
_,- -
- :- L.;_, 2_. G Q

Simulation of Thermal Building Behaviour Based on
an Object Oriented ADA Implementation

R. Ebert B. Peuportier G. Lefebvre

GISE (Groupe lnformatique et Systemes Energetiques)
ENPC/EMP La Courtine F-93167 Noisy le Grand Cedex

member of GER ALMETH France

Abstract

The simulation complexity of the thermal behaviour
of buildings can be reduced by splitting it up as a hier
archical system of linked components. The behaviour
of each component and its relations to the other com
ponents are modelled by an object oriented approach.
We describe an Ada implementation of these concepts
and a simple example of a multilayer wall at the end
of this article.

1 Introduction

The energy crisis in the seventies and the increasing
importance given to the comfort have led to investiga
tions related to the analysis of the thermal behaviour
of buildings. The most usual way to predict ther
mal performance is to make a numerical simulation
of its behaviour on a computer. A lot of software
of this kind has been developed during the last ten
years. These programs are based on various numeri
cal methods and physical modelling assumptions and
provide results which can be different.

Until now, the general philosophy of these programs
has been to gather physical data describing the build
ing in a global model on which numerical methods
are applied in order to obtain a correct solution; the
simulation consists in calculating an approximation
of the thermal state of a building at each moment
of the studied period. The thermal state is generally
defined as a set of temperatures at different points of
the building strudure, and the methods included in
these i>rogra111s calculate the wliolc temperature ficl<l
at the same time. This global description of build
ings enables the use of some very powerful numerical
methods to obtain good solutions; but this method is
rigid because it is necessary to make again all calcu
lations when modifying a parameter value.

For the last few years, investigations have been
made to improve the modelling of complex objects
as a system (cf. IMACS 1988 proceedings[3]). We
show here the possibility to build a dynamic model of
a system of components which has a behaviour cloee
to the real one, and which offers more possibilities to
the scientist/modeller and the designer.

The building structure is described recursively as a
set of components or subsystems linked by coupling
conditions. This technique has many advantages:

• A system description is more natural than the
global one. The reality is always seen as a system
(a building is a set of walls, floors, ... or a set of
zones, ...).

• At a macroscopic scale, it seems that not all com
ponents of a building are linked together.

• The system modelling approach is flexible be
cause the modification of a component or a sub
system is easy; the effort ma.de by the user to de
scribe a complex building is saved only when vari
ants have to be improved (what will be the be
haviour of my building if I change the material of
the south wall?). Libraries in which basic and/or
complex models are stored can be made; mod
elling knowledge included in these models can
be exchanged between users (usual walls, passive
components, heating systems, ... models).

• Not the whole thermal state of a building al
ways has to be·observed. A selective observa
tion of some particular components or subsys-
1.cms can easily h<i made with a sysl.c111 represen
tation (What is the evolution of the mean inter
nal air temperature? What is the flux coming
from this Trombe wall?).

Some constraints must be applied to get a coherent
and exact modelling process.

267

• The coupling conditions must be modelled in or
der to provide the same results as for the global
calculation techniques, which are considered as
our numerical reference.

• All the components of a building evolve simul
taneously. They may have different time scales
(a wall temperature evolves "slowly", a solar flux
can vary "rapidly"), but their evolutions are par
allel, and must be synchronised.

This modelling technique has been formalised,
translated under an "object-oriented" form, and im
plemented in ADA. This modelling process is ex
plained below, and an example is shown at the end of
the paper.

In the next paragraphs we explain some of the basic
concepts of our approach.

2 Concepts

2.1 Three Levels of Abstraction

For a better understanding and description of a sys
tem, we structured the data concerning the modelling
of thermal systems into three levels of abstraction.
They are called real world, physical world, and logical
world.

• In the real world a complex object is seen as a set
of elementary objects and other complex objects.
An object is an entity which is easily distinguish
able from its environment. For example a build
ing contains beside other things a heating circuit
as a complex object, which in turn contains a
pump as an elementary object.

• In the physical world a physical phenomenon is
associated to each elementary object of the real
world. For instance, a wall could be modelled as
"one dimensional conduction with capacity".

• Finally, the logical world describes representa
tions of objects. Mostly it will be the constitu
tional mathematical equation, but non numerical
algorithms are also possible.

