
PARALLELIZATION OF MODULAR SIMULATION PROGRAMS IN AN

. OBJECT ORIENTED ENVIRONMENT: THE TRNSYS CASE

Abstract

P.Y. GLORENNEC

INSARennes

20 Av. des Buttes de Coesmes

35043 Rennes Cedex

France

From the observation that existing simulation programs
exploit neither the subjacent paralle lism in building
energy management problems nor parallel computer
possibilities. we develop certain principles and apply
them to a well-known program, TRNSYS.

To this end, we can call on the possibilities offered by
object oriented programming, which permits in
particular :

- the easy re-use of the existing programs
- the transformation of a module into an independent
process, communicating with other processes in a
flexible data processing architecture (mono or
multiprocessor machines)
- the display of an execution scheme, common to all the
processes of the system;

We have developed a compiler which analyses the
TRNSYS deck and automatically generates the
necessary code for a given simulation.

The different levels permitting the communications are
writen C++, in an UNIX environment. The old
procedures, writen in Fortran, are re-used.

Keywords:

Object oriented programming, C++, parallelism,
communications, class, models.

j

243

R. EL BOUSSARGIDNI

E.S.E Antenne de Rennes

Av. de la Boulaie B.P. 28

35511 Cesson Sevigne

France

I. PRESENTATION

1.1. MONOLITlilC AND MODULAR PROGRAMS

Buildin? simulation programs belong, roughly, to two
categones : monolithic or modular programs.

Monolithic prograr_ns, such as DOE-2, are generally
well-adapted to their task and use efficient algorithms.
0? the oth~r han~, their rigidity is a drawback; the user
will find d1fficult1es to use them in a non-conventional
situation, not appearing in the menu.

~n .top of that, their monolithic aspect makes them
d1fflc~lt to use, in multiprocessors systems, unless we
enter m the code of the program itself.

On ~e other hand, the use of modular programs is more
flexible, because, with only a small amount of
prog~ing, the user can modelize his own system, by
draw_mg ~n the provided components (modules) or by
creatmg his own modules.

Current programs are of quite an old conception : most
of them date from the seventies (TRNSYS, DOE-2,
HV AC SIM + ...) and even if they have evolved a lot
(TRNSYS is n~~ ~n release in its 13.l version) they stay
marked by the m1tial data processing concepts :

- sequentiality
- mono-processor computers
i~~w level procedural languages (Fortran 77. Fortran

- user interface weakness.

The current situation is, however, caracterized by
numerous new events of a different nature.

. 1.2. THE IMPORTANCE OF SIMULATION

The importance of simulation in building has permitted
the development of very numerous models, from the
most basic componenc (pipe. wall ...) to the
sophisticated component (cooling tower ,
microprocessor controller .. .) : all these models are
written in different data processing languages with
different input/output agreements. so that, the user who
wants to integrate a new model into a basic simulation
program has to devote a lot of time to interface
problems. A need of clarification and norrnali1 ;t1 irnt is
becoming more and more necessary, thus, object
oriented languages can provide an efficient answer with
encapsulation, data abstraction and inheritance, as we
will see later.

1.3. PARALLEL COMPUTER

Parallel machine development (iPSC, T-NODE ...)
should permit an important saving of time, and the
possibility of conceiving more complex simulations.
This imposes the rethinking of simulations in term of
tasks and systematizing the notion of modularity.

1.4. RE-USE OF EXISTING PROGRAMS

Lastly, one of the aim which inspired this work, was the
re-use of the existing programs, insofar as a lot of them
have been tried, tested. On top of that, rewriting them
would necessitate considerable expense in effort, time
and money.

2. AN EXAMPLE: TRNSYS

TRNSYS [TRNSYS 89] is a good example of a candidate
for parallelization : ·
• its modular structure naturally prepodisposes it to
cutting out and placing on different processors.
- its old conception needs a modernising according to
the conceptions expressed above.
- simulations are time driven, which facilitates
parallelization.

2.1. TRNSYS structure

A certain number of utilities are disposed around the
principal program :

244

Main Program

fig 1- TRNSYS Structure

As the diagram shows, there is no direct relation
bet:-.veen the different components (TRNSYS types),
which compose a system. These components are called
sequentially by the utility "exec" itself under the main
program control.

. A~ each time step all the components (types) know
their input values, and so could start running. But the
fact they are called sequentially makes each wait its tum.
so the total run period is the sum of the run-periods for
each component.

2.2. REMODELLING OF TRNSYS

2.2.1. PRUNING AND DIVISION OF LABOUR

The main program of TRNSYS must process too
many tasks, which could be subcontracted ;

- free format reading of the input deck,
- standard check of the deck ("typeck"),
- printing tasks ,
- checking the convergence of algebraic and

differential equations,
- differential equation solving.

