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ABSTRACT 

In order to predict the performance and to 
estimate the durability of building materz'.als 
an understanding of the behavior of heat and 
moisture in them, especially the maximum 
value of the moisture state of each material, is 
required. The governing equations are the sys· 
tem of heat- and moisture-transfer equations. 
These equations are nonlinear because their 
coefficients are strongly dependent on depen­
dent variables such as moisture content. If the 
system can be approximated by quasilinearized 
equations with adequate accuracy, a solution 
can be obtained simply by applying the super­
position principle. 

In this paper, quasilinearized time-variant 
equations are derived, and the allowable range 
of approximation of the linearized equations is 
discussed. The system of quasilinearized equa ­
tions is obtained by expanding the original 
nonlinear equations around the reference solu­
tions. After the nonlinear equations have been 
solved under reference boundary conditions, the 
quasilinearized equations are solued under the 
variation of the boundary value. The sum of the 
two solutions (the reference solution and the 
solution of the linearized equation) is the ap­
proximate solution. To determine the allowable 
range of approximation, two cases of variation 
of the boundary value, which are a step f unc­
tion and a sinusoidal function with a period of 
one year, are calculated. The structure of the 
building wall treated here is an internally in -
sulated autoclaued lightweight concrete (ALC) 
wall, and the outdoor climate is that of 0 aha 
Japan. 

In the case of step function variation the 
allowable range of application is± 1 ' C and 
± 10., J /kg (the chemical potential of water). In 
the case of sinusoidal function variations, 
the linear approximate solutions show fair 
agreement with exact solutions within 1 K of 
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amplitude and 104 J/kg . It has been shown. 
that quasilinearization produces acceptable 
approximate solutions and is effective in the 
prediction of moisture variation in a building 
structure. 

INTRODUCTION 

Generally, the governing equations which 
describe the heat- and moisture-transfer pro­
cess in porous building elements are nonlin­
ear except for special cases, such as the vapor 
flow control process which occurs under 
rather low moisture contents, and the satu­
rated liquid water flow process. The transfer 
coefficient (moisture and heat conductivity) 
and moisture capacity are strongly dependent 
on state variables such as the moisture con­
tent [1-3]. Also these equations are to he 
solved under varying boundary values, such 
as outdoor weather conditions, indoor air tem­
perature and humidity. 

To solve the equations, tedious numerical 
calculations such as the finite-difference 
method are used. Furthermore tedious compu· 
tationa] efforts are needed to obtain the peri­
odic steady-state solutions [ 4 5] that are 
useful for the thermal and moisture design of 
the building envelope. 

In order to avoid the difficulties and com· 
plexities of the nonlinearity of the governing 
equations an approximation of these equa­
tion by means of a linear expansion for varia­
tions around their reference solution is 
studied. The approximate equations are lin­
ear, but they are time variant. 

In this paper, the approximate linear equa­
tions are represented and the use of these 
equations is di cussed. The accuracy of the 
approximation is discussed by means of a com­
parison between the exact and approximate 
solutions. 
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For an internally insulated lightweight con­
crete wall, annual variations of temperature 
and moisture are calculated for different vari­
tions of the boundary values, such as a step 
function and a sinusoidal function. The ap­
proximate solutions ~f the linearized ~qua­
tions are compared with the exact solut10ns, 
and the degree of approximation is discussed. 

THE GOVERNING EQUATIONS 

The governing equations for describing 
heat and moisture transfer in porous building 
elements are as follows [6]. In these equations 
the chemical potential of water relative to 
free liquid water is used as the moisture trans­
fer potential. 

