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ABSTRACT 

r The three-dimensional nonisothermal jet in a room is 
analyzed numerically by the algebraic second-moment 
closure model (ASM) (Hossain and Rodi 1982). The 
numerical results are compared with experimental results 
and with a simulation based on the k-e model. It is 
demonstrated that ASM reproduces the nonisothermalflof 
fields more precisely than the k-e model does"...J J 

INTRODUCTION: FLOW FIELD IN A ROOM 

In a preceding paper (Murakami et al. 1991), the ac
curacy and reliability of numerical simulation for three
dimensional nonisothermal jets in a room based on the k
e model were examined. It was concluded that the cor
respondence between simulation and experiment was good 
from the viewpoint of practical use. However, the degree 
of the discrepancy in the case of nonisothermal flow 
apparently increased in the case of isothermal flow 
simulation. It was then suggested that this discrepancy 
arose from shortcomings of the eddy viscosity model 
(EVM) for Reynolds stress and the eddy diffusivity model 
(EDM) for turbulent flux. A more elaborate turbulence 
model, such as the algebraic second-moment closure 
model (ASM), would be required to increase the accuracy 
(Kato et al. 1991). In this paper, the authors apply the 
ASM to the same flow field in which they confirmed the 
validity of the simulation based on the k-e model, and the 
increased accuracy and reliability of the simulation based 
on ASM are demonstrated. · 

The flow field in a room with supply and exhaust 
openings is typically an elliptic one in which there exist 
such various secondary flows as recirculation. It is so 
complex that sometimes the direction of the main flow 
cannot be found easily. There are many difficulties in 
analyzing such flow fields by a numerical method. As the 
flow field in a room is highly three-dimensional, it is 
difficult to deal with it two-dimensionally. In a three
dimensional calculation, it is usually impossible to arrange 
sufficiently fine mesh near the wall, so we are ordinarily 
forced to adopt the teclurique of the wall function at the 

_wall boundary. Furthermore, the predominant terms of the 
mean strain-rate tensor (EJU/<Jx1) and scalar gradient 
(fJ91EJxj) vary locally, and thereby the effect of the 
streamline curvature usually cannot be neglected. Con
sidering these complex conditions, the nonisothermal flow 
field in a room was analyzed by ASM and the results 
were compared with those of experiments and of simula
tions by the k-e model. The authors focused in particular 
on the anisotropic property of the flow field. The struc
tural differences between the two turbulence models were 
then examined. 

MODEL FLOW FIELD 

The configuration of the room model is shown in 
Figure 1. It is exactly the same as the model previously 
analyzed by the k-e model (Murakami et al. 1991). A 
cold jet is discharged from the center of the left-hand 
wall. The right-hand wall, with an exhaust opening at 
each comer, is heated. The dimensions of the model are 
shown in Figure 1. The Archimedes number of the supply 
jet is 0.016. 

Outline of Numerical Method 

The standard k-e model and the commonly adapted 
form for ASM were used. The equations are shown in 
Table 1 (also see Notes 1, 2, and 3). 

The contribution of the buoyancy effect to the 
transport equations of turbulent energy, k, and turbulent 
energy dissipation rate, e, is taken into account as Gk, 
following the method proposed by Viollet (1986) (see 
Note 3). · 

In the formulation of ASM, the convection term Cij 

and the diffusion term D;p which include the derivatives 

of the Reynolds stress u1u1 and the turbulent heat flux 

u16, are expressed in a simplified way as shown in 

Equations 1 and 2, following the method of Rodi (1976) 
and Gibson and Launder (1976). The details are described 
in Kato et al. (1991). 
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Figure 1 

eValues are made dimensionless by 
L. (one side of supp I y or exhaust opening), 
U. (velocity at supply opening), 

48.(temperature difference between exhaust and supply) . 
e1n the experiment. U.=1. Om/s, L.=0. 04m, 48.=12. 2"C. 

Cosequentlv at the supply opening, 

. -g,·/1·48,·L. 
Archimedes Number A,= (U,)' - 0. 016. 

and Reyno Ids number R.=2. 7x103• 

The scale of the room model 

used for the experiment; 1. 2m(x1) xo. 8m(x2) xO. 8m(x:i). 
eln the numerical simulation, it is assumed that 

L.= U,= 48,=1. 0. Thus A,= -g,·/J end 

A, is given the same value as in the experiment,0.016. 
g, is defined to be negative in this paper. 

