
these matrices are the eigenvalues of the matrices.
This follows from the definition of eigenvalues and
expansion by minors.

The definition of eigenvalues e of a matrix A is,

det(A—el)=0 20)

where I is the unity matrix.

It follows directly from the definition of deter-
minants that the value of the determinant for a
diagonal or triangular matrix is the product of the
diagonal elements, i.e., the determinant of a matrix
J is the product of its eigenvalues, i.e., det(J)=
II eigenvalues.

det(J) =0 means that the matrix is singular by
definition. No unique solution exists, possibly due
to modelling or round-off errors. If one or several
nodes are completely isolated from other nodes and
constant pressures, the system of equations is sin-
gular. "

The conclusion is that the Jacobian matrix must
be positive definite except when no unique solution
exists.

A necessary but not sufficient condition for
det(J)=0 is,

J(0, i)= 2 Wi, 9| €3
VA )

for one or several rows in the matrix. Gerschgorin’s

theorem states merely that the eigenvalues must be

on the discs — not exactly where.

Any symmetric positive definite matrix A has a
unique decomposition in the form,

A=GGT (22)

where G is a triangular matrix. The consequences
of this will be discussed in the next Section.

4. Linear solvers

This Section is mainly based on refs. 1 and 7.

A direct method, compared with an iterative
method, solves a system of equations in a certain
finite number of steps. Direct methods are usually
the most efficient methods for small- to medium-
size full systems. If special characteristics of the
matrix are taken into consideration direct methods
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can also be efficient for larger systems. Very large
and spare systems are best solved with iterative
methods. The number of operations using a direct
method is proportional to N°® and, using an iterative
method, N2 where N is the order of the matrix. It
is easy to show that if more than N iterations are
needed the iterative method is not appropriate.
Obviously the iterative methods become more at-
tractive for a larger matrix. However these methods
will not be discussed here.

Our concern is with matrices solved by Gaussian
elimination, LU-factorization, Cholesky’s method,
and the inverse. This includes studies of general,
symmetric, and positive definite matrices. Band and
skyline methods are used to improve the solvers.

The number of operations required for some
methods has been estimated with finite sums. “Op-
eration” is defined here as one multiplication and
addition — a useful measure.

4.1. Gaussian elimination with back
substitution

A triangular matrix can easily be solved with
backward or forward substitution depending on
whether the matrix has an upper or lower triangular
form. A general matrix can therefore be solved if
it is first reduced to a triangular form.

The Gaussian elimination method reduces a gen-
eral matrix to a triangular form. The technique is
to eliminate corr; of the system J corr= —f from
the last N—1 equations by subtracting multiples m
of the first equation. Thereafter corr, is eliminated
in the same way from the last N — 2 equations. This
procedure is repeated until we have an upper tri-
angular form with elements . The diagonal elements
are called pivotal elements.

The compact scheme for Gaussian elimination
can be written,

k-1

Uig=Jig— 2 MUy k=1, ...,N j=Fk, k+1,..., N.
p=1
23)
k—1
Ji— zmipupk
my= —="——  j=k+1, ..., N. (24)
Ut

where j, m, and u are the elements in J, L, and
U respectively.

The backward substitution can be written in com-
pact form,

corr;= i=N,N—1, ..., 1

'(25)

Forward substitution is done in a similar way.
The total number of operations for large N and
one right-hand side is approximately N2/3 +N2/2.

4.2. Pivoting

If a pivotal element becomes zero the Gaussian
method obviously does not work since division by
zero is not a defined mathematical operation. To
solve the problem we can interchange rows or
columns. In this way it is possible to find a non-
zero pivotal element as long as the matrix is non-
singular. Any non-singular system can thus be re-
duced by Gaussian elimination with pivoting. Pi-
voting requires a large number of logical operations.

4.3. LU-factorization
The LU-factorization decomposes a matrix A into
a lower L and an upper U triangular matrix,

A=LU (26)

Then the system Ax=b is equivalent to LUx=Db
which can be solved as two triangular systems Ly =b
and Ux=y. For every non-singular matrix a LU-
factorization exists. In fact there is an equivalence
between Gaussian elimination and LU-factorization.
The elements in L are the multipliers 7 and the
matrix U is the upper triangular matrix. Equations
(23) and (24) are therefore also valid for LU-
decomposition.

