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BSTRA

The technique of computational fluid mechanics is applied to simulate indoor air
movement and convective heat transfer induced by thermal sources in big enclosures.
This is achieved by solving a system of partial differential equations on conservation of

momentum, enthaply and mass with turbulent effect described by the k- model. The
equations are discretized using finite difference method and solved by the Semi-Implicit-
Method for Pressure-Linked-Equations-Revised (SIMPLER) scheme. Examples taken to
illustrate the capability of the technique are the air movement in an air-conditioned indoor
gymnasium and an office. Illustration of the predicted results for critizing the ventilation
efficiency and performance of the mechanical system in those big spaces are
demonstrated.
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INTRODUCTION

The technique of field modelling (see e.g. Spalding 1980; Alamadari et al. 1986; Whittle
1987); is a popular design tool to predict the airflow and temperature induced by
mechanical systems inside enclosures. A set of partial differential equations describing
conservation of momentum, enthalpy, and sometimes chemical species is solved
numerically from the present knowledge on computational fluid dynamics and heat
transfer (Patankar 1981; Minkowycz et al. 1988). Results predicted can be used to
assess the performance of Heating, Ventilation and Air-conditioning (HVAC) systems
installed in buildings with different configurations. This method is especially suitable for
predicting the airflow and temperature distribution in big air-conditioned spaces such as a
gymnasium, an atrium, a factory, or a shopping mall. Optium design on the diffuser
spacing, cooling load, and location of exhaust for contaminants can be achieved.

— 11—



Works appeared on the literature include the vorticity/stream function approach for
computing the air diffuser performance index (Nielsen 1974, 1975); sizing of heat using ~
two-dimensional laminar flow (Chu et al. 1976); studies on nonbuoyant and weakly
buoyant flow induced by mechanical heating systems for ventilation assessment
(Hjertager and Magnussen 1977); the isothermal flow induced by ceiling mounted
diffusers with the standard-dissipation model and a 'large eddy simulation' approachona

rectangular enclosure (Sakamoto and Matsuo 1980); the k-€ model approach with the
CHAMPION code (Almadari et al. 1986, Reinartz and Renz 1984); the three-dimensional

simulation and cooling load calculation based on the PHOENICS code (Chen et al. 1988;
Chen and Van der Kooi 1988); the vector potential approach (Ozoe et al. 1980, Yamazaki
. etal. 1987) on a ventilated cubic enclosure; the works of Murakami (1988, 1989, 1990)
on clean room design; works with moisture (Chow 1989); the atrium air-conditioning air
flow (McLean 1990, Whittle 1990, Seymour 1992); and the works with low-Reynolds-

number k-€ model on air supply parameters and boundary conditions by Chen et al.
(19914, 1991b). There are many others such as those papers presented at the Annual
Meeting of the Architectural Institute of Japan (1991) and a review is presented by Moser
(1991) concerning the IEA Annex 20 activities related to indoor aerodynamics. There,
the associated commercial and research packages for fluid flow simulation are also listed.

This article illustrated how a field model is used as a design tool to study the air flow and
temperature using a self-developed computer package (Chow 1989, Chow et al. 1991).

Besides solving the set of equations for mean flow and enthalpy using the k-& model
(Spalding 1980), an additional equation is included to describe the moisture ratio for the
air-conditioned space (Chow 1989). The simulation showed that satisfactory results can
be predicted in simulating aerodynamics in an indoor air-conditioned gymnasium and an
office. The model is found to be useful for building services engineers in designing
HVAC system.

FIELD MODEL

A field model (Spalding 1980; Patankar 1981) is able to predict the turbulent convective
air flow induced by the thermal sources within an enclosure. The average values of an air

variable ¢ defined by the following expression can be computed relatively easily using a
turbulent model:

Gi=0+¢' wi(1)
where ¢, is the instaneous value and ¢' is the fluctuation.

" The set of equations describing conservation laws on ¢, can be transformed into a form in
¢ with the fluctuation ¢' terms separated out, i.e.

2 (90) +div [p V 9 T grad 6] = Sy @)

- . ' . oy 2 " .
where p is the density of air, S is the source term of ¢ and V is the air velocity vector
which can be expressed in terms of its components u, v, and w in a three-dimensional
Cartesian coordinate (x-y-z) system as :

=t 5 Ve
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V=u§+v§ + Wz -(3)

The k-€ model is used in this study and now ¢ becomes the mean values of u, v, w,
enthalpy h, moisture content (or humidity ratio) f and turbulence parameters k, €; I'y is
the effective diffusivity for ¢. The corresponding effective diffusivity and source terms

are shown in Table 1. Note that the turbulent viscosity is expressed in terms of k and €
as:

C. pk?

€

D

He = . (4)

The moist air is treated as a mixwre of dry air and water vapor. Therefore, the
temperature T is calculated from the enthalpy h and moisture content f (Wang 1986) :

h=C,T+fh (5]

This model is only an approximate one that does not include a thermodynamic calculation
and so G, is taken to be 1870 kJ/(kg-K), h, is 2501 kJ/kg.

The set of equations given by (2) are solved numerically using the control volume method
and the power law scheme. The Semi-Implicit-Method for Pressure-Linked-Equations-
Revised (SIMPLER) algorithm (e.g. Patankar 1981) is used to solve for u, v, w, h, f, k,

and €. Air is assumed to obey the ideal gas law with the density can be calculated from
the temperature T :

P=pRT (6)

The under-relaxation technique (Patankar 1981) is used to ensure stability by limiting the
changes occurring in the coefficient of the variable ¢ by an appropriate relaxation factor

o. The solid boundary condition is described by the wall function (Launder and
Spalding 1973). The derivative of variables normal to a free surface is taken as zero.
The atmospheric pressure is specified outside the free boundaries. The initial patterns for
velocity components u, v, and w inside the enclosure are guessed; pressure is assumed to

be at one atmospheric pressure, the values k and € are defined as 10"%J/kg and
10"%J/(kg-s) Iteration is performed until the results converge.