From the moisture mass balance 

k(µ, T) ~=VA~(µ, T) · Vµ + VA'r(µ, T) ·VT 

(1) 

From heat balance 

C(µ, T) 
0

0~ =VAµ(µ, T) · Vµ + Vi.e (µ, T) ·VT (2) 

. 0¢ 
k(µ, T) ~ k(µ) = Pw • iJµ C(µ, T) ~ C(µ) 

The gravitational force term is neglected in 
eqn. ( 1) because it is negligibly small com­
pared -to the chemical potential gradient of 
water. The boundary conditions at the surface 
of the building wall surrounded by ambient 
air are 

. , < T) aµ . , ( T) aT 
-I. µ µ, . -;;- - ),T µ, •-;-

en vn 

= ~;.(µ, T) · (µ0 - µ) + ~'r(µ, T) · (T0 - T) 

(3) 

from the moisture mass balance and 

• O/L • oT 
-A1,(µ, T). on - A.e(µ, T). on 

= ~µ(µ, T) · (µ0 - µ) + ~e(µ, T) ·(To - T) + S 
(4) 

from heat balance. 
At the interface of the layers of the build­

ing wall element, the boundary conditions are 

(5) 

(6) 

(7) 

(8) 

The initial conditions are 

µ = {1,(x), T = f(x) at t = 0 (9) 

Physical parameters such as ;.~ and i.'r are 
strongly dependent on the chemical potential 
of water and the temperature. These parame­
ters are particularly dependent on the former. 
The nonlinearity of the governing equations is 
due to the dependency of these coefficients on 
the state variables. 

QUASILINEARIZATION OF THE EQUATIONS 

Let fl and T be the solutions of eqns (1)­
(9). Other solutions under the different 
boundary values (bµ + tlµ, b T + llT) are writ­
ten as µ and T. The differences between them, 
i.e.,µ - fl and T- T, are written ashµ and hr: 

hµ = µ - fl 

hr= T-T 

(10) 

(11) 

By expanding the second _solutions µ, T 
around the first solutions fl, T by using the 
Taylor expansion (see ref. 7), linearized equa­
tions for the variations hµ, hr are obtained as 
follows, neglecting terms higher than the sec­
ond order of hµ, hr (see refs. 8 and 9): 
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+ V(A'r(ji, T) · Vhr) 
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+ [(~~Ivµ+ 0;; lvt) ·hr J 
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The last terms on the right-hand sides of 
eqns. (12) and (13) are equal to zero, because 
each term is equal to eqn. (1) and eqn. (2), 
respectively. If eqns. (1) and (2) have been 
solved for ji and T, then the coefficients of 
eqns. ( 12) and ( 13) are known. These co­
efficients are functions of the time and space 
coordinates and are not dependent on the de­
pendent variables hµ, hr. Equations (12) and 
(13) are linear and time-variant equations for 
the variables hµ, hr. 

QUASILINEARIZED BOUNDARY CONDITIONS AND 
METHOD OF ANALYSIS 

Suppose that the variations of the 
boundary values as outdoor or indoor air tem­
perature and humidity are 

Aµb = bµo - hiio or bµ; - b/i; 

A.Tb = b To - b To or b T; - b T; 

(14) 

(15) 

where subscripts b, o and i mean boundary 
values, outdoor air and indoor air respec­
tively. Let solutions of the nonlinear eqns. 
{1) -(9) under the boundary values bµ•hT be 
µ, T. In the following those solutions are 
termed exact solutions. Quasilinearized 
boundary conditions are obtained by expand­
ing around the reference solutionsµ, T, which 
are the solutions under the boundary values 
bfi. bf' : 

-i.' (- t)·ahµ_-" ' (- t)·ohr µ µ, an r µ, on 

= a~(ji, t) · (Aµh - hµ) 

+ a'r(fi, T) ·(A.Th - hr) 

ai.;, j aµ a-"'r I ar] +- -+- - ·h oµ on oµ on µ 

+ [~~ l<bii -ji) +~a; l<bt- t) 

+ ~;~ I :~ + ~:; I ~~l hr 

+ [a~(µ, T) · <hil - il) 

+ a'r(fi, T) · <b T - t) 
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+Aµ(µ, T) . an+ ).e(µ, T). on 
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(16) 

r 
\ 

(17) 

The last terms on the right-hand sides of eqns. 
(16) and (17) are equal to the reference 
boundary conditions ( eqns. ( 3) and ( 4) respec­
tively) and thus are equal to zero. 