Solving these tasks implies a certain heaviness and
frequent returns between different programs. Two
examples of immediate simplification :

. elaboration and checking the input deck can be
done independently of the actual simuiation, with more
elaborate type checking and realisation of more
structured file. This is not a handicap : an analysis by
Lex and Yacc will be easier. fRiaux 91 l .

. the printing tasks can be treated separately, using
developed graphical functions and window possibilities.

l
I

2.2.2. COMPONENT "EMANCIPATION"

The different components become objects,
communicating each other by messages. Each object is
-~en from outside under an unified fonn, which totally
~c .
respects the TRNSYS module conception.

From that point of view :
_ the only data in circulation is the data exchanged

between the objects, the rest is cancel led.
- the necessary COMMON data is duplicated in each

object memory zone.

As we explain in the next paragraph, each object
becomes an autonomous. unified entity. A simulation
lies in managing the exchanges between chose different
objects, rhese can be placed on different processors of a
p::irallel computer or on different computers in an
Ethernet network.

2.2.3. CONVERGENCE

The TRNSYS method of solving equations by
successive substitutions is not very efficient. However,
ince the 12.2 release, a special component, the

"convergence promoter" speeds up the convergence for
algebraic equations. This component, type 44, becomes
an object like the others.

2.2.4. CLOCK

As the main program is suppressed, a special object,
the clock, has been 'treated for synchronization and
stoppingthe simulation.

3. BASIS CONCEPTS OF OBJECT APPROACH

3.1. CLASSES, OBJECTS AND INHERITANCE

Object programming [Meyer 881 is caracterized by
an organization of information in autonomous
cooperating entities, objects. Those entities only
cooperate by messages.

An object is defmed by two components :

. an internal state constituted by its variable set,

. a behaviour defined by the set of procedures which
constitute the object know-how. These procedures are
the methods. Moreover, we must note that the object
state is modified or consulted only by calling on its
methods.

The notion of class is introduced for specifying a
behaviour, common to a set of objects. An object is an
instance of a class.

245

It is interesting to complete the expression of
common behaviour be1ween objects by the expression of
sharing. The inheritance rule allows this possibility,
building a class by inheritance. overriding and
development of an existing class.

Inheritance allows, moreover, the hierarchization of
class declarations. An inherited subclass has, from its
parents, variables and methods. Those metho~s can be
overridden, i.e. redefined in a subclass, masking those
declared in the parem class. The set of non overridden
methods are shared between the set of instances of
subclasses and parent classes.

The object imemal state consists of private and
shared data from· the class and the superclasses. In the
same way, the object interface is represented by the set
of class methods and superclass methods.

3.2. ABSTRACT CLASSES AND VIRTUAL
ME1HODS

The "any-rype" class has been created in order to
factorize the common behaviour of a set of classes. It is
intended for inheritance and cannot directly be used as a
model for an object. Such classes are called "abstract
classes".

Otherwise we notice that "compute" is a method
common to all subclasses issued from "any-type".
However. we can't, in this class. associate an explicit
body with it ; "compute'' is called a virtual m~f:bod_. it is
stated in the "any-type" class and fully spec1f1ed 111 all
subclasses of "any-type".

i
I

I
I

internal state :
private variables

internal state :
xin, out, par, dtdt

methods:
transmit
receive
waiti.ng_clock_pip
virtual compute

internal stite :
private variables

methom:
compute

-
internal state :
private variables

methom:
compute
private procedures

private procedures

methods:
compute
private procedures '

fig 2- The "any type" class and its subclasses.

4. CONNECTION BETWEEN OBJECTS AND
PROCESSES

Encapsulation of a set of methods and data into a one
structure allows to consider objects both as executive
units and stocking units, [Krakowiak 88]. There are two
ways to describe the connection between objects and
processes :

1 - to associate the executive structures to the
objects,

2 - to separate objects and executive stuctures. The
objects are passive and their methods are perfonned by
processes defined independently.

We choose the second case : we consider that the
process has an independent execution structure. A
process is associated to each object. TI1e object methods
are called successively by the process execu tion
structure.

246

A process is in connection with other processes
through messages sent to the associated object which has
all information needed for that task at its disposal. A
method is also provided fo r interacting with the clock
process. Moreover, each object concains the procedure
for its internal computing. The object also has other
private procedures and variables, not visible from
outside.

clock

compute

process:

waiting_clock_pip()
receive()
compute()
transmit()

convergence

fig 3- Object/Process.

.u. OBJECT AND PROCESS GENERATION FOR
TR.'\SYS

Tue TRNSYS program is characterized by its input
deck. which contains the detailed description of all the
modules.

We have written a compiler for this file, with the
Un ix mots LEX and YACC. We now describe the
successive steps allowing rhe creation of the processes
:ind objects necessary for any simulation.

