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Simple physical and dimensional arguments are tued to delermine the laws relating the massfiow
induced wilhin a closed recirculating system representatioe of a domestic stairwell to the eneryy
input drioing the fow and lhe temperature dfurential established between chatnbers aboue and
below the stairwell. Appropriate dimensionless groupings are inftoduced to characteüse lhß kind
ol system. Experimental results obtuined from a one-half scale model of a stairwell are used to
oalídate the simplest analysß and to define the infuence of a Reynolds number characterßtic oÍ
the fow. The results are used to intsestigate the utility of models ofoarious scales.

6tr]
Building ond Enaircnment,Yol 21, No.3/4, pp. 149-153, 198ó

Printcd in Creat Britain

A. J. REYNOLDSi'

The Scaling of Flows of Energy and Mass
Through Stairwells

1. INTRODUCTION

IN RECENT years much effort has been devoted to the
development of energy models of complete buildings.
Typically, these models establish energy balances for each
.of a number of 'zones' into which the building can be

divided and then solve the numerical problem posed by
these sirnultaneous constraints, to determine a consistent
pattern oltransfers between the zones. The inputs to such
a model are solar radiation to or through the envelope
'of the bu,ilding and heat release within the several zones,

together with a speciûcation of any forced ventilation
which may be provided. It is also necessary to define in
a realistic ma¡lnef the mechanisms of transfer between
the 'zones', typically discrete rooms or other spaces

within the building. The present paper deals with one of
the most important mechanisms of inter-zone transfet,
namely, the flows up and down the stairwells that connect
the individual storeys of buildings. For definiteness, our
study has concentrated upon stairwells typical of those
occurring in houses, although the ptinciples a¡e more
widely applicable.

As part of the 'Energy in Buildings' Specially Sup-
ported Programme of the Science and Engineering
Research Council a number of linked investigations have

been carried out, using physical models (at one-half and

one-tenth scales) to investigate the detailed flow processes

and the overall performânce of various stairwell geom-

etries, and using computatiorral models to investigate
features of the flows not readily determined using the few

dozen measuring probes that can be deployed in a physical

model. These aspects of our work will be described
in other papers. The immediate concern of this paper
is the development of the simplest kind of analytical
modelling o[ the flow processes within stairwells. This
provides the means o[ designing experiments on stair-
wells and of interpreting their results. It also suggests the

structure of the formulae that should be introduced into
a computer model of energy transfer within a building to
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characterise in a more realistic manner the flows of.mass
and energy between the several floors of the building.

In view of the evident importance of transfers through
a stairwell for the energy balances within a typical dwell-
ing, ìt is surprising that so little information exists in the
literature on these processes. The only detailed study
known to us is a recent paper by Feustel et ø1. fll, and
that deals with the stack effect in a multi-storey building
and is therefore not relevant to the rnore typical situation
in domestic accommodation a few storeys in height.

2. TLINDAMENTAL DIMENSIONAL
CONSIDERATIONS

Figure I illustrates the essential features of the system

to be considered; only a closed, recirculating system is

taken into consideration in this first analysis. Conditions
will be taken to be essentially constant in time, though
this class of flows must be expected to exhibit random
fluctuations about time-mean values. A flow passage

whose significant cross-sectional area is I connects an

upper and a lower chamber, where the mean tem-
peratures are T, and T¡, respectively. The effective

difference in elevation of the two chambers is l¡, and an

air flow atrate V circulates betweèn the chambers, driven
by a supply of energy alrate I tô the lower chamber, the

balancing extraction of energy (by conduetion to the

walls) being Q, for the lower chamber and Q2 for the
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upper. The fluid-mechanical resistance to the upwards
flow Zand the equal compensating downflow is indicated
by the dimensionless loss coefficient r(, which must be

expected to depend upon the Reynolds number Re of the
system, so that l(: /(Re), where Re is some Reynolds
number characterising the process.

In Fig, 1 an elongated connection between the upper
and lower storeys is shown. In realistic stairway con-
figurations the upper and lower volumes merge more
abruptly; hence it is realistic to neglect any possible heat
transfer from the stairwell itself.

Certain properties of the circulating fluid also play a
part, namely: the bulk coefficient of expansion, A: ll7.
(where Tis the mean absolute temperature of the system),
p, the mean density, and c' the specific heat. Throughout
this discussion, we shall assume that the temperature
ranges only over a few degrees, so that an intermediate
value can be adopted without significant error, in cal-
culating p, p and V.