The initial conditions without variations of 
the initial values are 

hµ = 0 and hr = 0 at t = 0 (9') 

Solving the quasilinearized eqns. (12) and (13) 
for dependent variables hµ, hr with the quasi­
linearized boundary conditions of eqns. (16) 
and (17) and the initial condition of eqn. (9'), 
the solutions hµ, hr are obtained. These equa· 
tions are linear but time variant, which means 
that impulse response is a function of absolute 
time t. Since these eqns. (12)-(17) are linear, 
the superposition theorem can be applied. 

Approximate solutions are obtained 
through the summation of the solutions of the 
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linearized equation (h1,,hr) under a variation 
of the boundary value (11µ, liT) and the solu­
tion of the nonlinear equation ([I, T) under the 
reference boundary value (bji., b T): 

p ~ p. +hi' 

T ~ T+hr 

XU~IERICAL ANALYSIS AND RESULTS 

(18) 

(19) 

In this section, the moisture and tempera­
ture behaviors of the building wall under vari­
ations of the boundary values are calculated 
by using the linearized equations. The results 
are compared with exact solutions calculated 
with the original nonlinear equations. The 
degree of approximation under different varia­
tions of the boundary values is discussed. 

(1) Numerical analysis method 
The calculations are performed by using a 

finite-difference method of implicit Crank­
Nicholson type. Linearized eqns. (12)-(17) and 
(9') are solved simultaneously with the original 
eqns. (1)-(4) and (9). In each time step, the 
difference ·equations of the original nonlinear 
equations for(µ, T) are solved under the refer­
ence boundary value, then the difference equa­
tfons of the linearized equations for variations 
hµ, J!,r are solved using the reference solutions 
µ, T obtained above [10, 11]. 

(2) Structure of the building wall and 
properties of materials 

The structure of the building element cal­
culated is the internally insulated lightweight 
concrete wall shown in Fig. 1. 

For ease of calculation in this analysis, 
the thin water barrier on the outer surface of 
the wall, the insulation layer and the 
fiberboard layer on the inside are treated as 
layers having no moisture and heat capacity 
when the annual cycle of the boundary value 

IN -

DOOR 

AIR 

OUT-

DOOR 

A IR 

Fig. 1. The structure of the wall. CD Fiberboard, 5 mm; 
® insulation, 5 cm; @ ALC, 10 cm; © water barrier. 

TABLE 1 

Heat and moisture resistances of materials, air layers and 
the sum of all resistances 

Materials and Heat Moisture 
air layers resistance resistance 

(m2 K/W) (m2 s Pa/kg) 

Indoor: 
Indoor air layer 0.108 8.00E + 9 
Fiberboard 1.22 4.82E + 8 
Insulation 0.0538 3.42E + 8 
Total 1.38 8.82E + 9 

Outdoor: 
Outdoor air layer 0.0431 8.58E + 8 
Water barrier 8.00E + 9 
Total 0.0431 8.86E + 9 

is taken into account. Then, they can be 
treated as pure resistance layers for moisture 
and heat flow (li'-1, a- 1

). Since moisture flow 
through these layers is vapor controlled, each 
value of the moisture resistance related to the 
vapor pressure difference is a constant value 
independent of the moisture content and tem­
perature. The values used in the calculations 
are shown in Table 1. 

The physical parameters of the lightweight 
concrete are shown in Figs. 2-4. Figure 2 shows 
the equilibrium relation between the chemical 
potential of water and the moisture content at 
290 K. Based on the theory of liquid flow in a 
bundle of capillaries, the liquid moisture con­
ductivity related to the temperature gradient 
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Fig. 2. Equilibrium relation between chemical potential 
of water and water content at 20 'C. 
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Fig. 3. Dependence of the coefficient of moisture conduc­
tivity i.;, on water content at 20 °C. 
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Fig. 4. Dependence of the coefficient of moisture conduc­
tivity i.'r on water content at 20 °C. 