The real world is the highest abstraction level where
objects are handled without knowing all the details.
The logical world is the most detailed one, close to its ·
software implementation. (fig. 1)

~
if

split up:
(weak coupling)

~
model of a wall

onedimensional conduction

~
~> - finite differences
~ - orientation :

CJ U~Y
Figure 1: three levels of abstraction

2.2 Knowledge Capitalisation

The major advantage of the object-oriented modelling
of buildings is modularity. The complexity of a model
seen as a global set of data is reduced by structuring
these data in a decomposition graph. The data are
gathered in coherent objects; each of it can be man
aged without knowing the details of its contents. The
objects can be cut, changed, moved, ... without hav
ing to modify the rest of a system model.

The same reasonipg leads to the constitution of
subsystems by recursively linking objects. This idea
makes it possible to store models (objects or subsys
tems) in libraries. Elements of these libraries can
be used to build complex models by simply coupling
them. Specialists are enabled to create sophisticated
models and to put them in those libraries. The user
is not obliged to know the internal representation of
the existing model. He only needs to know how to

268

use it. The user can access to pertinent and efficient
models published in model libraries. The modularity
of the object-oriented modelling, and the possibility
to develop model libraries is a practical way to diffuse
scientific knowledge.

2.3 Objects and Actors

The Object Oriented Programming consists of data
structures organised as a set of hierarchical linked ob
jects. In a logical object are gathered all data calcula
tion methods, tools, corresponding to a real world ob
ject . The object can be globally submitted to various
processes as storage in libraries, duplication, connec
tion, etc. There are two kinds of objects, static and
dynamic ones. They are called dynamic if they can
evolve in time. Such dynamic objects are often called
"actors", and are of large interest in simulation.

These actors are "living" objects. During the exe
cution of a program they can be created, destroyed,
they can receive and send messages, they can mod
ify themselves; and alJ actors in a program are active
at the same time. Complex systems can thus be de
scribed by a set of actors in parallel evolution.

2.4 Coupling of Objects

The division of a system into smaller subsystems
raises further problems which are due to the manage
ment of the relations between the objects. (We cannot
say a heating system is a set of pumps, tanks, heaters,
radiators and pipes. We must describe their order
and their interactions.) Cutting gives us a structure
of dependencies between the components. These de
pendencies must be reconstituted in the simulation
system in order to get it valid. When assembling the
structure, we describe the neighbourhood of a module
and the relations to its neighbours at the same three
different levels as mentioned above.

• At the most abstract level, the real world, we de
scribe the fact of neighbourhood between mod
ules. It simply says that a component has a re
lation with another one. Without the knowledge
about a neighbour a module stays alone and has
no interaction with any other.

• The physical world fixes the type of relation be
tween two linked modules. Each module has
frontiers to communicate with the outside. A
frontier is a set of some input/output-variables,
which belong together in a logical way (e.g. tem
perature and flux at one side of a wall). The rela-

frontier

link uo

interface
(coupling model)

pin
CT', flux ...)

Figure 2: two modules linked up by an interface

tion between two connected modules is described
in a so called interface. (fig. 2)

• In the logical world a method to fulfill the phys
ical constraints is described. It could be, for ex
ample, the description of an iteration algorithm
to solve the coupling.

The complexity of a model can be split up and
structured by a lot of different ways. Our choice has
consequences on the data structure and the numerical
solving method.

The main idea is that the expression of the interface
model where frontiers of subsystems are coupled has
to be as simple as possible. Interfaces may not be
capacitive elements, because they have no material
support; they then do not have memory and their
states are the instant results of balances between the
objects which are linked up by this interface.

The second idea is that objects are seen only
through their frontiers. Interfaces are expressed as
relations between frontiers, and do not touch the in
ternal state of the coupled models.

These two structural hypothesis help in the mod
elling process by giving a framework in which the split
up of a system must take place. But not all solving
techniques are possible. These hypothesis are con
straints that the resolution method must get over.

2.5 Resolution Methods

We suppose that a global resolution of a problem may
be achieved by a set of local resolutions and relations
traducing the constraints expressed on the coupling
interfaces. Each interface sends constraints to tlie
coupled objects, which intend to reach a state sat
isfying these constraints.

It is a natural approach because it seems close to
the physical "reality". Physical phenomena are local,

269

I
q I

t

.I ,,
.i

1:1.
I

1;

D '

.

m

h
....

