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ABSTRACT 

L.E. Wilkening 
Member ASHRAE 

lAn understanding of the details of air motion around 
and into supply/exhaust devices is important in the design 
and application of kitchen hoods. However, measurement 
and visualization of such air movement in laboratory 
environments are difficult and expensive. Theoretical 
analysis of complex turbulent mixed flows is not possible 
at this time, but a promising technique for study of air 
movement details involves numerical simulation that is 
termed computational fluid dynamics (CFD ). 

This paper presents results of CFD simulations of 
two-dimensional (planar) air motion in the vicinity of 
cooking surfaces, as modified by the presence of kitchen 
hoods of various designs. The CFD simulation codes are 
of new finite-element design, developed with partial 
support from ASHRAE research project RP-464. 

Benchmark tests were conducted to determine suitable 
locations for farfield boundary conditions, with and 
without a thermal plume present. 1Wo commercial hood 
designs were then modeled, with suitable meshings created 
to account for their geometrical and flow-bifurcation 
complexity. CFD simulations were conducted for a range 
of effective Reynolds numbers and for several Archimedes 
numbers. These results are compared and discussed in 

this paper'-J V -

INTRODUCTION 

Statement of the Problem 

Details of the capture of airborne contaminants by 
hoods that ventilate cooking equipment have been of 
interest to system designers for more than SO years. 
However, the motion of airstreams in this environment is 
subtle and difficult to visualize or accurately measure, so 
efforts at flow field mapping have met with only limited 
success. It is believed by many researchers that the bulk 
of contaminants produced in cooking are released into the 
rising plume of heated air that originates at the heated 
surface and surrounds the cooking container: If this 
hypothesis is correct, the capture performance of hoods is 
directly related to the flow rate and flow path of the 
plume and to the motion and entrainment of air in the 
surrounding kitchen area. 

E.G. Schaub A.J. Baker, Ph.D., P.E. 

Previous Work 

In the 1950s, Thomas (1950) published hood inlet 
flow field maps derived from potential flow studies and 
laboratory experiments. By this time, the concept of 
''capture velocity,'' wherein the hood inlet potential flow
field velocities were assumed to be the means of capturing 
contaminants ejected from the cooking process with some 
opposing escape velocity, was widely accepted. Shortly 
thereafter, Hemeon (1963) published empirical equations 
for the flow rate of heated plumes and for the design of 
receiving hoods located over hot processes. 

Fire codes (NFPA 1976) and mechanical codes 
(BOCA 1981) were originally based on the capture 
velocity concept. A companion paper elaborates on the 
history of code development for this subject. More 
recently, these codes have relied on fire performance 
testing at Underwriters' Laboratories and on manufac
turers' tests. Neitzel (1982) lists empirical exhaust flow 
rates based on the type of equipment to be ventilated and, 
indirectly, to the heat released by the cooking. These 
studies have been supported by other investigators (Kelso 
1981). 

Other work has resulted in reporting of contaminant 
removal effectiveness of residential hoods under various 
conditions (Farnsworth et al. 1989). However, laboratory 
studies of plume and contaminant flow rates have been 
limited by available methods of measurement (Talbert et 
al. 1973), and designers and code officials have generally 
lacked definitive information. 

The field of computational simulation of fluid dynam
ics systems offers potential as a tool for the study of con
taminant distribution and air motion for the kitchen-hood 
environment. Computational fluid dynamics (CFO) 
methods constitute numerical techniques to approximately 
solve the equations of momentum, continuity, and energy 
at discrete locations (nodes) of a mesh covering the flow 
domain. The CFO results produce estimates of velocity, 
temperature, and contaminant concentration at each node, 
hence their spatial and temporal distributions, which can 
then be plotted to produce a visual record of the vector 
and scalar fields. 

CFO research originated in the defense and aerospace 
industries and was first applied to the prediction of indoor 
air motion about 1974 (Niehien 1974). Investigators in 
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Japan (Murakami et al. 1988). Europe (Chen et aL 1990), 
and the U.S. (Baker and Kelso 1990) have been actively 
studying research issues and application of CPD methods 
to indoor flow-field prediction. CPD has the potential to 
be very useful in studying the relatively low-velocity air 
motion associated with the cooking process and to provide 
insight into the effects of airflow rates beat inputs • • 
external air currents, and methods of make-up air supply. 