).1'J is assumed to be zero. Then /.'rg = i.'r. Us­
ing Stefan's law for vapor flow, i.;,g is related 
to i. ~g as follows: 

., ,, (C.PvfoJ.1)r 
I. =1. ·----

/lg ·Tg (oPv/cT),, 

= ).'rg/[(8Pvs/i'T) · (Rv · T/Pvs) - µ/TJ 

Using the relation and values of i. 'rg shown in 
Fig. 4, values of ;. ;,

8 
are obtained (Fig. 3). The 

values of the moisture conductivity mentioned 
above are dependent on the temperature. The 
dependence of these coefficients (i.;,i:• }.'Tg• ;,;.i) 
on temperature is estimated by applying the 
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classical models of Stefan s law for vapor 
phase flow and Darcy's law for liquid phase 
flow , respectively. i.;,i: is linearly dependent on 
the saturated vapor pressure Pvs. and i.7.

8 
is 

dependent on Pvs and its derivative cPv ./cT. 
i. ;,1 depends slightly on temperature and is 
directly proportional to Pw /17 , where 17 is the 
viscosity of liquid water. Values of those con­
ductivities for each temperature are calcu­
lated by using the relationship mentioned 
above. 

(3) Boundary values for the reference solution 
Reference boundary values are as follows: 

outdoor air: 

b To= b T0 • a+ 11.3 sin( wt) 

bµo = Rv · b T0 • ln[bRH0 , a +A sin( wt)] 

(20) 

(21) 

where subscript a means average value and 
b T0 • a= 288.76 K, bRH0 • a.= 0.66, w = 2n/365 x 
24 x 3600 s- 1

• Time t = 0 is at 8 a.m., May 1. 
The coefficient A is: 

(i) A = 0.11: 8 a .m., May 1 ~ t < 8 a.m., Oct­
ober 1. 

(ii) A = 0: 8 a.m., October 1~8-a.m., May 1. 

indoor air: 

bti = 293.16 

bµi = Rv · bTi · ln(0.7) 

(22) 

(23) 

The boundary values of outdoor air vary with 
the annual period. In this calculation, the 
daily variation is discarded for simplicity. 

(4) Variations of the boundary value 
The step function and sinusoidal function 

of the annual cycle are used for the variation 
of the boundary value (~J.1, ~T). Taking into 
account the linearity of the linearized equa­
tion, solutions of the linearized equation are 
calculated under a unit magnitude function 
(Heaviside unit function and sinusoidal func­
tion with unit amplitude) as the variation of 
the boundary value, of which solutions are the 
unit response or the unit frequency response 
(see refs. 12 and 13). The solution for an arbi­
trary value of the magnitude is obtained by 
multiplying the magnitude by the unit re­
sponse or the unit frequency response. Types 
of combinations of the boundary values in the 
calculations (cases 1-6) are shown in Table 2. 
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TABLE 2 

Combinations of variations of boundary values 

Variational function Case Outdoor 
of boundary value No. chemical 

potential 

Step function 104 

- 10• 
0 
0 
0 
0 
0 

2 0 

Sinusoidal function 3 104 sin wt 
4 0 
5 0 
6 0 

(5) Results of calculations 
The limit of the application of the approxi­

mate solution mentioned above is discussed; 
comparing the approximate solution 
(hµ + jl, hr+ T) with the"exact solution (µ, T). 
The .comparison of the solutions is performed 
under various magnitudes of the variation of 
the boundary value. 

(a) The case of a step function 
Comparison of the approximate solution 

with the exact solution is performed during 
the second year, when the effects of the initial 
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Fig· 5. The change of chemical potential of water ·during 
the second year (case 1). --, reference solution; - - - , 
exact solution; - · - · - , approximate solution. 

WJ- .... - !!If": _. -

Outdoor air Indoor Indoor air 
temperature chemical temperature 

potential 

0 0 0 
0 0 0 
1 0 0 

- 1 0 0 
0 10• 0 
0 - 10• 0 
0 0 1 
0 0 - 1 

0 0 0 
sin wt 0 0 
0 104 sin wt 0 
0 0 sin wt 

conditions have almost disappeared (almost 
periodic steady state). The results of calcula­
tions of case 1 and case 2 are shown in Figs. 
5-9 and Figs. 10-14, respectively. 