Figure 3: two implemented interfaces

they only have interactions with the elements in a
(logic) neighbourhood. (For instance a wall between
two rooms only sees the temperature values of the two
separated rooms . It is not directly influenced by the
roof temperature .) A model would have to :represent
only direct links (the wall with its contiguous rooms),
the indirect links would be expressed during the sim
ulation by transitive effects between neighbouring el
ements.

Different kinds of simulation interfaces have been
implemented.

• The first is the simplest one. It only transmits
the value from a sending module to one (or more)
receiving modules. (The mass flow and its tem
perature leaving a pump can be sent to the input
of a solar collector.) It is the standard interface
to describe a cycle of components as it is typ
ical for heating/air conditioning systems. This
interface realises connections of outputs of some
models with inputs of some others.

• The second one is used to describe a connection
of modules limited by Diriclet boundary condi
tions on the frontiers, where temperature is fixed.
A Newton iteration algorithm may be used to
find the interface temperature which brings the
heat flux sum of Lhe connected modules to zero.
(fig. 3)

The resolution of a. system at one global level is a
known method that works generally well. Gathering
a set of local resolutions to resolve the same system
raises some new problems that still have to be studied .

3 Implementation

The next paragraph describes the evolution of pro
gramming languages and clarifies our choice of using
ADA for the implementation of the explained ideas.

The following ones explain the practical implementa
tion of the previous abstract concepts .

3.1 Evolution of Programming
Languages

From simple "FORmulae TRANslaLion" the role of
the computer languages evolves in order to give more
possibilities of abstraction to the user . Thus the mod
els don't have to restrict themselves anymore to nu
merical equations, they can be written in the form of
complex structures.

Moving from FORTRAN to PASCAL we get the possi
bility to structure the data. Objects can be gathered
into classes (types) and the corresponding variables
may be dynamic by the use of pointers . The term "dy
namic" only means that the variables can be created
and destroyed during the execution. Their evolution
can be simulated by the means of a procedure acting
on state variables included in the structure (record).

A new kind of structure appeared with ADA: the
task. Variables of a task type are called "living" or
"active" objects, because they include dynamic pos
sible actions. All tasks of a program are executed
"at the same time" . They can exchange parame
ters between each other. Like any other variable a
task can be dynamic: it can be created at any time
and destroyed if needed. A building can thus be de
scribed as a network of tasks, where the number of
components and the general structure are not fixed.
A task can create its own subtasks and can communi
cate with other tasks by "rendez-vous", a mechanism
which synchronises the evolution of the various actors.

Another advantage of the proposed method is
the possibility to describe varying components (e.g.
movable insulation, electrochromic windows, . . .).
Also many components could be controlled (heat
ing/cooling device, ventilation, shading device, etc.
. ..) and Lhe coupling envelope/equipment. can ht!
treated precisely. At last, the interactions between
the building and its environment can have their own
tempo, which means different time steps correspond
ing to the needed degree of precision. The greater
flexibiJity in descrip~ion allows to model easily the
"intelligent buildings" that are emerging, and it is in
phase with the evolution in technologies concerning
especially the controlled components of the envelope.

3.2 Modularity

A fundamental tool to manage the complexity of a
system is modularity. It helps in two ways to man-

270

age a complex structure. One could be seen as "top
down". We inspect our system at different levels of
abstraction. At each level we can split it up into dif
ferent functional modules. On the other hand is the
"bottom-up" method. Using predefined modules out
of a box of bricks we can build our system beginning
with elementary objects to higher and higher levels
of complexity and abstraction. To accomplish this
kind of work the existing mo<lules must fulfill some
constraints of similarity in order to match each other.
We have to notice that a complex system is never con
stituted one or the other way. It is rather a mixture
of both approaches.

Booch (1986)(1] gives a good definition of a mod
ule in the sense of computer languages as an object:
An object is an entity that has state, is characterised
by the actions that it suffers and that it requires of
other objects. Objects have two views associated with
them: the outside view, which defines its interface,
and the inside view, which provides its implementa
tion. Whereas the outside view of an object serves
to express the abstract behaviour of the object, the
inside view indicates how that behaviour is imple
mented. (Masini 1989(4]) One object can interact
with another by seeing only the outside view, without
knowing how the other is represented or implemented.