The LU-decomposition requires N2/3—-N2/2 op-
erations and the two triangular systems N2 oper-
ations, i.e., the same as Gaussian elimination.

4.4. Cholesky’s method

For apositive definite matrix, Gaussian elimination
without pivoting is always possible, i.e., no pivots
are zero as follows from e>0. We can show that
if Gaussian elimination can be carried out without
pivoting for a symmetric matrix then there exist
transformed elements m and « which form a sym-
metric matrix. This follows from eqn. (22).

Thus, if the matrix is symmetric positive definite
we have only to compute L and the number of
operations is approximately halved to N3/6 com-
pared with the general Gaussian elimination without
pivoting. A symmetric positive definite matrix does
not require pivoting to control round-off errors.
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Equations (23) and (24) are now simplified to,

k—1
Ms, = G — Elmk,ﬁ)"-s k=1,...,N @n
.
k-1
Jue— Emipmkp
my= —>22——— §=k+1,...,N. (28)

My

This is Cholesky’s method. The first equation
calculates the diagonal elements and the second
calculates the elements of the lower triangle.

4.5. Band matrices

The non-zero elements in a band matrix are
arranged in a diagonal band of width 2M + 1 where
M is the half band width.

In Fig. 2, the LU-factorization method has been
adjusted to various matrices and a comparison made
of the number of operations involved solving the
system. The curves have been estimated with finite
sums.

The number of operations for the symmetric case
is approximately NM2/2 — M 3/3. Note thai the num-
ber of operations is based on the decomposition
only — backward and forward substitutions are not
included although in this case it is just a fraction
of the total number of operations. Administration
in the program also is not included so that these
curves are very much simplified. Nevertheless we
can expect a large reduction in execution time if
we take the special characteristics of the matrix
into account.

The lower limits of the sums in eqns. (27) and
(28) are increased according to the band width.
The lower limit will not be 1, but instead where

Relative Execution Time (-]

Full, non-symmetric

09 4

0.8 4 ." Band, non-symmetric
.

0.7

0.6 1

Full, symmetric

0.5
0.4 4
0.3 1 .+” Band, symmetric
.

0.2 1

0.1

00 Les=zt ’ i
0 10 20 30 40

a9 Half )
Band Width |-|

Fig. 2. Relative time for LU-decomposition on different matrices.
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the band starts for the specific row. This explains
the reduction in time.

4.6. Skyline

The skyline method takes into account variable
lengths of non-zero rows and columns in a matrix.
All the elements below a non-zero element in the
upper triangular part are taken into consideration,
these non-zero elements forming a skyline profile.
The lower triangular part is treated in a similar
way, all elements to the right of a non-zero element
being taken into consideration. Zero-elements out-
side the profile are not considered while zero-ele-
ments inside are. In this sense the skyline can be
thought of as an irregular band. If there is one zone
that has connections to almost all other zones, the
best skyline is achieved if this common zone is
placed as the last zone.

For a symmetric matrix we need only to handle
the lower (or upper) part of the matrix and the
diagonal. The skyline is therefore defined by the
array of row lengths in the lower part of the matrix.

Again, the lower limits of the sums are changed
in eqns. (27) and (28). The lower limit will follow
the skyline. This means that the skyline method
always requires equal or less number of operations
than to consider the matrix as a band matrix. The
execution time depends on sparsity and cannot easily
be generalized as in the case of the band matrices
above. However, some examples are presented in
Section 6.3.

4.7. Inverse

The system of equations J corr= —f can be solved
directly as corr= —J~!f. This requires the calcu-
lation of the inverse of the matrix J followed by
a multiplication.

The calculation of the inverse requires N° op-
erations and the multiplication N2, in total N2+ N2,
This should be compared with the fewer iterations
of the preceding methods. The calculation of the
inverse is therefore not recommended when solving
systems of equations.

Another disadvantage is that the inverse of a band
matrix does not in general have a band structure.
Gaussian elimination and LR-factorization on the
other hand preserve the band structure.