I R AIR- M

Numerical experiments were performed on two cases. The first case is an indoor air-
conditioned gymnasium shown in Figure 1. This air-conditioned gymnasium is a multi-
purpose hall designed for indoor sports activities like badminton and basket ball games.
The area is fully air-conditioned year round. The air conditioning system is basically an
"all air" system with chilled water supply from the central air-conditioning plant. The
chilled water flow to the cooling coil is controlled automatically in response to
fluctuations in return air temperature and hence reducing the cooling load of the room.
Two ceiling hung air handling units are installed at the comers of the gymnasium. Each
1s designed to handle 6300 I/s with the return air installed at the underside. The space is
of length 33 m, width 19 m, height 8.22 m and is enclosed by four solid walls. Air is
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A
blowing out through linear air grille with speed 5 m/s, enthalpy 28.0 kJ/kg and moisture =
content 0.0048 kg/kg. Because linear air grille is used and the air space is very big, the
whole enclosure is not considered. The part of interest is located at the centre and of
width 3 m. It is divided into 10400 (i.e. 26 x 20 x 20) control volumes as shown in
Figure 2. This is different from simulating airflow induced by smoke extraction fan

(Chow and Leung 1989) where the whole atrium has to be considered. %
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The gymnasium is kept at 18°C and a moisture content of 0.0054 kg/kg in winter. Field
measurement on the horizontal air speed, temperature and relative humidity are performed
at positions as in Figure 2. This corresponds to the computational domains at I = 15, K
=3,5,7,9. The predicted results on the velocity vector are presented in Figure 3. The
horizontal air speeds, air temperature and relative humidity at the monitoring points are
shown in Figures 4a to d. The predicted results agree reasonably with the measured data.
The models seems to be useful for building services engineers in designing HVAC
systems.
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One of the key tasks in the commissioning cxcreise of the ?1“ glzﬁ?::[g?lnﬁi)i?i:’?“mng:
ensure that the air stream at any point immediately sbave (ae aAn air velocity of not
adversely affect the motion of the badminton ball in the game. e lgh :
more than 0.25 m/s is recommended. The predictions from the r-lfl I;“a?n ‘:gzﬁsf;&m
determine the appropriate air velocity and flow direction that w1 n;mc The o ratig
air circulation and an acceptable environment for & ba(_jm!mond% ‘hé field m%?jcllin
conditions of this HVAC system satisfied the criterion as indicated by g
results.

IR~ TIONED QFFICE
. , " » idth 2.4 m and height 3 m
The second case is an air-conditioned office of length 4.5 m, wi : :
as shown in Figure 6. The air conditioning for the small office room is provided by a

- - i L i lume (CAV) box
ik gystem. A constant al:f YO
stant air volu c, variable air !cmpcra[urc Y i ffset the e hng 1 el .

for the office supplies a fixed amount of cool ai ? :
The office is divided into 8700 (i.e. 30 x 10 x 29) control volumes as in Figure 0. At of
temperature 16°C and moisture content 0.0091 kg/kg 15 SUPP lernezziasured at gEimé
Horizontal air speed, air temperature and relative humldzléywahr?ch e o zﬁso in
corresponding to the positions at [ =15, K = 10, i, IB'. in Figure 7 and those air
Figure 6. Results on the velocity and vector % presented in :b%twccn the predicted
variables are plotted from Figures 8a to d. Very good agreemen P

and experimental results are achieved.
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Fieure 8¢: Predicted results tfor the office building
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Figure 8d: Predicted results for the office building

The main purpose of the simulation exercises is to provide some ground work for the
following subsequent analyses at that commercial building:

- to determine the flow field when there is a sensible heat and latent heat source in the
room which is generated by an occupant or solar radiation.

- to determine the diffusion of the indoor contaminants generated by the fabric or the
occupant in the room.

Obviously the field modelling technique can be applied for this purpose.
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CONCLUSION

The following conclusions can be drawn from the present analysis :

b

The three-dimensional distribution of airflow pattern, temperature, and moisture
content in an air-conditioned space may be predicted using a field model. Here,
turbulent effect is described by the k- model and the equations for the primitive
variables are solved by the SIMPLER scheme (Patankar 1981). This is very useful
for large spaces such as a gymnasium or an atrium where temperature and moisture
gradients are found.

2. From the predicted results on the gir ﬂow_, temperature and moisture content, it is
possible to verify whether the air-conditioning design for the enclosures can
provide a sartisfactory environment. Examples on an air-conditioned gymnasium
and a small office have been taken to illustrate the simulation. This can be applied
to HVAC design for atrium, clean room etc.

3.  On-site measurements would help in validating the predicted results. Measurements
of the moisture distribution in larger buildings such as this air-conditioned
gymnasium is particularly desirable in tropical areas as dehumidification is
important.
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NOMENCLATURE

C;, Ca, Cp = empirical constants in the turbulence model

Cp = specific heat of the gas mixture at constant pressure

Gy, Gp = generation terms for the turbulent kinetic energy equation

S = source term in the differential equation for ¢

ik = absolute temperature

f = moisture content (humidity ratio) of air

g = acceleration due to gravity

h = stagnation enthalpy of the moistened air

k = turbulent kinetic energy

P = static pressure

t = time o

u, v, w = velocity components in the (Cartesian) co-ordinate directions x, y, and 2,
respectively, with y along the vertical direction

Ty = effective exchange coefficient of the property

€ = turbulent energy dissipation rate

) = general fluid property

o = turbulent Prandtl number of the property ¢

o = relaxation factor
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