The computer object that we want to define, the
actor, is a data structure that can evolve and that
can communicate with other components. As ex
plained above the ADA feature task responds well
lo our ideas of object oriented simulation. It has an
interface part, which is called specification and an
implementation part which is called body. In defin
ing the interface we determine the possible actions of
a module.

At this moment the following form of a simulation
module exists; it declares two entries for initialisation
and th ree entries for the simulation itself, termination
is a buildt-in feature by the language.

task type Any_Module_Type is
entry Initialise(Myselt : in Module);
entry Initial_Frontier(T: out Message);
entry Frontier(T : in Message);
entry Result(Phi : out Message);
entry Fix_The_State;
--entry Show;

end Any_Kodule_Type;

After tbe const ruction of a new task we have to
initialise it by the call to Init_Kodel, because we
cannot pass parameters during the construction itself.
The argument Module contains the type of the module

and the eventual branches of the system tree.
The first actor, which represents the simulation sys

tem in a whole, is created by the main program. Cor
responding to the description tree in Module it re
cursively creates and initialises the needed branches
(submodules) and the needed interface objects in its
own body to connect the submodules. (see below the
use of dynamic tasks.)

The entry Initial_Frontier responds with the
values that the module supposes after the initializa
tion at its surrounding frontiers.

The simulation itself only uses the three entries
Frontier, Result, and Fix_The_State. Frontier
accepts new frontier values. Result is the answer to
the last change at a frontier, and Fix tells the mod
ule to calculate its new state using the last frontier
values.

The optional entry Show can be called to write out
the momentanous values of the module.

Only a small number of points of access to a module
are available. All linking of modules passes through
this type of interface. The internal representation of
the phenomena cannot be used for any outside cal
culation. Thus one representation can easily be re
placed by another and we get a very flexible simuJa.
tion system. This is true at two levels. One is that
we can change a representation for another that treats
the same phenomenon in a perhaps better way. The
other level is to change the system to get a better
performance. (For example one could replace onedi
mensional conduction by twodimensional conductiou
in order to get more detailed results .)

3.3 Actors Implemented As Tasks

After the construction and initialisation of all needed
module-tasks the simulation begins. Since a call to
any of the entries can occur at any time, the three
simulation entries are gathered in a common loop.
Wherever a call arives, this entry will be "accepted"
and worked out. Only one entry can be accepted in
a time, thus we use the select statement.

When a new information arrived in the task via
Frontier, a new state and new boundary responses
are calculated.

An inside view of our simulation task that simu
lates a wall modelled as onedimensional conduction
by finite differences.

accept Initialise(Myselt : in Module) do

end Initialise;

271

I
·:!.

I

I
~
i I

I

I

loop
select

or

accept Frontier(T : in Message) do
Current_T := T(1 .. In_Length);

end Frontier;
State := (M_Inv * Last_State) +

((H_Inv • Q} * Current_T);
Current_Phi .- (J * Last_State)

+ (G * Current_T);

accept Result(Phi out Message) . do
Phi(1 .. Out_Length) := Current_Phi;

end Result;
or

or

or

accept Fix_The_State do
Last_State := State;

end Fix_The_State;

accept Show do

end Show;

terminate;
end select;

end loop;

After a call to Frontier the new state (State, the
temperatures in the nodes) and the resulting heat flux
at the edges (Phi) are calculated. These matrix calcu
lations are performed parallelly with all other active
tasks. During the rendez-vous (the synchronization of
two tasks) only a result copying occurs without fur
ther calculation. Whenever The calling unit can talk
to the module whenever it wants to.

Since we must distinguish between calls in the it
eration loop to find the right frontier values, and the
evolution in time, we use the entry Fix_The_State
to tell the module that the next timestep has arrived.
At the moment we use this simple means that forces
us unfortunately to use the same timestep all over the
whole 8Y81.cm.

AnoLher important implementation aspect is the
use of dynamic variables, which are created (and pos
sibly destroyed) at run-time . Pointer variables keep
the address of such a dynamic variable. In ADA also
tasks can be variables of this kind. This enables us
to create and destroy active objects (actors) corre
sponding to the needs in the system description. A
task can therefore create its own sub-tasks. This con
stitutes a network of tasks, of which the number and
the structure are not fixed from the start.

type Ptr_Finite_Differences is

new Finite_Differences_Hodule;

Tasks of type Finite_Differences_Hodule can
than be created in the body of a room module.

task body Room is
Ky_Walls array (1 .. Hax_Z)

of Ptr_Finite_Differences;
begin

for I in 1 .. Nwnber_Of_Walls loop
Ky_Walls(I) .-

new Finite_Differences_Module;
end loop;

end Room;

The room creates its own local walls depending on
the information it had received during the initialisa
tion.