Room model used for simulation and experiment. 

(1) 

(2) 

A wall boundary condition of wall function is adopt
ed, following Launder and Spalding (1974). At the heated 
wall on the right-hand side, the value of the heat flux is 
given as a boundary condition (Murakami et al. 1991). 

Table 2 shows the various numerical constants used 
in the model, which follow those proposed by Launder et 
al. (1975) and Launder (1983). The boundary conditions 
are shown in Table 3. Table 4 denotes grids and schemes 
for calculation. 

Grid discretization is 35(x1) X 22(x2) X 54(x3). Here 
x1 denotes the horirontal direction of jet discharge and x3 
means the vertical direction. One-half of the space in the 
x2 direction is analyzed, considering the symmetrical 
property of the flow field. 

A staggered grid system is adopted. For the transport 
equations of U; and scalar quantities (k and e), a second
order upwind scheme (the QUICK scheme) is applied for 

TABLE 1 
Basic Equations of Algebraic Second-Moment Closure Model 

(Continuity EQ. ) au, =O 
iJx. 

a - k ak a - k ae 
(1) D,= iJxm (C,umu,•7• iJx.) (9) D.= ilxm (C,umu,•7• iJx.) (10) 

(Momentum EQ. ) 

( k-EQ.) 

(9-EQ.) 

({ii- EQ. ) 

(u,u, - Eq.) 

(u,0- Eq.) 

a - k oo• 
DU,= _ _!__oP _au,u,_g,8• 9 (2) D,=-(C,u .. u,· - · - ) (11) G.=- u,O·g,·.B (12) 
Dt p ax, iJx, 1 ax .. au. e iJx. - au, -. - au, 

P,=-u,u , ,._ (1 3) P, 1=-u ,u,~ - u,u, ;:;:- (14) 
_ U_ ll109 2 UA,• UAk 

(3) P,=-2-u,O iJx. (15) t11=3· 6,,e 

G 11 =-u, O·g,·,8-u, O·g,•,8 (17) G .. =-g,•,8•0' 
~ E , -~ -~ 
Dt =D.+k(C.,P,+C..,G,-C~) (4) P,.,n=-u,u,8x (19) P,.in=-u,8 iJx 

(16) 

(18) 

(20) 

D9 a -_ ,,_(-u,8) 

1 
E - ' - 2 

<I>, ,=4>1 H ll + <I> ,JGl+ <l>,u,.+ <1>~1m+ <I>r,.,, (21) <I>, un=- C,k(u,u,-30 ,,k) (22) 

(5) <I> ,""=-C, (P,,-fo 11 P.) (23) <I>, fl,\l=-C, (G,,-; 6 ,, G,) (24) Dt Ox1 
• • E -- 3--"'" -"C' - (u u • n1w> . n'w' ·" --u u · n''"1• n1w> "VI fl:ll- Li I k II a " "' U II 2 • I • j 

·-· 3 - k"' 
- - u u • n''"1 

• n<"1) • ---2 • ·I ' I c • h '"l •• 3 I o £ 
"'" -"'C" ("' · n<'"1 

• n'"1 ·6 --"' · n <'"> • n 1
'", U 1UJ ( ) ""'1 1rn- w 1 W°lin'i.D .. "" 11 2 'Vwm • J (P,+G,-e)-k =P11+<l>11+G.,-e,, 7 ·-• 3 k1" 

--Cl> · nM · n'"") ·---2 kllZI \ I . c • h '"lt 
E -'-• 

<l> .,=<I>,,,n+ <I> ,M+<l> , ,.,,+ <l>~,"' (27) <I>1 ,.,,=-C.,,k·u,O 

(6) 
(25) 

(26) 

(28) 

<I>,.,,, =-C,u P "121 (29) <I>'""=- C,., G,. (30) 

"'" -~c· _!_,u n. n1'"1 • n''">.~ (8) ..,, 1111-... "' k ,,u • ; c hi•) 
•-1 ,. J.a., £ = p '"'"+ p , .. ,,+<I>,.+G" (31) 