In terms of these parameters, we can postulate that the
circulation established by the supply ofheat at the lower
level is dependent upon the other quantities as follows:

v - 0,8rler,A,K,h, g,þ,p,co. (l)

However, in the basic force balance for the system, the
combination pgh anses, and it is only in this way that
these quantities enter into the specification of the motion.
Also, in the energy balance the combination Qlpco
occurs. Hence the relations of the general class (l) that
are of physical significance are of the form :

v - Qlpto,þsh,A,8,10úK. (2)

The four dimensioned quantities appearing here contain
three independent dimensions. As a consequence the
result can be compressed by the introduction of a single
additional dimensionless grouping :

(VIA\3

@itt-ll¡;ÇÐ: "f(0,1Q¡K) or f(0,,18,,r.e)' (3)

Introducing a Froude number to characterise the force
balance

Fr, V
= AAh)n (4)

and a Stanton number to characterise the energy balance

"r- 
Iù!-- (5)

pcoTA(gh)u2

we obtain

Ft'/St: .f (8,18,,F(e). (6)

Hence

Fr æ Stt/3 (7)

for a specific system in which the role of Reynolds number
is insignificant.

It is also possible to conceive of the flow Z as arising
from the imposition of the temperature differential
d'T : Tz- ?n' . Thus

t - LT,þsn,Q,¡Q.,A,,x (8)

giving rise to the dimensionless result

(vlA)'
ffi: f (Q'lQ"Ð

and

Fr2

Ãt/t-: r(Q'z/Qr'Re)' (e)

Then for a specified system in which Reynolds number
does not play an important role

F? æ. L,TIT (10)

and it follows from equation (7) that

LTIT æ.5t2t3. (l l)

3. THE ROLE OF REYNOLDS NTJMBER

The results (7), (10) and (l l) provide the most primitive
representation of the scale-dependence of this kind of
system. tsefore seeing how they accord with reality, we
shall consider modifications which express the effects of
Reynolds number. These may be expected to be modest
in comparison with the effects of Froude number, for
the flow-resisting losses arising in this high-Reynolds-
number flow may be expected to be rather weakly depen-
dent upon Reynolds number. For turbulent flow in a
smooth-walled channel, for example, Kæ Re-r/5 indi-
cates the nature of the dependence. In a rough-walled
passage or one with sharp corners at which the flow is
induced to separate, the dependence upon Re is even
weaker.

Adopting the approach commonly followed in devèl-

"ðþing simple scaling laws in the absence of a detailed
solution to a complex flow problem, we postulete that
the effects of Reynolds number can be accounted for by
a power-law factor introduced in equation (7). Thus

Fr Rep oc Str/3. (12)

The form ofthe corresponding generalisation ofequation
(10) can be obtained by observing that the basic energy
relation

Q _ pcotttf
implies that

St - FrAfl?. (13)

Combined with equation (12) this gives:

LTIT æ. Rep St2/3. (14)

Thus the single index / serves to define the role of
Reynolds number, and it is to be anticipated that p << l,
consistent with the modest role expected for viscosity
in this class of motions.

4. COMPARISONS WITH MEASUREMENT

A series of measurements carried out in a particular
stairwell or stairwell model with various heat inputs Q
serves as a means of assessing the efficacy of theseìesults
of dimensional analysis. Equations (7) and (ll) imply
that

Væ,Qtrt and LTITæQ4t (15)



while the more general equations (12) and (14) imply
that:

Væ, and

L,TIT æ. VP043 ocQ@+zrst(n+tt. (16)

The experiments carried out on a one-half scale model
will be reported elsewhere. Here we need note only that
they indicate that

vnSo'", L,TITæ.Qo82. (17)

Greater confidence can be placed in the first of these

results, since the determination of the temperature
difference which characterises the process is not straight-
forward, involving as it does the determination of single
temperatures typ:fying above-stairs and below-stairs
conditions.

Evidently the primitive results (15) are not grossly
incorrect. However, the results (16) are able to provide a

superior representation of the experimental results. Com-
parison of the first of equations (16) and the fl'st of
equations (17) suggests that

p: rl3. (18)r

The power appearing in the second of equations (16) is

then 3/4, somewhat different from the value 0.82 sug-
gested by the experiments, but a marked improvement
on the value 213 given by the primitive analysis.

Adopting the value of p given in equation (18), we

obtain the specific results

I
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very similar to the results of experiment [equation (17)]
which provided guidance in their derivation.