In the structure treated here, the moisture 
flow through the outer surface of the ALC is 
about 10-1 to io-2 times the moisture flow 
through the inner surface of the ALC. The 
change of moisture potential in ALC depends 
mainly on the moisture potential of room air. 
As shown in Fig. 5, the front of the moisture 
potential wave travels from the inside of the 
ALC to the outside. The maximum moisture 

Fig. 6. The change of temperature during the second year 
(case 1). - - , reference solution; - - - , exact solution; 
- · - · -, approximate solution. 
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Fig. 7. The change of relative humidity during the second 
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tion; - · - · - , approximate solution. 
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Fig. 8. The change of water content during the second 
year (case 1). --, reference solution; - - -, exact solu­
tion; - · - · -, approximate solution. 
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Fig. 9. The change of the deviation of the water chemical 
Polential during the second year (case 1). --, reference 
solu t.ion; - - - , exact solution; - · - · -, approximate solu­
tion. 
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Fig. 10. The change of chemical potentjal of water during 
the second year (case 2). --, reference solution; 
exact solution; - · - · - , approximate solution. 

Fig. 11. The change of temperature during the second year 
(case 2). - -, reference solution; - - -, exact solution; 

approximate solution. 
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Fig. 12. The change ofrelative humidity during the second 
year (case 2). --, reference solution; - - - , exact solution; 
- · - · -, approximate solution. 
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Fig. 13. The change of water content during the second 
year (case 2). --, reference solution; - - -, exact solu­
tion; - · - · -, approximate solution. 
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Fig. 14. The change of the deviation of water chemical 
potential during the second year (case 2). --, reference 
solution; - - -, exact solution; - - - · -, approximate so­
lution. 

potential in the ALC layer occurs at the outer 
surface of the ALC in April. The duration of 
the high moisture potential is longest at the 
middle part of the wall . The moisture poten­
tial in the ALC layer decreases with a de­
crease in the indoor air moisture potential. A 
comparison of the exact solution with the 
reference solution shows that the amount of 
decrease of the moisture potential during the 
wetting period (during the period of higher 
moisture potential) is least at the outer sur-

-~~.~·I"' .... ...~ 

face of the ALC, where the maximum moisture 
potential in ALC exists. The decrease of mois­
ture potential during the drying period is 
larger than that during the wetting period. 

In case 1, the approximate solution shows 
good agreement with exact solution, as shown 
in Figs. 5 and 9. The difference between the 
exact and approximate solutions of the chemi­
cal potential in winter tends to be larger dur­
ing the drying period. The result for the 
relative humidity is shown in Fig. 7. Figure 8 
shows the change of moisture content calcu­
lated using the value of the chemical potential 
of water and the temperature. The difference 
between the approximate and exact solutions 
is small during the dry period. For tempera­
ture, the approximate solution coincides with 
the exact solution (Fig. 6). The results of c_ase 
2 (Figs. 10-14) are similar to those of case L 
During the wetting period, the approximate 
solutions show good agreement with the exact 
solution, especially at the outer surface of the 
ALC where the maximum moisture potential 
exists. The criteria for evaluating the hydric 
design of the wall are the maximum moisture 
potential and the duration. From these re­
sults, it can be concluded that the approxi­
mate solution is sufficiently accurate within 
± 104 J/kg of water chemical potential varia­
tion and ± 1 K of temperature variation, and 
the limit of application of the approximate 
solution is ± 104 J/kg and ± 1 K. Because of 
the linearity of the linearized equations, solu­
tions hµ under llT; = 1, !1T0 = 0 are equal to 
solutions under llTi = 0, /J.T0 = -1, and so on. 

The same results were obtained for other 
cases in Table 2, but will not be presented 
here. 

(b) The case of a sinusoidal function 
The results of cases 3, 4, 5 and 6 are shown 

in Figs. 15-19, Figs. 20-24, Figs. 25-29 and 
Figs. 30-34, respectively. 