5. Non-linear solvers

This section is based on refs. 8—-11.
The Newton-Raphson method can be modified
to avoid occasional problems. In principle, most
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modifications deal with finding an appropriate over-
or under-relaxation coefficient A for eqn. (9),

S,)
pn+1 pn A J(pn) (29)

The Newton—-Raphson correction corresponds to
A=1.0.

Our links have a type of flow function that, under
certain conditions, creates very slow convergence.
If Newton—Raphson converges a particular function
and both the first and second derivatives are con-
tinuous then it is a second order method, i.e., the
asymptotic error constant is 2. The method does
not converge at all if the flow balance equation is
symmetric and has a flow exponent of 0.5. The
tangent of the function has, in this case, the same
value in each step of the iteration process and
consequently no convergence can be expected.

Two different methods will be discussed that, at
times, can accelerate the rate of convergence of
Newton—Raphson.

5.1. Extrapolated relaxation coefficients

The rate of convergence of Newton—-Raphson can
sometimes be accelerated. Steffensen iteration con-
sists of two steps of fixed-point iteration and there-
after the use of the three available iterates Dn_1,

n and p, . to get the starting value for the next
step.

A linear interpolant to the iteration function h(p)
in p,_; and p,, i.e., the secant, should be a good
approximation to h(p) in the interval if the slope
of h(p) varies little close to the root. Therefore,
the iteration function given by the secant can be
expected to give a good approximation of the root.

DPn —Dn
pe.z-trapolated =Dn+ 1 + =2 (3 O)
(p

n—pn—l) -1

n+1 " DPn

The method studied here is closely related to this
method. The approach above being applied to each
node and each node being treated independently
of the other nodes. There are therefore, as many
under-relaxation coefficients as there are nodes.

3.2. Optimized relaxation coefficients

To determine the root in a one-dimensional case
to the function f is the same as determining the
minimum of the function F defined as,

S=F' G2Y)
where

F'= dF/dp (32)

To determine the roots in a multidimensional case
to the function g is the same as determining the
minimum of the scalar function G defined as,

B} (E G ) -
g apA’apB’ )

G can be expressed as a function in the variable
A only. This means that G(A) is a one-dimensiona]
function. It can be shown that this function has a
unique minimum,

The minimum cannot be determined analytically
but the function G(A) can be approximated with a
polynomial,

P(A)=a+bA+c) (34)

which, for example, interpolates G(0), G(0.5), and
G(1.0). The minimum, A, of this polynomial is
easily determined and can represent the minimum
of G. The next approximation is taken as,

SWw,)
pn+1 pn /\mw,n,nJ(pn) (35)
Note that A, has to be determined in each
iteration step n. This means that in each iteration
step a Newton—Raphson solution and three evalu-
ations of G are required.
The function F of a one-dimensional function,

I=2C; sign(p —p)lp—p, (36)
is,

C} i+ 1
F= E w1 PP (37

where j are zones with fixed pressures and have
connections to the zone.

A multidimensional case is similar. The function
G of the vector function g is,

¢-3 3

[pi _pjlmj+1 (38)

where j are zones or fixed pressures with a con-
nection to zone 3.
The example given in eagns. (5) and (6) is,

C, C,

= - m+l+ = nz+1
nt 1 Ipa—p, —y [pa— D,
Cs 1. Ca .
e 7, + —
+ N + 1 lpa Pb, ng+1 lpb p4|
Cs
+ . ns + 1 (39)
n5+1 lpb p5l

where p, and p, can be expressed in A.




Determining this function involves about the same
amount of work as determining the derivatives. It
can be important to use “double precision” when
implementing this algorithm as well as in the rest
of the solver.

The function G is obviously a sum of non-negative
terms. The individual terms are strictly convex func-
tions as long as the matrix is not singular but a
sum of strictly convex functions is also a strictly
convex function, i.e., G.

A strictly convex function has a unique minimizer.
This in turn means that the equation g=0 has a
unique solution.

6. Timing of solvers

The aim here is to provide an overview of the
behaviour of various solvers in typical airflow ex-
amples.

The solvers were timed and tested in two programs,
AIRNET [12] and MOVECOMP-PC [13], with a
special analyzer or profiler, gprof, in the ULTRIX
32 library. The tests were made on a Micro-VAX
system. As two programs were used a significant
amount of work was done to ensure that all input
was identical.