TABLE 2 
Numerical Constants In Second-Moment Closure Modal 

C, :1. 8 c, :0. 6 c·, :0.5 C'2 :0. 3 C. :0. 22 C, :0. 16 
C,,:1.44(when Gk>O) O.O(when GksO) c. :0. 15 c .. , :3. 0 c .. , :0. 5 
C, :2.5 ok: 1.0 a,: 1.3 a,: 1.0 

Ci,: 1. 44 
C.,.:0.3 

eel : 1. 92 
c;., :0. 5 

Nomenclatyre 
U, = average velocity component In I direction u, = fluctuating velocity component in i direction 

u. =velocity at supply opening L. = length of one side of supply or exhaust opening 
-u,u, = Reynolds stress compon·ent p = average pressure 

k = turbulent kinetic energy c. = convection term of k 
D, = diffusion term of k P, = generation rate of k due to mean velocity gradient 
G, = generation term of k due to buoyancy effect E = dissipation rate of k 

9 = average value of scalar 0 = fluctuation of scalar 

110. = temperature difference between g, = gravitational acceleration In I direction 

exhaust and supply /J ~ coefficient of volumetric expansion ( ~ 1 /300) 
"fr = mean square of scalar fluctuation c. = convection term of (Ji 
O, = diffusion term of (Ji P, = generation rate of (Ji 
E, = dissipation rate of 82 c, = convection term of u.u1 
Du = diffusion term of u.u, Pu = generation rate of u,u, due to velocity gradient 

Gu = generation rate of u,u, due to buoyancy effect Eu = dissipation rate of u.u1 
~ .. = pressure- strain correlation term c. = convection term of u.8 

(consists of Rotta term fl),, .. ,, rapid term D,. = diffusion term of u,8 
~111211 IJ)111,.and wall reflection term <l>;j0 ,, <l>;j,,,) P,. = P ... .,+P ... 21 =generation rate of u,8 by mean 

G,, = generation rate of u,8 due to temperature and velocity gradient ,respectively 
temperature fluctuation 02 <I>,. = correlation term of pressure and scalar gradient 

A, =Archimedes number ( = -g,•JJ· .19,• W<UJ~ R,, ·=Reynolds number at supply opening(= U.•WJ1) 
a, = turbulent Prandtl number for k o. = turbulent Prandtl number for g 

a, = turbulent Prandtl number for 8 
h~wl =vertical distance from thew- th wall ~ .. = kronecker delta 
Superscripts 
. - . =averaging operation 

"(w)" =the w- th wall 
Subscripts 

"wo" = total number of boundaries which enclose 
each region 

i, j, k= spatial coordinate indices 1: streamwlse directionOet discharging direction) 
2: lateral direction 3: vertical direction. 

Values are made dimensionless by L.,U. and t.8,. 

TABLE 3 
Boundary Conditions (Expressed by Dimensionless Value) 

(Boundary at supply opening) UIN=l.O k..=0. 0018 .e IN=O. 325 91N =0. 0 u.u,=O 

(Boundary at exhaust opening) Vour =O. 25 k,E,0: free slip condition u.u,=0 
(Wall boundary) The wall shear stress r. Is given by equation CD , following Launder and Spalding(1974). 

Velocity gradient at the wall Is given by equation ®, which .Is used to calculate the generation 

term at the near - wall node. The value of E at the near- wall node used for the transport 

equation for k Is expressed by equation @ ,as a form averaged In a control - volume, and 

defined as £. The value of k at the wall Is given by free sllp condition. The value of E at the 

near-wall node used for the transport equation of E Is defined by equation @. 

~(C "'k),,.=!_£ [E(h,/2)•(C~,.k),,.] If' 
(r,,/p) ' IC ' JI I.!./, {(Jl+11J·ou}I =r,,/p 

Uy WALL ®· 

_ C!''~ [E(hi/2)•(C!11k)'11
] 

E- IC(h,/2) •£, JI @, 
(;!'4·~ 

Ei= IC(hi/2) @. 

Heat flux at, .heated wall : u,0=-0. 0025. Heat flux at other walls u.8=0. 0. 
IC=0. 4, C =0. 09, E=9.0, 11=1/R =1/(2. 7X103) 



TABLE 4 
Grids and Schemes for Calculation 

The computational domain Is discretized into 35(x,) x 22(x,) x 54 (x.). 

One side of the supply and exhaust openings is divided into 4 grids. Minimum grid size is 0.25 and maximum is 

1.0. 