The approximate solutions show good 
agreement with the exact solutions. The 
difference between the approximate solution 
and the exact solution for the chemical po­
tential of water is relatively large in the pe­
riod from June to November in comparison 
with other periods (Figs. 15, 20, 25 and 30). 
As shown in Figs. 24, 29 and 34, hµ based on 
the linearized equation shows a larger devia­
tion during the rapidly increasing or decreas­
ing period of the chemical potential of water. 
The same feature appeared in the relative 
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Fig. 15. The change of chemical potential of water during 
the second year (case 3). --, reference solution; 
exact solution; - · - · - , approximate solution. 
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Fig. 16. The change of temperature during the second 
year (case 3). --, reference solution; - - -, exact solu-
tion; approximate solution. 
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Fig. 17. The change 'of relative humidity during the sec­
ond year (cas~ 3). --. reference solution; - - -, exact 
solution; - · - · - , approximate solution. 
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Fig. 18. The change of water content during the second 
year (case 3). --, reference solution; - - -, exact solu­
tion; - · - · -, approximate solution. 

Fig. 19. The change of the deviation of water chemical poten­
tial during the second year (case 3). --;,Teference solution; 
- - -, exact solution; - · - · -, approximate solution. 
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Fig. 20. The change of chemical potential of water.during 
the second year (case 4). --, reference solution; 
exact solution; - · - · -, approximate solution. 
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Fig. 21. The change of temperature during the second 
year (case 4). --, reference solution; - - -, exact solu­
tion; - · - · -, approximate solution. 
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Fig. 22. The change of relative humidity during the sec­
ond year (case 4). --, reference solution; - - -, exact 
solution; - · - · -, approximate solution. 
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Fig. 23. The change of water content during the second 
year (case 4). --, reference solution; - - - , exact solu­
tion; - · - · -, approximate solution. 
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Fig. 24. The change of deviation of water chemical poten­
tial during the second year (case 4). --, reference solu­
tion; - - -, exact solution; - · - · -, approximate solution. 
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Fig. 25. The change of chemical potential of water during 
the second year (case 5). --, reference solution; 
exact solution; - · - · -, approximate solution. 
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Fig. 26. The change of temperature during the second 
year (case 5). --, reference solution; - - - , exact solu­
tion; - · - · -, approximate solution. 
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Fig. 27. The change of relative humidity during the sec­
ond year (case 5). --, reference solution; - - -, exact 
solution; - · - · - , approximate solution. 
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Fig. 28. The change of water content during the second 
year (case 5). --, reference solution; - - -, exact solu­
tion; - · - · -, approximate solution. 
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Fig. 29. The change of the deviation of water chemical poten· 
tial during the second year (case 5). --, reference solution; 
- - - , exact solution; - · - · -,approximate solution. 
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Fig. 30. The change of chemical potential of water during 
the second year (case 6). --, reference solution; 
exact solution; - · - · -, approximate solution. 

w 

~II~~ 20 !5 
"' 10 ~ 
z 
z 

0 -

~::~~ "' "" "' "' ~ 10 ~ 
a: "' 
~ 9 u 
0.. 

"' "' 
"' 

30~~ 20 => 
' "' 

11!1 ~ ... 
=> c 0 

10 4 10 
TIME lHON THl 

\._ 

Fig. 31. The change of temperature during the second 
year (case 6). --, reference solution; - - -, exact solu· 
tion; - · - · -, approximate solution. 
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Fig. 32. The change of relative humidity during the sec­
ond year (case 6). --, reference solution; - - -, exact 
solution; - · - · -, approximate solution. 
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Fig. 33. The change of water content during the second 
year (case 6). --, reference solution; - - -, exact solu­
tion; - · - · -, approximate solution. 
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Fig. 34. The change of the deviation of water chemical 
potential during the second year (case 6). --, reference 
solution; - - -, exact solution; - · - · -, approximate so­
lution. 

humidity (Figs. 17, 22, 27 and 32). The approx­
imate solutions for the temperature coincide 
with the exact solutions (Figs. 16, 21, 26 and 
31). Figures 18, 23, 28 and 33 show the change 
of water content during the second year. 
These results reveal that the limit of applica­
tion is 104 J/kg of amplitude in the chemical 
potential of water and 1 K of amplitude in 
temperature. 

CONCLUSIONS 

( 1) Quasilinearized equations around the 
reference solutions of the original nonlinear 
equations are derived for solving the heat­
and moisture-flow problem in building physics 
and for evaluating the thermal and hydric 
design of a building wall. The approximate 
solution is given by the sum of the solution of 
the nonlinear equation under a reference 
boundary value and the solution of the lin­
earized equation on variation of the boundary 
value. 