4 Examples

4.1 A Simple Wall

In the following example we observ the evolution of
the temperature field in a simple wall from the start
of stresses to a stationary state with onedimensional
heat transfer.

The wall is made of two layers, one is 8cm insula
tion and the other is 20cm concrete. The initial tem
perature in the whole wall is 19°C and it is stressed
at both sides with Fourier boundary conditions, this
means with a constant heat exchange coefficient. The
boundary temperatures are 0°C at the left and 19°C
at the right side (fig. 4)

Besides others we created a finite differences model
that calculates onedimensional heat conduction. A
model to calculate the behaviour of a constant ex
change coefficient was called COEF. Thus, our wall
can be split to the four terminal modules LEFT and
RIGHT of the type COEF and INSUL and CONC of the
former ment.ioned type FINITE_DIFFERENCES.

Thiti hasic 81.rudurc of I.lie t.cr111inal 111<><ld11 can h1:
linked in different ways. Following are three that
we examined. They are called Min-1, Min_W, and
Min_M (fig. 5)

In Min-1 the four terminal modules are directly
linked to the main module MIN...L. Therefore MIN...L

contains three internal interfaces, the first between
LEFT and INSUL, the second between INSUL and CONC,

and the third between CONC and RIGHT.

A more "physical" way to link is used in Min_M.
First INSUL and CONC are linked in the module WALL

(one interface). Finally LEFT, WALL, and RIGHT are

272

00 0
0 0

~eft
insul 0 0

ation
concrete

right

2
0 0

0
0 0 0

16.0 30.0 p [kg/m3] 2500.0 9.0
W/m2.K 850.0 c (J/kg} 620.0 W/m2.K

0.04 A. [W/m2.K] 1.75
0.08 d[m) 0.20

I LEFT 11 INSUL I jcoNcl IRIGHTI

Figure 4: a wall of concrete and insulation

connected together in the module MIN.-M (two inter
faces).

Since the most rapid evolution is to be expected at
the left side, we tried Min_W that should avoid unnec
essary calls of the slower terminal models at the right
side. Thus, LEFT and INSUL are linked to L..JNSUL,

and CONC and RIGHT to CONC.Jl. MIN_W is made of
LJNSUL and CONC.Jl.

The timestep for the simulation was 60s and the
three models reached the stationary state within
20.000 s.

This type of simulation seems appropriate to study
the coupling between the envelope and the heating de
vice. Actors can be variable components like a mov
able insulation, a glazing of variable transparency, an
electrochromic coating, ... The number and the struc
ture of the components are not fixed, thanks to the
use of dynamic variables.

5 Towards Object Oriented System
Simulation

Abstract data types (even implemented as tasks) are
somewhat static. Once defined it is not possible to
adapt to new uses except by modifying its definition.
We consider it useful that one can keep an once de
fined type (and its set of corresponding operations)
and declare a new type as function of the first one.
The new type inherits all the properties of his "par
ent", but it can be extended or constrained to reach
a specific objective.

This important concept of object oriented lan-

Figure 5: three possible ways to split up the wall

guages, the inheritance, does not exist in ADA. But
it would be possible to develop an extension of the
language, as C++ was derived from C. (Forestier
1989[2]) That is why we will try to develop an ab
stract description of models and their relations U!iing
the ideas of object oriented analysis and object ori
ented programming. This abstract description of a
system can then be translated into a corresponding
computer code.

References

[l] Booch G. Software Components with Ada. Ben
jamin/Cummings, Menlo Park, CA, 2nd edition,
1986.

[2] Forestier J.P. et al. ADA++, A Class and Inher
itance Axtension- for Ada. Proceedings of Ada
Europe, Cambridge University Press, 1989.

[3] IMACS 1988. !MACS 1988, 12th World Congress
On Scientific Computation. Paris, 1988.

(4] Masini G. et alt. Les Langages a Objets, Langages
de classes, langages de frames, langages d'acteurs.
InterEditions, 1989.

273

-- -·- - ._,,, - . ..- - - ~ ---- . -

I

I