For a complete study, laboratory verification of CPD 
results is required. At this time, such laboratory data are 
not available and will not be for two years or so. In the 
meantime, the results of CFD computational sensitivity 
experiments, without laboratory verification, are valid for 
estimation purposes and also serve as an illustration of the 
technique. Further, these results should be in qualitative 
agreement with available empirical information and with 
expected fluid flow paths. 

THE CFO PROCEDURE 

Computational fluid dynamics (CPD) is the emerging 
science of fluid-thermal flow field simulation via genera
tion of approximate solutions to the governing Navier
Stokes nonlinear partial differential equation (PDE) 
system. This PDE system is generally considered univer
sally valid; however, many approximations must be made 
to yield a computationally tractible statement. First, since 
kitchen-hood flow fields are nonisothermal and typically 
weakly turbulent, an approximate constitutive closure 

model must be devised for the phenomenological descrip-
tion. Second, CPD numerical algorithms can only produce 
an approximate solution to these modeled equations. 
Thereby, numerical error mechanisms can and will 
compromise simulation accuracy, especially when com
putational meshes with inadequate resolution capabilities 
are used. This section briefly presents the key pertinent 
issues of the utili7.ed CPD procedures. 

The Problem Statement 

A statistical manipulation of the Navier-Stokes PDE 
system is required to yield a computable form. The 
resultant construction is termed the "Reynolds-averaged 
Navier-Stokes (RINS)" equations, governing unsteady, 
incompressible flows. Following a suitable nondimen
sionali7Btion, the simplest "turbulent viscosity" form of 
RINS in vector notation is 

5f(p0) = V·u = 0, (1) 

ea au ... (u) = - + (u ·V)u at 
-v·(~e +v')vu+VP-Ar9g = o, 

(2) 
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The dimensionless groups in Equations 2 through 4 are 
based on the definitions 

Re• UL, 
v 

Sc•-v-
DAB 

(S) 

where Re is the Reynolds number, Gr is the Grashof 
number, Ar • GrRe-2 is the Archimedes number, Pr is 
the Prandtl number, and Sc is the Schmidt number. A 
superscript t on any variable denotes its modeled ''tur
bulent'' counterpart. 

The dependent variable set in Equations 1 through 4 
includes mean velocity vector u(x,t) with scalar resolution 

";• 1 S i S n for an n-dimensional problem, kinematic 
pressure (P = plpo), and potential temperature, 9 == (T 
- Tmin)l(Tmax - Tmin>· In Equation 4, YA is the mass 
fraction of an inert species A, for example, a smoke 
tracer, and DAB is the binary diffusion coefficient. 
Finally, the Boussinesq buoyancy body force approxi
mation is made in Equation 2, and g is the gravity unit 
vector. 

The solutions to Equations 1 through 4 are charac
teri7.ed by· these nondimensional groups and by applied 
boundary conditions. Since second-order spatial deriva
tives are present in Equations 2 through 4, each isolated 
equation is elliptic for finite Reynolds number Re. 
Therefore, knowledge of the mean flow variables, their 
normal derivatives, and/or linear combinations thereof is 
required everywhere on the boundary ao of the spatial 
domain of definition 0 C 9l". However, hlllldling of the 
continuity equation (1) dominates the mathematical well
posedness issue of any proposed CFD theory. 

Specifically, Equation 1 defines a differential con
straint on velocity fields u(x, t) that are admissible as 
solutions to Equations 2 and 3. This requirement in
timately connects to the pressure (gradient) field acting as 



a source in Equation 2. For incompressible or constant
density fluids, neither an algebraic equation (of state) nor 
a differential equation is available for determination of 
pressure. Pressure may be mathematically eliminated only 
via a dependent variable transformation to vorticity and 
stream function vector fields. Alternatively, several 
inexact CFD theories may be devised such that pressure 
effects are adequately simulated during a convergent 
iterative solution process. Three mathematically distinct 
forms have been derived, as summari7.ed and documented 
in Baker et al. (1989). 