(2) Comparing the approximate solution 
with the exact solution, the allowable range 
of application of the linearized equations is 
discussed for an internally insulated 
lightweight concrete wall. A step function and 
an annually cyclic sinusoidal function are 
used for variations of the boundary values. In 
the case of a step function the allowable range 
of approximation is ± 104 J/kg in variation of 
water chemical potential and ± 1 K in temper­
ature variation. In the case of a sinusoidal 
function, the allowable range of approxima­
tion is 104 J/kg of amplitude in the chemical 
potential of water and l K of amplitude in 
temperature. 104 J /kg in water chemical poten­
tial is equivalent to about 5% in relative hu­
midity at 290 K. From these results, moisture 
prediction by the linearized equation is useful 
in the hydric and thermal design of a building 
wall. 

(3) The limit of the approximation depends 
on the structure of the building wall and the 
physical parameters. 

NOMENCLATURE 

C =cp 

c 

Pvs 

RH 
Rv 

heat capacity of wet mate­
rial (J/m3 K) 
specific heat of wet mate­
rial (J/kg) 
variation of temperature 
(K) 
variation of chemical po­
tential of water (J/kg) 
partial water vapor pres­
sure (Pa) 
saturated water vapor pres­
sure (Pa) 
relative humidity 
universal gas constant of 
water ( J /kg K) 



r 

s 

T 

x,n 

Greek Symbols 
IJ. 

a' 

a'r = a'Pv/T 

IJ.~ = a'Pv/T 

I'/ 

),~I 

the sensible heat of water 
vaporization (J/kg) 
surface heat production 
(W/m2

) 

temperature (K) 
time (s) 
space coordinate (m) 

total thermal tr an sf er co­
efficient (W /m2 K) 
total thermal transfer resis­
tance (inner air layer 
+ inner surface cover + 

insulation layer+ outer air 
layer) (m2 K/W) 
moisture transfer coeffi­
cient related to partial va­
por pressure (kg/m2 s Pa) 
total moisture transfer re­
sistance related to partial 
vapor pressure (inner air 
layer + inner surface cover 
+ insulation layer + mois-

ture proof layer+ outer air 
layer) (m2 s Pa/kg) 
effective thermal transfer 
coefficient (W/m2 K) 
moisture transfer coeffi­
cient related to tempera­
ture (kg/m2 s K) 
thermal transfer coefficient 
related to water chemical 
potential (W/(m2 J/kg)) 
moisture transfer coeffi­
cient related to water 
chemical potential (kg/ 
(m2 s J/kg)) 
kinetic viscosity of liquid 
water (m2/s) 
thermal conductivity co­
efficient (W /m K) 
effective thermal conduc­
tivity (W /m K) 
total moisture conductivity 
coefficient for temperature 
gradient (kg/ms K) 
moisture conductivity co­
·efficient in gas phase for 
temperature gradient (kg/ 
msK) 
moisture conductivity co­
efficient in liquid for tern-

,, 
l'µg 

µ=RvT 

p 
Pw 

<P 

x ln(Pv/Pvs) 

w = 2n/ 
(365 x 24 x 3600) 
Iiµ= bµ - bµ 
liT=bT-bT 

perature 
msK) 

gradient 

873 

(kg/ 

total moisture conductivity 
coefficient for water chemi­
cal potential gradient (kg/ 
(ms J/kg)) 
moisture conductivity co­
efficient in gas phase for 
water chemical potential 
gradient (kg/(m s J/kg)) 
moisture conductivity co­
efficient in liquid phase for 
water chemical potential 
gradient (kg/(m s J/kg)) 
water chemical potential 
(Gibbs' free energy) (J/kg) 
density (kg/m3

) 

density of liquid water (kg/ 
ma) 

water content (vol.%) 
frequency of boundary 
values (s-1

) 

Subscripts and Superscripts 
a average 
b boundary value 

indoor 
0 outdoor 
w water 
1,2 material number 

reference value 
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