One - half space of x.. direction is calculated, considering the symmetrical property of the flowfield. 
The convection term of U, ,k and s Is calculated by means of the QUICK scheme, except for the area just around 

the supply and exhaust openings, where the first- order upwind scheme is used. For the calculation of 0, the first
order upwind scheme is used for the whole domain. 

The generation of u,ll due to 8i was not considered, because this generation was estimated through preliminary 

analysis to be much smaller than the generation due to velocity gradient qr temperature gradient. Consequently, 

calculations for 8' and e, are not made. The local equlliblium for 8i is assu~ed for the calculation of Eq.(33). 

the convec'tion terms. The Adams-Bashforth scheme is 
used for time marching. The numerical integration is 
conducted following the ABMAC method (simultaneous 
iteration method for pressure and velocity). 

Outline of Model Experiment 

The scale of the model for the experiment is 1.2 m 
(x1) x 0.8 m (xi) X 0.8 m (x3), as shown in Figure 1. 
The outside of the model is thermally insulated. 

The accurate measurement of air velocity in a three
dimensional nonisothennal flow field is very difficult. A 
3-D ultrasonic velocimeter of 5-cm span is utilized in this 
experiment, whose dependency on ambient air is only 
related to air density and can be compensated exactly. 
One shortcoming of this anemometer is the wideness of 
the averaging length (5 cm); thus the values of the mean 
velocity components U;, turbulent energy k, Reynolds 

stress uiui' etc., are given as the average of 5 cm. 

Therefore, the measuring interval of the velocity is of 
necessity much larger than that of the temperature, as is 
shown in Figures 2 and 3. 

Temperature is measured by copper-constantan ther
mocouples. The heat generation rate at the right-hand 
heating wall is measured by an electronic power meter. 

RESULTS AND DISCUSSION 

Distribution of Mean Velocity U1 

The distribution of the velocity vectors and resultant 

velocities <Ju;+ u; + u;) at the central vertical section 

are illustrated in Figures 2 and 4. 
The velocity values in the area around the center of 

the jet are very important. Except for the area just after 
the jet discharge, the velocity distributions predicted by 
ASM denote less steep gradients than those given by the 
standard k-e model. ASM corresponds to the experiment 
better than the k-e model does. This is attributed to the 

fact that the evaluation of the Reynolds stress uiui in the 

momentum equation given by ASM is more accurate than 

that given by the k-e model. A comparison of u,u1 
between ASM and the k-e model is in Appendix A. The 
downward movement of the center of the cold jet due to 
the buoyancy effect given by ASM is a little smaller than 
that given by the k-e model, since ASM predicts a 
smaller temperature difference in the area around the 
center of the jet, as shown in Figure 3. 

Distribution of Mean Temperature 0 

The mean temperature distributions in the model are 
shown in Figures 3 and 5. The temperature distribution in 
the area around the center of the jet is also very impor
tant. Except for the area just after the jet discharge, the 
distributions given by ASM generally show less steep 
gradients than those given by the k-e model. The results 
of ASM correspond to the experiment better than the k-e 
model does, showing the same tendency as in the case of 
the velocity distribution. This is caused by the difference 

in the evaluation of the turbulent heat flux u, 6 (Murakami 

kami et al. 1991). Since ASM predicts a larger value of 

u16 than the k-e model does (Figure 8), the diffusion of 

the temperature difference around the center of the jet in 
the case of ASM is more active than that given by the k-e 
model. 

The r~ulls of both ASM and the k-e model show 
poor agreement with the experimental results for the area 
below and above the jet just after the discharge. Some 
comments concerning this poor agreement are given in 
Note 4. 

Distribution of Turbulent Energy k 

Figure 6 shows the distribution of turbulent kinetic 
energy k. In the area just after the discharging of the jet, 
where both ASM and the k-e model show steep gradients 
of veloc_ity and temperature, the predicted value of k given 
by ASM is larger than that given by the k-e model. This 
is caused by the fact that ASM predicts the values of the 
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Reynolds stress (u1u1) more accurately and accordingly 

predicts the value of kinetic energy generation by mean 
shear Pk more successfully than does the k-e model. 
Except for the area near the supply opening, the value of 
k given by ASM is smaller than that given by the k-e 
model because ASM denotes less steep gradients of 
velocity and temperature in these areas. The numerical 
results of ASM agree well with the experimental results. 