Since these reported kitchen flow field simulations are 
restricted to two dimensions, the mathematically exact 
vorticity-stream function restatement of Equations 1 and 
2 is selected. Hence, Equations 1 and 2 are replaced by 
Baker (1983, chapter 5): 

0(1) 
Sf((,))= -+u·Vc.> at 

-v·( ~ + v')Vc.> -Arv 
xe1·£ = 0, 

5l(t) = VZt + c.> = o 

(6) 

(7) 

where "' and 1/1 are the k components of the vorticity and 
stream function vectors. Their definitions are 

u = v x .. £, (,) = v x u . £. (8) 

Equations 3 and 4 are unchanged in this transformation. 
Closure for Diffusion The RINS system, Equations 

1 through 8, must be closed for turbulence effects via 
definition of a model for the distribution of kinematic 
eddy viscosity ii. A constitutive relationship, assumed 
between the Reynolds deviatoric stress tensor and the 
mean flow strain rate tensor, defines ii via Baker (1983, 
chapter 7): 

(9) 

In Equation 9, k is the trace of the Reynolds stress 
tensor (called turbulent kinetic energy), and the similarity 
between Equation 9 and the Stokes laminar flow closure 
is quite evident. Several levels of single-point correlation 
models for ,I have been devised, ranging from purely 
algebraic mixing-length (ML T) models to the turbulent 
kinetic energy-isotropic dissipation (TKE) two-equation 
system (Baker 1983, chapters 6, 7). Such models have an 
underlying assumption that the flow is fully turbulent and 
nominally unidirectional, and none works very satisfac
torily outside its developmental range or for low-tur
bulence flows. 

Since kitchen and kitchen-hood airfiow1:1 Kre a very 
complex combination of low-turbulence and nonaerody
namic flows, a genuinely accurate turbulence closure 
model is unachievable at the present. However, for CFD 

comparative simulation purposes, the interplay between 
convective and diffusive mechanisms can be globally 
assessed via an effective diffusion parameter. The defin
ition for turbulent Reynolds number (distribution) is 

v' Re'•-. 
v 

(10) 

Since one usually assumes that Pr' = Pr and Sc' = Sc in 
closing Equations 2 through 4, it is possible to extract 
common multipliers, yielding, for example, for Equation 
2: 

( _l + v')--1 
(1 +Re'). 

Re Re 
(11) 

As currently practiced, many CFD theories, hence code 
implementations, augment laminar (v) and turbulent (v') 
diffusion effects with "numerical diffusion" to achieve 
numerical stability. This can be interpreted as an 
"artificial" viscosity .,a, and in the spirit of turbulent 
Reynolds number definition, one can define the artificial 
diffusion Reynolds number (distribution) Rea • .,a/,,. 

Hence, in concert with Equation 11, this leads to the 
concept of an "effective" Reynolds number Ref: 

Ref. __ Re __ (12) 
1 +Re'+ Re0 

Clearly, from Equation 12, the least diffusive charac
terization corresponds to a laminar flow (Re' = 0) 
simulation without added artificial viscosity. Thereafter, 
Re' > 0 and/or Rea > 0 serves basically (and mathemati
cally) to increase diffusive effects and, hence, moderate 
sharp flow field features. For this basic CFD comparative 
characterization of kitchen-hood flow fields, we have 
elected to control RJ° to quantitatively compare the 
interplay between diffusive and convective flow mecha-
nisms. 

The CFO Model and Code 

The reconstructed RINS system (Equations 6, 7, 3 
through 5, and 11 and 12) is cast into a computable form 
via a finite-element (FE) procedure. The initial-boundary 
value equations (6, 3, and 4) for defining the effective 
diffusion coefficient,,!= (RJ)-l are of the hyperbolic 
conservation law form, 

Sf(q) = oq + u ·Vq 
ar 

-V"(~Vq) -s
9 

"'0. 

