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The majority of practically relevpnt flows are three-dimensional, turbulent, confined within 
complex domains, highly convective and characterised by steep propeny variations. In such 
circumstances, adequate numerical accuracy hinges on the use of fine grids and high-resolution 
numerical approximations. Both tend to diminish iterative stability and solution economy, however. 
As regards the latter, the number of iterations required to achieve convergence with traditional 
relaxation methods, such as ADI, SOR, and SIP, is typically proponional to N2-N3

, where N is the 
number of nodes. The more complex the turbulence model, the larger the exponent tends to be, and 
further deterioration arises with increasing geometric complexity, grid skewness, aspect ratio and 
accuracy of the convection scheme. There is, therefore, a pressing need to develop and apply solution 
strategies which diminish the above exponent. In ideal circumstances, the exponent would be close to 
1. 

f The multigrid method [MGM, Brandt (1977)] is one solution practice which has proven itself to 
be a highly efficient for linear systems, returning convergence in computational effons proponional 
to Nxlog(N). It is now widely applied in CFD, but rarely in conjunction with complex turbulence 
models incorporated into iterative pressure-based schemes for incompressible recirculating flows. Jn 
such a framework, inter-variate coupling, via the pressure field, plays an important role and must be 
carefully accounted for within the MGM implementation [Barcus et al (1988)]. When turbulence­
transpon equations are solved, additional measures must be introduced to secure realizability during 
prolongation and restriction which are key operations within the MGM. This summary deals with the 
latter aspect and illustrates the performance of the MGM implemented into a non-orthogonal, 
collocated FV method incorporating k-e models and a second-moment closure. 

J 
2. APPROACH 

A step-by-step description of the conversion of a single-grid algorithm to its MG counterpan, 
including the derivation of coarse-grid equations, restriction and prolongation operations, MG cycles, 
data structure and implementation of boundary conditions, can be found in Lien (1992). A more 
restricted account is given in Lien and Leschziner (1991). Two panicular issues pcnaining to the 
treatment of turbulence-transpon equations are considered herein. Both are concerned with the 
treatment of sources. 

With - denoting restricted (fine-to-coarse-grid-interpolated) values and " identifying coarse-grid 
quantities, evolving as the equations are solved on that grid, the following algorithmic practices are 
introduced: 

1. Ignore changes in the physical sources on the coarse grid as coarse-grid solution progresses. 

2. 

Sq, - Sq, = 0 for <P = k, f, UiUj 

Arrange the apparent source in the coarse-grid equation as follows: 

Ap~p - L: A.m~m = Ap~p - L: A.m~m - ~ = s:+ + s:-
m m 

s: 
where s:• and s:- arc, respectively, unconditionally positive and negative fragments. 
negative fragment is used to enhance diagonal dominance through: 

• • R Ap +- Ap - Sq, -/q,p 

(1) 

(2) 

The 

(3) 

3. Having obtained the coarse grid correction [ &p ]c, perform a positive-definite prolongation by 
means of: 



..... 

.. 
. -

.-

1-: 
I 

I~ 
1- 11 

i 1: 
l -~ . 
_ ___. 
~ . 

l ~ 
1~: 

I~ 

I 
I . 
~ 

I 

~ 
1_·= 
t_= 
L 
I 

I 

[ f)(/; ] c = [ b ¢1 ] c = [ b ¢1 ] +. + [ b ¢! ]-
(4) 

( )I </J~d + fJ¢i+ I 
</J new = ¢io1d _ 6¢>1- </Jold l = 1, 2, 3, 4 

where l&!>r and r&!>t are unconditionally negative and positive fragments, respectively . 

3. APPLICATION 

Speed-up ratios, expressed in terms of work units (WU) and CPU times, for a 30 laminar flow 
in a 30 cavity whose side wall are tilted by 27° are given in Table 2. Calculations were performed 
with two convection schemes and three cycle types ('FMG' denoting "full multigrid scheme" and 'R' 
denoting a residual-controlled cycle). The main application is a turbulent flow through a sinusoidal 
diffuser at Re0=t<>5, computed with the QUICK scheme, the k-E model and wall laws. The geometry 
and the ensuing strearnfunction field are shown in Fig. 1, while Table 2 gives speed-up ratios obtained 
with a fixed V-cycle for five grids, all having the same lateral densities in order to maintain an 
invariant distribution of y• -values along the near-wall grid line. Attention is drawn to the constancy 
of WU in Table 2, implying that the MGM performs in accordance with established behaviour in much 
simpler laminar conditions. 

V-cycle FMG-V FMG-R 

HYBRID QUICK HYBRID HYBRID 
ll u '°'rv l'l'U '°'·rv rr.., '-'"l"U WU '-'rU 

GR1D sg/mg sg/mg sg/mg sg/mg sg/mg sg/mg sg/mg sg/mg 

243 3.3 3.7 3.0 3.7 3.3 4.4 4.5 6.0 

323 5.7 6.3 5.0 5.9 5.7 7.5 7.6 9.9 

4()3 9.1 9.1 6.7 7.5 10.3 11.7 12.6 15.0 

Table 1: MG performance for laminar flow in 30 skewed cavity 

., u c.;ru 
GRID WU sg/mg sg/mg 

240 x 40 125.69 25.53 14.29 

200 x 40 107.64 20.68 11.98 

160 x 40 91.23 17.63 9.80 

120 x 40 101.80 9.65 5.41 

80 x 40 122.40 3.71 2.09 

Table 2: MG perf onnance for turbulent 
flow through plane diff uscr 
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Fig. 1: Streamfunction pattern for turbulent 
flow through plane diffuser 
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