6.1. Chosen networks

Representative networks were selected for the
tests which were essentially based on discussions
with George Walton at the National Institute of
Standards and Technology. The input to AIRNET
and MOVECOMP-PC was carefully checked so as
to be identical and the output was identical for the
examples used.

(1) 02-Network

A 2-node network with three links, according to
Fig. 3, is convenient to use in showing the classical
difficulties with Newton—Raphson for particular func-

A i
S0P @———O0——O0— @ st
OUTER  INNER OUTER
LINK LINK LINK

Fig. 3. A 02-Network.

+310 Py -50 Pa

Fig. 4. 10-Network.
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tions. All flow exponents are one-half. The ratios
between inner and outer links are varied as 10 000,
1000, 100, 10, 1, 0.1, 0.01, 0.001, and 0.0001.
The smallest link (s) has the flow coefficient 0.001
kg/s, Pa™. Outer pressures are 50 and —50 Pa.

(2) 10-Network

This example has been constructed especially to
show problems in different nonlinear solvers. All
flow exponents are one-half. The sizes of the open-
ings are a mixture of large and small with a maximum
ratio of 40 000. An additional example, with all
links equal to 0.001 kg/s Pa™ was also used. Outer
pressures are 50 and —50 Pa. Figure 4 shows the
network.

(3) 45/41- and 27 /25-Networks

These buildings consist of three and five floors
with eight rooms per floor. These examples enable
us to study the characteristics of different solvers
when the number of nodes is increasing.

The centre shaft is simulated in two ways — as
one node at middle-floor level (41 and 25) and as
one node per floor (45 and 27). The latter takes
into account friction losses in the shaft. The con-
nections between the floors were first arranged in
two ways — no connections and maximum possible
number of connections, i.e., tight and untight floors,
This created four different networks with different
degrees of band structure and could therefore be
used to show the differences between various linear

solvers.

One study, however, proved that the most inter-
esting cases are those with tight floors because they
show the greatest difference between a band solver
and a skyline approach.

R (R SECTION

Fig. 5. 27-Network.
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The buildings contain a mixture of large and small
openings. Outer surfaces 0.001 kg/s, Pa™; inner
surfaces 0.01; inner doors 1, and shaft 10. In
addition, all flow coefficients are set to 0.00] kg/
s, Pa™

6.2. Other assumptions

The criteria for convergence has to be well spec-
ified — a relative limit has some advantages. How-
ever, in this comparison we use an absolute flow
balance limit of E-6 kg/s or 0.0036 kg/h which,
for our examples, seems to be appropriate.

At a very low pressure difference, a very steep
gradient and large derivative can occur. A leak is
therefore linearized between 0 and 10~ Pa when
the pressure difference is below 10~° Pa.

All air densities were set to 1.20 kg/m?.

The sizes of the links, i.e., the flow coefficients,
are in the range 0.001-10 kg/s, Pa™ or 3.6-36 000
kg/h, Pa™ The maximum ratio is therefore 10 000.
The largest link represents a very large opening
similar to an open garage door. The flow exponents
are 0.5.

6.3. Linear solvers

Four methods were tested: a Gaussian with com-
plete pivoting, a band-Cholesky, a skyline-Cholesky,
and an iterative method. All runs were made with
MOVECOMP-PC, simply exchanging the linear sol-
vers. The iterative method, Gauss—Seidel, created
problems. Although the cause is unclear, too many
iterations are needed. Further com parison with this
routine is not included here.

A sparse matrix can be organized to limit the
amount of work during the solving procedure. To
create a narrow band or a low skyline are examples
of this. Simple automatic procedures in choosing
the numbering of the nodes might be possible
although this has not been done in this comparison.

The band routine is based on the Cholesky’s
method as described in Sections 4.4 and 4.5. To
avoid operating on zeros the algorithm has been
modified to take band structures into account. Zeros
outside the band are not involved in the calculations
which are done through the limits of the summations.
This can reduce the execution time considerably
as has been shown above and will be shown below,
The routine determines the band width and thereafter
operates on the band only, or more precisely, half
the band because the Jacobian matrix is symmetric.