(13) 

The state variable for Equation 13 is the array q(x,t) = 
{w, e, YA}T, and sq is the source term pertinent to each 
entry. 

An FE construction for Equation 13 constitutes a 
semi-discretization of a weak statement written for 
Equation 13 for any approximation r/'(x,t) to q(x,t) (Baker 
and Pepper 1991). The resultant ~pproximation error 
induced into Equation 13, i.e., 5£.(if'), is required to be 



othogonal ("perpendicular") to the trial space supporting 
<I' via the Galerkin weak statement 

wsN. la •/r) 5f (q N} d" • 0, Vj (14) 

for any approximation, i .e., q(x,t) q1!/(x,t} • E it f.x) 
Qi'), 1 ~ j ~ N. The FE formulation constructs a 
specific </' using compact polynomial inte.rpolations of 
each itix) on the generic union of finite-element domains 
oe sharing a node of the global disretization oh !!Ii u 0 e 
of the spatial domain of definition for Equation 13. 

The resulting semi-discrete w9'1, denoted ws", 
always produces the matrix ordinary differential equation 
(ODE) system, 

wsA. [M] d~~} + {R(Q)} = {O}. (15) 

In Equation 15, [•]and{•} denote a square and column 
matrix, respectively, and {Q} • {Q(t)} is the array of the 
state variable semi-discretization at the nodes of oh. Any 
ODE algorithm utilizes Equation 15 to evaluate derivative 
terms in the Taylor series. The terminal "computable" 
algebraic statement is 

{FQ} = [M] {Q,.. 1 - Q
11

} 

+ 4t(O{R},.. 1 + (1- O){R}
11

) = {O} 
(16) 

upon selecting the 6-implicit, one-step (Euler/trapezoidal) 
ODE method, where tn+ 1 = tn + flt. The FE algorithm 
statement (Equation 16) is then completed with the wt' 
for Equation 7, which yields 

{F"CP} = [D] {-cp} + {s} = {O} (17) 

where [D] is the "diffusion" matrix equivalent of (V2)h, 
the discretized Laplacian operator on oh, and {s} contains 
the source (vorticity) term from Equation 7. 

Equations 16 and 17 constitute a nonlinear algebraic 
system for any 6 > 0. Associated matrix linear algebraic 
solution procedures amount to approximations to the 
generic Newton statement 

[J]{~QY,::! = -{FY,:+1 (18) 

where the Jacobian definition is [J] = a{F}/a{Q} = [M] 
+ 6At8{R}/8{Q}, and p is the iteration index at time 
1n+l· 

The available theory (Noronha 1989) characterizing 
the FE algorithm (Equations 14 through 18) confirms that 
a kth degree polynomial FE basis nominally produces a 
spatially 2k order-accurate algorithm, for bounded Re, on 
an adequate discretization oh. For the trapezoidal rule, 6 
= 112 in Equation 16, any ws" basis implementation al
gorithm is free from artificial viscosity ,,a, hence Rea -
0 in Equation 12. 

DISCUSSION AND RESULTS 

The CFD studies conducted are for flows existing on 
a vertical symmetry plane perpendicular to the long axis 

Figure 1 
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Vertical section through kitchen showing 50 
X 50 computational mesh. 

of a hood. This gives a region wherein the flow is 
approximately two dimensional (see Figure 1). For the 
level of velocity (i.e., Mach number) encountered in the 
problem class of interest, air behaves as an incompressible 
fluid. Normal cooking operations typically span several 
minutes, so that start-up and transient conditions are of 
minor importance in comparison to the steady state. 
Dissipative (laminar and/or ''turbulent'' diffusion) effects, 
which are important at cooking surfaces, back walls, and 
hood surfaces, as well as at plume and jet boundaries, are 
simulated via the effective Reynolds number model. For 
nonisothermal conditions, the importance of the buoyancy 
term in Equation 2 is characterized by the Archimedes 
number, Ar = Gr/Re2. With low velocities and modest 
temperature differences, the Boussinesq approximation is 
thoroughly appropriate. 