Distribution of the Generation 
Term Pk of k Due to Mean Shear 

Figure 7 shows the distribution of Pk. The value of 
Pk given by ASM is larger in the area near the supply 
opening than that given by the k-e model because ASM 

evaluates the value of u1u1 more accurately. The accurate 

evaluation of u1u1 is particularly important in this flow 

field since the predominant velocity gradient in this area 
is 8U118X3, as described in Appendix A. 

Distribution of Heat Flux u16 

The distribution of turbulent heat flux u16 is shown 

in Figure 8. The values of u16 predicted by ASM and the 

k-e model show large differences. In particular, the 

difference for streamwise heat flux "1 e is remarkable. 

The value of "1 e predicted by the k-e model is much 

smaller than the result given by ASM. Since u1 6 is 

calculated by -v/crft8918x1 with the k-e model and 

ae1ax1 is small in this flow field, the predicted ~alue oful 6 

is also small. However, in the case of ASM, all terms of 

\o 

(1) ASM 

x, 

(2) k- E 

0.390 

.J 
Figure 7 Comparison of generation term ofk (PJ. 

the generation by temperature gradient PifJ(l) ( = - uku1 

aetax,J and velocity gradient pi(J(2) (= -ukaau;1ax,J 

are evaluated exactly. Hence, the contribution of the 

predominant term of the temperature gradient aelaXJ and 
the predominant term of the velocity gradient CJU11ax3 to 

the production of "1 e is reflected correctly. Thus the 

value of u1 6 given by ASM becomes large. The structure 
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causing the large production of u1 0 in this flow field is 

illustrated in Figure 9. 

This large value of u1 0 is reflected in the temper

distribution; thus the distribution given by ASM becomes 
less steep and agrees with the experiment better than does 
the k-e model. 

r ................ ..... ... .... ...... ..... ........... ......... ................... . 

(k- €) 

- 11,08 u,O= --- (EVM) o,ax, 

00 
is small in this flowfield, ax. 

lllifll is evaluated to be small. 

Eddy Viscosity/Diffusivity Model 
for heat flux (u.8) does not 

include the effects of the velocity 
gradient or the effect of 

IPucol 

!Puail 

CONCLUSION 

The three-dimensional anisotropic flow field with 
buoyancy has been analyzed by ASM and the numerical 
results compared with experimental ones and with those 
given by the k-e model. 

-00 -00 -00 
P .. co= -u~a--u,u2a--u,u3a-

x, X2 ?<~ 
-au, -au, -au, 

P,.(2, = - u,8-a - uzB-a - u.j)-a 
X1 X2 XJ 

Ji 

becomes large, because 1:1 
and 

becomes large, because 1au,I ax, 

1U.01 becomes large. 

JJ 

is predominant. 

is predominant. 

the predominant scalar gradient. Temperature distribution becomes less steeo. 
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Figure 9 Difference of evaluation of u10 between k-e model andASM. 



1. The distributions of mean velocity U, mean tempera
ture e' and turbulent kinetic energy k, predicted by 
ASM generally denote less steep gradients and 
correspond to the experiment better than results of 
the k-e model. This advantage of ASM over the k-e 
model is attributed mainly to the difference in the 

evaluation of Reynolds stress u1u1 and turbulent heat 

flux u16. These terms are calculated using the exact 

form in the case of ASM, whereas they are calculated 
on the basis of the eddy viscosity model by the k-e 
model. 

2. The a,nisotropic property of u1u1 in the jet region is 

well reproduced by ASM, but the k-e model repro
duces this characteristic less exactly. This difference 
is attributed to the difference in the method of evalua
ting the generation term Pij. Furthermore, the dif-

ference of u10 predicted by ASM and the k-e model, 

in particular the difference in u10, is also remark

able. The result given by ASM is better. 
3. It is clear that the k-e model is less accurate than 

ASM for nonisothermal flow. Although the concept 
of a locally determined, isotropic, effective turbulent 
diffusivity is, of course, very useful, it may be 
concluded that such values as the turbulent flux of 

uiul' uia, etc., in an anisotropic nonisothermal flow 

field cannot be predicted with full exactness by means 
of simple eddy viscosity modeling. 

4. Second-moment closure modeling, even if only a 
simple version such as ASM, appears to be very 
effective for the analysis of complex flow fields. 