Two features were tested. First, the execution
time as a function of the order of the matrix and
second, the execution time as a function of the half
band width. As a comparison an identical routine,

but one with no band features, and two routines
from LINPACK [14] were timed.

The result of the influence of the order of matrix
is shown in Fig. 6.

Two cases are shown, full matrix and diagonal
matrix. This gives the full range of all matrices, As
can be seen, the benefits of taking the band structure
into consideration increase with the order of matrix.
At order 40 a diagonal matrix is solved in 11% of
a full matrix. At order 20 the corresponding number
is 23%.

The result of the influence of the half band width
for a matrix of order 20 is shown in Fig. 7.

The drop in execution time for the band solver
with decreasing band width is similar to the curves
in Fig. 2. The non-band solver is identical to the
band solver except that the band features are re-
moved, i.e., this routine operates on the full matrix,
We can see that the administration of the programs
is distorting the results.

The dotted lines show the LINPACK routines,
LINPACK(B) is a routine working on a band matrix
stored in packed form. Time taken to store the data
in packed form is not included here. LINPACK(NB)
is a similar routine without the band features. These
routines are generally more time-consuming.

It is not certain that the matrix has a well-
developed band structure in airflow applications.
The skyline approach is therefore interesting.

The band solver and the skyline solver were timed
on all networks. As has been mentioned, these
examples were chosen because they give as large
a difference as possible between these methods.
The difference between them is therefore the max-
imum range that is likely.

The figures are determined by one run per matrix
and then divided by the number of iterations. The
calculations for the matrix sizes 10 and 02 are
forced to 200 iterations for purposes of accuracy.
Since it seems to represent a good average the

Execution Time [s)

0.400 - Full Matnix

0.300 A

0.200 4

0.100

See Fig. 7

___-"-m_/_—‘___,_,—-—- Diagonal Matrix
'

0.000 -
0 10 20 0 qp  Orderll
Fig. 6. The influence of the order of the matrix on the execution

time for the band solver.
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Fig. 7. The influence of the half band width on the execution
time for the band routine and LINPACK.

determination of the half band width and the skyline
are, in these cases, assumed to be done once for
every sixth iteration. This determination requires
an insignificant amount of time for any of the matrix
sizes used here.

In Table 1 the ‘“Half band width” column does
not give any information about how well the band
is organized. The “Ratio-Elem” column contains
this information. The ratio is defined as the ratio
between the number of elements in the lower tri-
angular matrix, including the diagonal, that the solver
will operate on for the skyline and band methods
respectively. The lower the ratio the less organized
the band structure.

It can be seen that the increase of time for the
Gaussian method is close to the cube of the order
of the matrix as predicted in Section 4.1. The
complete pivoting is a N® process in logical op-
erations which explains the substantial difference
between the Gaussian method and the band ap-
proach. The numbers within parentheses represent
the time for the skyline compared with that for the
band solver. As expected, the larger the matrix the
more efficient the skyline approach. The skyline

TABLE 1. Execution time per iteration for the linear solvers (s)
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does not require significantly more time even for
a perfect band or full matrix.

The examples chosen have very poor band struc-
ture, the intention being to show the difference
between the band and skyline solvers. The 10-matrix
has almost as bad a band structure as the two larger
networks. Formore realistic examples, the difference
between the band and the skyline methods is likely
to be smaller although the skyline approach seems
always to equal or be faster than the band method.
The skyline-Cholesky’s method is therefore consid-
ered to be a better choice for an efficient solver.

6.4. Non-linear solvers

Relaxation coefficients were selected according
to three methods: Newton-Raphson, extrapolated
coeflicients, and an optimized method. All methods
were initialized with two conventional New-
ton—Raphson iterations.

The Newton—Raphson and the optimized method
were timed in MOVECOMP-PC. The number of
iterations for the extrapolated method was deter-
mined in AIRNET. This method was thereafter as-
sumed to require the same time per iteration as
Newton—Raphson.

It was expected that the initialization might in-
fluence the number of iterations and it is therefore
important that the same initialization is made for
all test runs. If a direct linearization of the original
problem is performed only the exponents are
changed to unity. This means, in fact, that the
function is linearized through 0 and 1 Pa pressure
differences. Such a direct linearization was chosen.