Thus, the flow class of this study is two dimensional, 
incompressible, thermal, and diffusive, and the steady
state solution is sought. The first model is a conventional 
exhaust hood with a uniform onset flow approaching from 
the opposite end of the room and exhausting up through 
the hood. A 50 X 50 nonuniform finite-element mesh 
(Figure 1) was used for modeling the flow field. Finer 
mesh spacings exist in wall regions in the area of the 
hood and the upper left comer of the exhaust outlet flow. 
For nominal onset flow of 0.6 ft/s, a 9-ft ceiling, and 
room temperature air, Re = 34,000 and Ref would be 
approximately 1,000 (see Equation 12). The cooking 
surface temperature ranged to 300°F, hence for 70°F inlet 
air, Gr ~ 3 X toll. The corresponding Archimedes 
number range is 0 S Ar S 285. 

Figure 2 plots the obtained steady-state velocity 
vector field for Rof = 100 and isothermal conditions 
(Archimedes number Ar = 0). Flow enters from the right 
with uniform velocity. The plane of the hood canopy, to 
the left in the figure, is just forward of the leading edge 
of the cooking equipment. Flow exits the field vertically 
in the upper left comer within the hood. The inlet velocity 
of 0.6 fps, through the 9-foot-high opening, gives a flow 
rate of approximately 325 cfm per foot of hood length. 
This is a typical flow rate found in many hood instal-



,._:::-. . :: 

Figurr 2 

' ' FEET 

Velocity vectors, isothennal conditions, 
conventional exhaust hood, 325 cfm/ft. 

lations. The flow accelerates rapidly into the opening 
between the hood and the leading edge of the cooking 
equipment, and recirculation regions are observed at the 
back comer of the cooking surface and inside the hood 
canopy. Such recirculation regions have been observed in 
the field (Hemeon 1963) and are predicted to occur in real 
flow. 

Figures 2 through 4 show the flow fields as the RJ 
is computationally increased from 100 to 2,000 as dif
fusive mechanisms become smaller. In all velocity vector 
plots except Figure 8, only every other vector in the Y
direction is plotted. Note the increasing size of recir
culation regions, boundary layers becoming visible, and 
the formation of an eddy at human head height just in 
front of the hood. Because the grid is rather sparse in this 
area, this eddy may be a numerical aberration. Figure 3, 
with Rel= 1000, approximates the low turbulence flow 
conditions found in many actual rooms. 

An adequate mesh is an inescapable requirement of 
CFD modeling (Baker and Kelso 1990). Since the CFD 
process involves discretization of a continuum, any 
gridding of the flow field involves compromise and, as 
the elements become larger, the modeling becomes less 
accurate. Figure 5 is the CFD model of the same flow 
field, under the same conditions as Figure 2, but with a 
40 x 30 mesh (1,200 grid points), as compared to the 50 
x 50 mesh (2,500 grid points) used in the other figures. 
One of the symptoms of an inadequate mesh is 11 two delta 
x'' oscillations, wherein values at adjacent grid points take 
on widely differing values. The "wild" oscillations in 
velocity at the comer of the cooking surface confirm this 
mesh is inadequate to resolve the flow field specification, 
even at Rrl = 100. 

The addition of thermal effects has .a large influence 
on the tlow field. Figures 6 through 8 are velocity vector 
plots with thermal effects (energy eqµation included). 
Figure 7 has the same conditions as Fi~re 3, but with the 
inlet air temperature at 70°F and the cooking surface at 

Figure 3 
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Velocity vectors, isothermal conditions, 
conventional exhaust hood, 325 cfmlft. 
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Velocity vectors, isothennal conditions, 
conventional exhaust hood, 325 cfm/ft. 
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Figure 5 Velocity vectors, isothermal conditions, 40 
x 30 mesh, 325 cfm/ft. 
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Figure 6 Velocity vectors, thermal conditions, Ar = 
285, 325 efm/ft, cooking suiface-300°F, 
air-70°F, Ref = 2,000, temperature dif
ference = 230. 