6. THE EFFECTS OF SCAI.E

Two lactors under the control of the experimenter are

the size of the model and the magnitude ol the energy
input driving the motion. The first is, of course, decided
once-for-all in the construction oleach model, while the
latter can readily be altered during a series ol exper-
iments. Indeed, an important function of the preceding

dimensional considerations is their linking of the effects

of size and energy input, so that variations in the con-
veniently changed parameter (energy input) can be used

to infler the effects ol geometric scale.

In passing, we may note that it is possible to construct
a distorted model, in which vertical and horizontal length
scales differ. However, an investigation based on the laws
developed above reveals no advantage that would com-
pensate for the evident loss ol fidelity in the modelling of
the geometry-dependent loss characteristics of the flow
passages.

In discussing the effects of scale we shall consider three

ratios of model to prototype properties:

model dimensions : h^lh: (A^lA),t, (27)I_
prototype dimensions

modelenergy input
Qlaprototype energy lnput

model Froude number : Fr-/Fr

(28)

(2e)Fr Rer/3 cc Str/3

L,TIT æ. Rer/r St2/3

5. ALTERNATIVE FORMI.JLATIONS

V/hile the preceding formulae do serve to indicate the
leading features of the system under consideration, they
can be recast in forms that display the relationships more
clearly. An appropriate Grashof number for the system

sþL,TAhCr ="ff: (Re/Fr)r^r/T = STLTIT (21)

where

V
,s : Re/Fr : ¿trzlgh¡tt2 ¡v and Re : vAr¡7 ez)

is a characteristic Reynolds number. Note that the par-
ameter ,S : Re/Fr is a characteristic of the system and
not of the 'operating point'.

Results (19) and (20) can now be rewritten as

Gr oc Re3 : 53 Fr3 (23)

St cc Re4/S3 : SFr (24)

Gr cc (S3 St)r/4. (25)

From these expressions, we obtain directly the power-
law relationships between the leading variables:

LTæ.V3, Væ.Q',rt, LTæQtrt Q6)

for a particular system. These formulae are, of course,

prototype Froude number

Taking the physical properties of the circulating fluid to
be essentially constant and independent of the energy

input and the response to it, we can exPress the ratios of
all the quantities arising in this analysis in terms of the

first two ratios:

s^ls:13t2 -l3tz
St^lSt: ql-5t2 : f 413t2

Gr-/Gr - q3t4l3t2 : f3let2

Re-/Re - qtt4ltt2 : fl3t2

Fr-/Fr:qtt4l-t :f

V^lt: qtt4l3t2 : f l5t2

Ail,:q :.fotn

LT'/Lf - q3t4l-3!L -- î"fn
u-fu: qrle¡-tt2 - flt2.

(30)

The third column in this set of results is obtained by
noting that ¡: qrt4lt implies that q: /a/4. These results

are useful in indicating the effects on other parameters of
deviations of the Froude number-the parameter domi-
nating the dynamics of the flow-from its prototype

value.
Tables I and 2 give evaluations of the ratios of equa-

tions (30) lor two geometric ratios, one-half and one-

tenth scale. These happen to be the scales that have been

adopted in the experimental programme from which this
work springs, but they are ol more general interest in

(le)

(20)
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Fr^lFr: I
Re-/Re
Gr-lGr
st-/sr
V^IV
8^t8: q
LT,ILT
u-lu

Table l. Changes in parameters lor one-half-scale model
(/: j, s./s: 0.354)

Consideration of Table 2 suggests that the choice.,f : 1

corresponds to an energy input of only a fraction of
one watt, giving rise to temperature variations of small
fractions of one degree. The velocities too are very small,
and the Reynolds number is only a few percent ol the
prototype value. Evidently these conditions are not con-
ducive to the extraction of meaningíul experimental
results. Rather more useful experiments appear to be
possible for /:3 or 4. Here the Reynolds number is
around one-te¡rth the prototype value, the velocities and
temperature variations arè as large as or greater than the
prototype values, and the energy input will be of order
100W, sufficient to dominate the effects of varying
environmental conditions. A further increase in energy
input, to give f :6, gives even more easily measured
temperatures and velocities but at the price of moving
still further from the prototype 'oper¿ting point'. In
extending the scaling laws that far, we should perhaps be
investing in them greater confidence than they deserve.
It must be admitted that it is not easy to identify a
satisfactory operating régime for a model this small. Per-
haps its greatest value is in flow visualisation and pre-
liminary tests upon whose quantitative results too much
confidence need not be placed.