It is preferable, of course, to linearize each flow
equation as close to the solution as possible — one
Pascal may seem to be too low and a factor of ten
higher is many times more likely. It is best to chose
the average pressure difference of all links. However,
this average value varies considerably from network
to network.

The 27/25 matrices have a similar number of
iterations as the 45/41 matrices for all three meth-
ods. This is a consequence of the similarity of the

Matrix size Gauss Band Skyline Half band width Ratio-Elem

45 6.1678 0.1437 0.0867 (60%) 9 175/405 (0.43)
41 5.2004 0.2753 0.1354 (49%) 20 305/651 (0.47)
27 1.4086 0.0688 0.0400 (58%) 9 103/225 (0.46)
25 1.2342 0.0748 0.0494 (66%) 12 136/247 (0.55)
10 0.0839 0.0123 0.0096 (78%) 33/52 (0.63)
02 0.0013 0.0010 0.0010 (100%) 1 1/1 (1.00)
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matrices except their sizes. The Newton—Raphson
method has problems, as expected, at high and low
ratios and therefore is less useful.

The number of iterations for the two other methods
are far less than for Newton—Raphson. The optimized
method requires, on average 46% less iterations
than the extrapolated method. For this comparison,
the selected examples are shown in bold in Table
2. There is a linearization of some links at the
highest ratios for each matrix size owingto extremely
small pressure differences.

The results from some selected examples of a
calculation with all links initially linearized at 0,0.1;
0,1; 0,10; 0,20; 0,30; and 0,40 Pa are given in
Table 3. The exponents in the modified examples
have been given different values in therange 0.5-0.9,
the larger opening the lower value. If all exponents

TABLE 2. Number of iterations for the non-linear solvers

Matrix size Newton Extrapolated Optimized
45-10000 > 1500 15 8
45-1 24 9 6
41-1000 >1500 15 8
41-1 21 9 6
27-10000 > 1500 15 8
27-1 25 9 6
25-1000 >1500 15 8
25-1 22 9 6
1040000 >1500 19 i
10-1 8 8 6
02-10000 >1500 11 5
02-1000 946 11 7
02-100 86 9 6
02-10 8 8 5
02-1 1 2 1
02-0.1 10 8 5
02-0.01 91 9 6
02-0.001 964 11 7
02-0.0001 > 1500 11 5

TABLE 3. Influence of initialization on number of iterations

Matrix size 0.1Pa 1Pa 10Pa 20 Pa 30 Pa 40 Pa
45-10000—-mod 8 8 8 8 8 10
45-10000 - 8 - - - -
45-1-mod 5 4 4 4 4 4
45-1 - 6 - - - .
10-40000-mod 7 7 8 9 9 9
1040000 - 7 - - - -
10-1-mod 4 4 4 4 4 4
10-1 - 6 - - - -
02-10000-mod 6 7 7 7 7 7
02-10000 - 5 - - - -
02-10-mod 4 4 3 3 3 3
02-10 - 5 = - = .

are equal the pressure where the initialization is
done will not change the result as shown below.
The system of equations is unchanged owing to the
fact that the Jacobian matrix and the right hand
vector are multiplied by the same constant. It is
not trivial to compare the results from the modified
and the unmodified examples since the modified
examples are, in many ways, different from the
original examples. However the column for 1 Py
shows, to some extent, the range for the number
of iterations when the €xponents are given more
realistic values. It is of interest to note the changes,
with initialization, for each modified example. The
battern is, although not clear because of lineari-
zations, that more realistic values will reduce the
number of iterations. For this comparison the op-
timized method was used,

Networks with high ratios require fewer iterations
when the initialization pressure is lowered. The
opposite is the case for the networks with low ratios.
The latter networks have higher pressure differences
across the openings with exponent 0.5 than the
other networks. The 0.5 openings are the most
important because these will have the largest ap-
proximation when they are linearized. This verifies
that the closer we can linearize the flow equations
to the final solution the fewer iterations are required:
Nevertheless it seems that initialization is not critical
for these examples and that the choice with a direct
linearization, l.e., 0,1,is a reasonably good choice,
Other types of linearizations of course are possible
and would probably have given other results.