300°F (Ar = 285), simulating a griddle. Other surfaces 
are adiabatic (homogeneous Neumann conditions). Note 
the surface effect at the wall behind the griddle, where the 
heated plume increases the vertical flow rate and the 
recirculation region observed in Figures 2 through 7 
disappears. Also of interest is the flow escaping from the 
hood under the front edge and the large eddy in front of 
the hood (Figure 6), similar to the isothermal case of 
Figures 3 and 4. Recirculation flow extends along the 
ceiling to the right almost to the inlet. Here also the grid 
spacing is too coarse to give confidence in the results. 
Figures 9 and 10 are plots of temperature contours at 
approximately 7°F intervals. 

As the Rd is increased to 1,000 in Figure 7, the 
surface effect increases and a well-defined recirculation 
region has developed in the hood. The flow that ap
parently escapes under the front edge of the hood bas 
decreased and, outside the hood, the eddy at head height 
has disappeared and the ceiling recirculation has decreas
ed. The temperature contours in Figure 10 are confined to 
the hood area. Note the wall area above the griddle, 
where temperature contours indicate increased plume flow 
rate and velocity. The heavy lines in Figures 9 and 10, 
where x > 8 indicates numerical 2 delta-x errors whose 
temperature differences are very small. 

While the results of CFD modeling presented herein 
can hardly be considered quantitative, some qualitative 
observations can be made. Those involved with kitchen 
ventilation systems can confirm from field observations 
the surface effects of the wall behind the griddle and the 
escaping billows at the front edge of the hood when the 
exhaust flow rate is low. The important differences in 
flow fields when hot surfaces are introduced are well 
illustrated. It is hypothesized that the exhaust flow rate 
necessary to prevent escape of contaminated air is highly 
dependent on the rate of heat transfer by the cooking 
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Figure 7 Velocity vectors, thermal conditions, Ar = 

Figure 8 

285, 325 cfmlft, cooking suiface-300°F, 
air-70°F, Ref = 4,000, temperature dif
ference = 230. 
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Velocity vectors, thermal conditions, Ar = 
285, all vectors plotted. Hood Ri = 4,000, 
temperature difference = 230. 

process. This hypothesis is strengthened by comparing 
Figures 3 (isothermal) and 7 (thermal, Ar = 285). 

An example of a hood that incorporates makeup air 
supply is the air curtain hood system depicted in Figure 
11. In this hood, a stream of air is introduced vertically 
downward along the front edge of the hood. This air may 
be tempered or untempered. Typical flow rates are 30% 
of the exhaust flow rate supplied from the room and 70 % 
from the air curtain. An inlet velocity of 3. 3 fps is 
representative and is used in the isothermal flow field 
depicted in Figure 11 at Rd= 1000. The 3.3-fps inlet 
velocity through a 10-in. opening gives an air curtain flow 
rate of 165 cfm/ft, and the 0.13 fps inlet velocity through 
the 9-ft-high room inlet gives a flow rate of 70 cfm/ft. 
Such bifurcated inlet conditions are particularly difficult 
for CFD models to solve. 

Figure 11 is comparable to Figure 3 at Rd = 1000 
and isothermal conditions. The air curtain flow diverts the 
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Figure 9 Temperature contours, Ar = 285, conven
tional hood 325 cfm/ft, cooking sur
face-3000F, air-70°F, R/ = 2,000, 
temperature difference = 230. 

flow from the room downward and directs it across the 
cooking surface, reducing the strength of the recirculation 
regions. High-velocity flow is confined to the upper 
region of the hood, and no evidence of escaping flow is 
seen. 

Figure 12 is under conditions similar to Figure 11 but 
with thermal effects. The inlet airstreams are at 70°F and 
the griddle surface at 300°F. As was seen when com
paring Figure 3 with Figure 7, the heated surface pro
duces a plume that radically alters the flow field. Figure 
12 shows that the excess plume flow rate turns down the 
inside of the canopy, enabling the air curtain to reach 
almost to the cooking surface. Flow pattern disturbances 
reach out into the room, well upstream of the hood. 