Note 1 

The equations in Table 1 are not expressed in dimen
sionless form. For example, the buoyancy term 
(-g(/3·9) is expressed as (Ar·9') by nondimensionali:ra
tion. Here e I is the dimensionless temperature. 

Notel 

~ ij'(2) is not involved in this calculation. This is 

because the Gibson-Launder (1978) model of ~ ij'(2) , 

which is most common at present, appears to have some 
shortcomings in the analysis of an enclosed space with 
impinging (Kato et al. 1991). The reason is as follows. 

Let us imagine a situation of impinging in which a 
mean flow (U1) attacks the op~site wall x2 - x3 perpen

dicularly. In this situation, ~ ij'(2) may be represented in 

the following manner: 

Here 

·~tC2> = 2C2C~(P11 -2/3P1;) ·Ji, 

·~(2) = •;3(2) = -C2C~(P11 - 2/3Pt) ·/1 • 

~ 7l(2) is the term that should decrease u; according 

to its original meaning. Thus, in this case, (P11 -213P,J 
must be negative. However, on the centerline of the 
impinging jet, P 11 is large. Therefore, it does not take a 

negative value. Hence, in this model, ~ 71(2) works to 

increase u;, contrary to its original meaning. As a matter 

of fact, when ~ ij'(2) is involved in the calculations, the 
normal stress perpendicular to the wall becomes exces
sively large near the exhaust opening and the solution 
diverges. 

Note3 

The e equation is so revised that an expression of 
buoyancy generation/destruction is switched according to 
the locally determined thermal instability, following the 
method proposed by Viollet (1986) as follows. 

When Gk > 0, C3 = C1 = 1.44, and when Gk :s; 0, 
C3 = 0. 

Note 4 

Since the jet is discharged into stagnant air, the air 
velocity is almost zero in the area above and below the jet 
just after discharging, as shown in Figures 2 and 4. The 
agreement for the temperature distribution between the 
experiment and the numerical simulation is poor in this 
area. The reason for the disagreement may be explained 
as follows: 

1. Since the air velocity is very low in such an area, the 
slow secondary flows caused by the disturbance of 
the experimental condition become rather effective, 
which gives rise to uncertainty in the experimental 
results. The reali:ration of a strictly controlled ex
perimental condition is very difficult for such types of 
flow and temperature fields. 

2. Although the turbulence models are based on the 
assumption that the flow field is fully turbulent, the 
Reynolds number in this area is rather low and not 
fully turbulent. 

3. There is some possibility that the simulation has not 
yet reached a steady state. 
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APPENDIX A 

DISTRIBUTION OF REYNOLDS STRESS u1u1 
As shown in Figures Al, A2, A3, and A4, the values 

of each component of the Reynolds stress u1u1 given 

! 
·1 

I 
10 ·B~<> ) ·.:!® ~· ·o o .. 

x, 

i. 
-· .. . -

2 e 

: by ASM agree very well with those given by the ex
; periment. In particular, the anisotropic property of normal 

~ 2 
stress u1u1 is reproduced very well. The value of u1 

thus becomes two times larger than ui and u; in 

the case of ASM, as can be observed in the experiment, 
while the k-e model fails to reproduce this anisotropic 

property. The comparison of u1u1 between the ex

periment and the simulation is difficult in the area just 
after the supply opening because the average length of the 
anemometer is rather large (5 cm) and the values of 

u1u1 are averaged within this length in the experiment, 

whereas the numerical results have very steep gradients 
with two peaks here. 

Figure A6 illustrates the difference between ASM and 

the k-e model in the evaluation of u1u1 • ASM eval

uates each component of P ij using its exact form. Since 
the velocity gradient of au1!ax3 is predominant here and 
is included only in Pu, the value of Pu is much larger 

than P22 and P33, as shown in Figure AS. Coosequently, u; 
2 2 becomes about two times larger than "2 and u3 • 

However, in the k-e model, a component of the normal 
stress is shown as below. 

2 
u1 = -2·v,(au11ax1)+2/3·k 

(no summation here). 

Thus each component of u; has similar values and 

becomes apparently isotropic. 
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Figure Al Distribution of u;. 
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figure AS Distribution of Pij (generation term of u1u1 
by ASM at center section) . 
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Figure A6 Difference of evaluation of u1u1 between k-e model and ASM. 