It is tempting to consider the feasibility of using models
somewhat smaller than half scale, but sufficiently larger
than <.rne-tenth scale to avoid the worst of the problems
identified there in Table 2. Note that the quantities of
material and floor areas required for one-third and one-
quarter scale models are, respectively, around one-half
and one-quarter those for a half-scale model. The for-
mulae (30) provide the means of weighing up the relative
merits and demerits of such intermediate models.

7. CONCLUSIONS

l. For the simplest case of stairwell flow, namely, the
case of quasi-steady fully recirculating flow, the gross
features of the flow are described by relationships
between a Grashof number Gr (or alternatively the tem-
perature ratio A,TIT), a Froude number Fr (expressing
the balance between buoyancy and inertia forces), a
Reynolds number Re (introducing the influence of vis-
cosity on the resistance to the flow), and the ratio of
energy extractions from the system above and below the
stairwell, Qrl8,.

2. If the role of viscosity is assumed negligible, the form
of the relationships for a specified value of the ratio
Qr¡Q, can be determined as simple power laws, using
dimensional arguments alone.

3. Experiments on a single experimental configuration,
but with varying energy input, serve to determine the
Reynolds-number effect, which can be expressed through
an additional power-law factor, to the accuracy con-
sistent with the available data.

4. The relationships thus generated are vital adjuncts
of experimental design, provìding the means of assessing
the effects ofchanges in the model size and in the energy
input to the model.

5. For one-half-scale models it is possible to determine
operating conditions which preserve the essential
dynamical features of the motion, while generating vel-
ocity and temperature fields that can readily be inves-

I
0.354
0.0442
0.3s4
0.1768
0.0625
0.354
0.707

t.3
0.460
0.0971
1.010
0.2298
0.1785
0.177
0.9 l9

T,4

0.495
0. l2l3
1.358
0.2474
0.240t
0.970
0.990

1.6
0.566
0.1817
2.320
0.2828
0.4096
1.448
l. l3l

Table 2. Changes in parameters lor one-tenth-scale model
(/: l/10, s./s: 0.0316)

Fr^lFr: f
Re-/Re
Gr-lGr
St./Sr

Y.tt
Q^IQ: q
LT^lLT
u-lu

I
0.0316
0.00003 I 6

0.0316
0.00316
0.00010
0.03 l6
0.316

3

0.0949
0.000854
2.187
0.00949
0.0081
0.854
0.949

4
0.t26s
0.00202

t2.83
0.01265
0.0256
2.024
t.265

6
0. I 896
0.00682

40.95
0.01897
0.1296
6.826
1.897

spanning the range of scales likely to be encountered in
practice.

An inspection of Table I reveals no substantial diffi-
culties attendant upon the adoption of half-scale model-
ling. The choice of that particular energy input which
generates a Froude number identical to that of the proto-
type (that is, f :1) gives rise to a Reynolds number
about one-third of the prototype value; such a ratio is
likely to be acceptable for a high-Reynolds-number flow
in which the losses are only weakly dependent upon vis-
cosity. A more serious matter is the fall of the model
temperature variations in the same ratio as the Reynolds
number, to about one-third the prototype values. Since
the prototype temperature variations are only a few
degrees, this implies that the model temperature vari-
ations will be of order one degree. Since the temperatures,
like other properties of the flow, display wide fluctuations
in time, this points to considerable difficulty in measure-
ment of the temperature field. For the choice /: | 1¡s
velocities of the model are some one-third below the
prototype values; this too indicates difficulties in
measurement, the velocities to be measured being of
order 21 m/s or less.

The difficulties of measurement identified in the pre-
ceding paragraph are alleviated (not eliminated, since
even the prototype values of temperature and velocity
cannot be measured easily) by increasing the heat input
to about four times the value necessary for f: l, to give
a Froude number ratio of /: 1.4, When this is done, the
magnitudes of both temperature and velocity fields are
identical for model and prototype. A small move of the
Reynolds number towards the prototype value is also
achieved, the model value being about one-half that for
the prototype. Since the experimeter will not wish to
operate his model system with values of Froude and
Reynolds numbers too different from those of the proto-
type, it can be argued that the choice q : J for /: j
provides a nice balance between the necessarily con-
flicting aims of experimental design.
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tigatc<i using available measuring equipment. Models ol
this scale, or perhaps a littlc smaller, can thus be used

to determine the quantitative behaviour of prototype

stairwell flows.

6. For one-tenth-scale models it is not obvious that

there exist operating conditions which retain the essential

clynarnic features of the prototype flows, while at the

same time generating velocity and temperature fields that

can be measured with confidence. The role of models of
such small scales is thus likely to be in general inves-

tigations, possibly using flow visualisation'
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