Firs r seep : generating an in rennedime code from the
input file

This step allows us to translate the simulation
configuration under the form of a detailed description
for each unit. This description contains for each unit :

. irs type ,
- its parameters and initial values
- its inputs and initial values •
. the initial values for possible differenrial equations.
- for each input, the communication canal where it must
be read,
- its outputs, and for each output, the communication
canal where this laner must be wriuen,
- the communication canal for clock synchronization.

Second step : creation of processes/objects

After the first step, we have all the necessary
information to create all the processes/objects. Hence,
we have, for each unit, the needed class and all the
communication canals which will allow us to create an
autonomous process.

After this second step, all the processes are created,
each linked to an object.

Third step : general scheme of processes

The use of the object approach allowed us, at first to
organize appropriately and to clarify the units of our
system and their communications. This approach gives
us also. by the use of virtual methods, a generalization
of all the processes. Therefore, the original idea which
was introduced was exhibit a common execution sheme
for all the processes. The final simulation is reduced to
an execution of the components which are processes.
Those processes have the same structure but each
contains a different object.

Fourth step : clock module

A "clock" process is created to transmit the clock
strokes (pips) and control the stopping of the system.

--

. . --..· - · -.

247

We detail only the third step

II third step : general scheme of a process

obj->waiting_clock_pip (pip); fl the object waits for the
II clock pip

obj->init () ; II initializes the parameters and the input
II values while the clock pip is not a
II stopping order of execution

while (pip ! = END_ EXEC)

DO

II asks the object to compute, this message constitute the
II interface with the existing Fortran modules

obj -> compute () ;

II for each used output, transmit the computation results

obj-> emettre ();II this message is synchronous

obj -> receive () ; II waits all its inputs

obj-> waiting_clock_pip (pip);

done

Remark : for reasons of sirnplificarion, we have omitted
here to mention rhe convergence problem. The retained
execution scheme of the process is lightly modified in
consequence.

4.2. PARALLELISM AND INTER-PROCESS
COMMUNICATIONS

To illustrate these points, we are going to
examine an example, from the TRNSYS reference
manual, which shows the manner in which the different
processes interact and the roles the objects play.

1
~
'

20

Unit l Type9
Cnrd Reader

Qu Gt
Unit 14 Type 24

Integrator Ta Gh Tdl Td2

I

Unit 3 Type 3
Pump -To Mo

Gt
Unil 21 Type 25

Printer

fig 4- A Simple Solar Water Heater.

From the input file corresponding to this scheme,
we generate seven processes.

process 1
transmit

canal I

receive

c process 2
transmit

receive

rocess 3 c process 6
transmit

canal 7

receive

recess 7
transmit

fig 5- Objects/Processes for the example.

All the processes are executed following the sa~e
scheme exhibited in the third step of the preceedmg
paragraph. Meanwhile,. eac~ "~eceive" me~hod has
different parameters which signify from which canal
the data can be received and to which inputs they
correspond. Equally, the "transmit'' methods depend on
parameters of the objects associated with the process.

To summarize, each process executes the same
code, sending the messages "transmit" , "receive" ,
"compute" , "wait_clock_pip" to the associated object.
This latter contains its own parameters which will be
used by these methods. All these processes are in direct
communication with the clock process to synchronize
the simulation running.

. ..
-~

5. CO:\CLUSION

Our first implementation is done on an Unix
~'seem. with pipes and sockets as a mean of
c~1111rnunication. But our aim is to implement our system
,rn a parallel computer. In a first step, we will
implement it on a hypercube computer (Intel iPSC2) [El
13,1ussarghini 89]. All the necessary information for this
implementation is, therefore, ready in the intermediate
code ; we have only to specify, for each obiect, the
identity of the processes with which it will
communicate. Besides, in such an environment, we must
solve. the placement problem of the processes.

fig 6- the seven processes and their communications.

Secondly, we think of implementing it on a
tr~nsputer based computer. Those two implementations
will allow us to have significant measures showing the
advantages of our system.

249

6. REFERENCES

[El Boussarghini] R. El Boussarghini. Mise en
oeuvre de DATALOG sur une
architecture parallele PHO,
Rennes I, September 1989

[Krakowiak 88] S. Krakowiak, M. Meysembourg,
M. Riveill and C. Raisin. Modeles
d'objets et langage pour la
programmation d'applications
reparties. Genie logiciel & systeme
expert, n° 11, March 1988

[Meyer 88]

[Riaux 91]

[TRNSYS 89]

B. Meyer." Object Oriented
Software Construction Prentice
-Hall, Heme! Hemptead, 1988

H. Riaux, M. Molnar, P. Boinet, J.
Miriel. A graphical man machine
interface for modular HV AC
System simulation program, Proc.
of !BPSA, BS'91, Nice, August 91

Reference manual. Solar Energy
Laboratory, University of
Wisconsin - Madisson

. t
~---