The figures in Table 4 are based on one run per
example but are forced to 50 iterations and one
Newton—Raphson to start with. This procedure was
selected to avoid interference from some subroutines
and the first Newton—Raphson iteration. All cal-
culations were done with the skyline solver.

The numbers in parentheses are the contributions
from the linear solver; compare with Table 1.

The increased time for the optimized method
depends almost entirely on the power functions,

TABLE 4. Execution time per iteration for complete solvers (s)

Matrix  Newton Optimized Ratio:

size Optimized /Newton
45 0.373 (23%) 0.957 (9%) 2.6

41 0.392 (35%) 0.955 (14%) 2.4

27 0.216 (19%) 0.559 (7%) 2.6

25 0.222 (22%) 0.561 (9%) 2.5

10 0.075 (13%) 0.168 (6%) 2.2

02 0.036 (3%)  0.060 (2%) 1.7
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TABLE 5. Execution time for complete solvers (s)

Matrix size Extrapolated Optimized Difference
%)

45-10000 5.707 5.904 -3
41-1 3.599 4.041 —-11
27-1 1.983 2.325 -15
25-1000 3.397 3.471 -2
1040000 1.454 0.897 +62
10-1 0.612 0.636 —4
02-10000 0.404 0.252 +60
02-10 0.294 0.252 +17
Total 17.450 17.778

eqns. (37) and (38), that must be evaluated in the
optimizer.

According to the figures within parentheses the
contribution of the linear solver is 2—35% of the
total time in the solver.

To find the time difference between the complete
solvers the number of iterations has to be multiplied
by the time for each iteration — remembering that
the two first iterations are Newton—Raphson
iterations. The optimized method switches to
Newton—Raphson if A > 0.95. This has two purposes,
first, it prevents unnecessary optimization and sec-
ond, it eliminates the influence of round-off errors
in the optimizer.

If we assume that the extrapolated method does
not require any significant extra time relative to
Newton—Raphson, then the methods are quite equiv-
alent. In fact the extrapolation method requires
about 2% more time than Newton—Raphson. This
has been included in Table 5.

The choice of a non-linear method is not as obvious
as in the case of the linear solver. The optimized
method always finds the solution in fewer iterations
than the extrapolated method which indicates that
the optimized method is more efficient in finding
the appropriate under-relaxations. On the other
hand, the process of finding the relaxation coefli-
cients is so time-consuming that the methods have
almost the same execution time for the test cases
based on total time for all examples. The main
argument for recommending the optimized method
for incorporation in infiltration programs is that the
method itself is more efficient and stable. The time-
consuming process of finding the relaxation coef-
ficients is a different matter, a pure numerical or
mathematical problem.

7. Conclusion

The aim of the present study is selecting efficient
and robust methods to be used in infiltration pro-
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grams to solve the nonlinear system of equations
representing the airflow distribution in multizone
buildings.

Taking into account the special characteristics of
the Jacobian matrix, we select a skyline-Cholesky's
method for the linear solver. This method can be
used in a general way for the problem we are dealing
with and it appears to be the more efficient one.

The task is more difficult with regard to the
nonlinear solver. Even if a generalized New-
ton—Raphson method is selected, the choice of an
under-relaxation process to ensure the convergence
and efficiency is not obvious. We tested two different
methods, an extrapolated method and an optimized
method, of finding the under-relaxation coefficients.
Although the latter method is more time-consuming
in finding the relaxation coefficient in each iteration,
it appears to be safer and more efficient in the
resolution of the nonlinear system. In testing these
two methods on the same sample of test cases we
found that they are very similar regarding total time.
We suggest the optimized method to be used for
the nonlinear solver.

Nomenclature

A matrix, general

C flow coefficient

corr correction vector
eigenvalue
flow balance function
F'=f

flow balance function
scalar function

matrix, triangular
iteration function

node number

matrix, unity

node number, element in J
Jacobian matrix

matrix, lower triangular
element in L

mass flow

half band width

flow exponent

order of matrix

matrix, upper triangular
element in U

pressure

polynomial

complex number
relaxation coefficient
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Super- and subscripts

a,

n
T

b zones
iteration number
transpose

t,J, k, p elements in J, L, and U
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