CONCLUSIONS 

The simulations shown conform qualitatively to field 
observations and expectations. They lend confidence to 
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Figure 11 Velocity vectors, isothermal conditions, Ar 
= 0, 325 cfm/ft, air curtain hood. 
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Figure 10 Temperature contours, Ar = 285, conven
tional hood 325 cfm/ft, cooking sur
/ace-3000F, air-70°F, R/ = 4,000, 
temperature difference = 230. 

the concept of computational fluid dynamics (CFO) 
simulation of flow fields in rooms. They also reveal 
subtleties of the flow that may be useful to workers in the 
kitchen ventilation field. 

Much work is ahead. The two-dimensional work 
shown here must be extended to three dimensions. The 
CFO models must be compared with laboratory tests and 
refined if necessary. Other conditions of flow rates, 
temperatures, and hood configurations must be simulated 
and tested. Means of modeling filters should be developed 
and their effects tested. 

REFERENCES 

Baker, A.J. 1983. Finite element computational fluid 
mechanics. Washington, DC: Hemisphere. 

Baker, A.J., and R.M. Kelso. 1990. On validation of 
computational fluid dynamics: Procedures for room 

:o 11 

Figure 12 Velocity vectors, thermal conditions, Ar = 
285, 325 cfm/ft, max 1D = 230°F, air 
curtain hood, Ri = 4,()()(). 



air motion prediction. ASHRAE Transactions 96(1): · 
760-744. 

Baker, A.J., and D.W. Pepper. 1991. Finite elements 1-
2-3. New York: McGraw-Hill. 

Baker, A.J., R.M. Kelso, W.P. Noronha, and J.B. 
Woods. 1989. On the maturing of computational fluid 
dynamics in design of room air ventilation systems. 
Building Systems: Room Air and Air Contaminant 
Distribution. Atlanta: American Society of Heating, 
Refrigerating, and Air-Conditioning Engineers, Inc. 

BOCA. 1981. Basic building code, section M-3120, 
commercial hoods and fans. Building Owners 11.ml 
Code Officials. 

Chen, Q., A. Moser, and A. Huber. 1990. Prediction of 
buoyant, turbulent flow by a low-Reynolds-number k-
8 model. ASHRAE Transactions 96(1): 564-573. 

Daile Valle, J.M. 1953. Design of kitchen range hoods. 
Heating and Ventilating 50 (Aug.): 95. 

Farnsworth, C., A. Waters, R.M. Kelso, and D. Frits
che. 1989. Development of a fully vented gas range. 
ASHRAE Transactions 95(1): 759-768. 

Hemeon, W.C.L. 1963. Plant and process ventilation, 2d 
ed. New York: The Industrial Press. 

Kelso, R.M. 1981. Kitchen range hoods and energy 
conservation. Proc. Int. Sym. on Indoor Air Pol-

lution, Health and Energy Conservation, University 
of Massachusetts, Amherst. 

Murakami, S., S. Kato, and Y. Surgama. 1988. Numer
ical and experimental study on turbulent diffusion 
fields in conventional flow type clean rooms. ASH
RAE Transactions 94(2): 469-493. 

Neitrel, E. 1982. Basic principles and relationships that 
exist in kitchen ventilation systems. Greenbeck Fan 
Co., unpublished research report. 

NFPA. 1976. NFPA 96, Standard/or the installation of 
equipment for the removal of smoke and grease-laden 
vapors from commercial cooking equipment. Boston: 
National Fire Protection Association. 

Nielsen, P.V. 1974. Prediction of air flow and comfort in 
air conditioned spaces. ASHRAE Transactions 81(2). 

Noronha, W. 1989. Accuracy and convergence of finite 
element incompressible Navier-Stokes algorithms. 
Ph.D. dissertation, University of Tennessee, Knox- . 
ville. 

Talbert, S.G., L.J. Flanigan, and J.A. Eibling. 1973. An 
experimental study of ventilation requirements of 
commercial electric kitchens. ASHRAE Transactions 
80. 

Thomas, F .A., Jr. 1950. Design characteristics of canopy 
exhaust hoods. Heating and Ventilating, April. 


