lude an offset of-
Tagression line

Ot used bec
Ty ause

MODELLING FOR BUILDING
ENVIRONMENTAL CONTROL

G S VIRK, J M CHEUNG
Department of Control Engincering, Sheffield University
Sheffield St 3JD, South Yorkshire, U. K.

B R . ' L

10

D L LOVEDAY
Department of Civil Engineering, Loughbiorough University
Loughborough LE11 3TU, Leicestershire, U. K.

S

Summary

BT - -

In this paper, different techniques for modelling building thermal systems are in-
vestigated. These consist of advanced stochastic Lime series analysis using cor-
relation techniques and the more usual deterministic approach based on physical
analysis. A test cell is used as the basis for comparing and contrasting the two
approaches. It is shown that since building thermal behaviour can be subject to
considerable stochastic influences, the former approach offers good potential for
describing system behaviour; this is of importance in certain applications, such as
control. Evaluation of the deterministic approach shows it is capable of handling
stochastic effects but only with difficuity. However, Lthe latter approach offers the .
ability to evaluate differing designs prior to the -building construction.
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1 INTRODUCTION }
f

Since the earliest times mankind has sought sheiter from the inclemencies of the natural
environment. Initially this was achieved by the use of caves and tree hollows, but with time.
this has progressed to the stage where use is now made of elaborate purpose-built structures
in which artificial environments are provided by means of complex heating, ventilating and
air-conditioning (HVAC) systems (building services). Until recently, contral was effected il i

———_——_ ——— S ———

by means of classical analogue techniques only. However. tlie advent of the microprocessor }
has offered building services engineers the ability to carry out digital control by computer.
Although computer control methods have been utilised for a number of years in areas
such as process control, the introduction of the technigues to building services systems is
relatively recent. This application to the built sector is popularly terms *BEMS™ - Building
Energy Management Systems, and the phrase “intclligent buildings™ has been coined to b
describe those in which a BEMS has been installed.

The *high-tech” image conveyed by BEMS can, however, give a {alse impression. \While
benefits in lerms of energy savings have. been substantial,. this has often resulted {rom
a better, more detailed, uriderstanding of -climate/building/1TVAC plant behaviour which
a BEMS can offer, by virtue of the large quamity ol data recorded and the case with
which it can be aualysed. In many commerciallv-available BEAIS, the conventional control
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Figure 1: Computer control of a test cell

(i) the heating element was enclosed within a metal canister to introduce a larger dead-

time;

(ii) steel plates were placed on the floor of the cell enclosure in an attempt to slow down

the dynamics, and

(ii1) an electric extract fan was inserted in one wall of the cell to introduce large magnitude

stochastic disturbances.

Figure 2(2) shows the open-loop step response of the original cell and Figure 2(b) the
response for the modified cell. The remainder of the discussion in this paper relates to the

modified test cell.

3 STOCHASTIC MODELLING

The test cell may be represenied by a mathematical model of the form (see for example
Box and Jenkins [7], Norton [§] and Ljung [9]):

A=) Te®) =278y () u(t) + 7B, (") T (1) + C (27" e (1)

where

(=)
(="")
B, (z7'). =
(=)
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Figure 2: Step responses of the test cell

The term z~! is the delay operator (z~'f(t) = f(t = T) where T is the sampling interval
in seconds), T. (1) is the cell internal air temperature at time ¢, u(t) is the heat input rate
to the cell, T, (1) is the ambient air temperature, e(Z) is a white noise process to represent
stochastic effects, ¢;, (3 are the dead times of the system and na,nb, nb2 and nc are orders
of the respective polynomials.

An open-loop step response was carried out and values of T,, T, and u were recorded
every second for three hours. The correlation between the step input u and the cell tem-
perature T, gave the dead time ¢, as approximately 60 seconds. The value of T, remained
essentially constant and hence was ignored in the modelling process. as discussed in Virk et
al (3]. To represent this dead time by an integer number of sampling intervals, the sampling
rate can be chosen to be any factor of 60 seconds. Tests could therefore be carried out
for values of 10, 20 and 60 seconds; the faster the sampling rate the greater the processing
power required for on-line modelling. In view of this, a rate of 60 seconds was chosen giving
a dead time of one sampling interval.

The test cell was subjected to a pseudo random binary sequence (PRBS) heating input,
having values 0 or 1, at a sampling interval of one minute for a total time of ten hours.
Readings of T. and u were recorded for off-line identification purposes. These sequences
are shown in Figure 3. For eflective identification, such data must in general be normalised
for the removal of trends, means, cyclic and seasonal effects (Box and Jenkins [7]). For the
data in Figure 3 the means were removed giving a model of the form :

AT = B () (0 +.C () (0 + g

where dp is a D.C. term. The next stage in the identification procedure involved assuming
a value for the order of the polynomials na,nb and nc and determining an estimate of
the model parameters using the ldentification Toolbox in. PC-MATLAB. This model was
validated by comparing predicted and measured values giving the errors (residuals). The
squares of these can be summed to give an indication of model quality. As the orders are
increased the model quality improves which is indicated by a reduction in the sum of the
squares of the residuals. Repeating this procedure for several orders permits the plotting
of errors against model order. A sudden change in slope indicates the correct model order.
These orders were found to be na = 3,nb = 2,ne = 2. Using these orders a lcast squares

W
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estimate yields an ARMAX model for the test cell as:

(1-2.0327" +1.2527 - 0.22:7) To (1) = = (0.74 = 0.3427" = 0.3327%) u (1)
+(1=1.1327" +0.16277) e(t) = 0.04 (7)

3.1 Model Validation and Discussion
M{ATLAB allows the models to be validated by performing auto-correlations on Lhe resid-

uals and cross-correlating the residuals with the input. These are shown in [Figures 4(a)
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and 4(b), where both are seen lo be satisfactory. In addition, the model can be used to
predict the cell temperature, giving forecasts which may be compared with the measured
values. This comparison is shown in Figure 5, where it ean be seen that for the majorily of
the time forecasted and measured values agree to well within 1.0°C. Although this would
be adequate in most cases, in practice more acenrale forecasts could be achievable, since
an air change rate of 400 ach is an exceedingly large stochastic effect. Even so, such large
effects can be accommodated il sensors and instrumentation are installed Lo measure the
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Figure 5: Model validation

disturbances. This is a similar finding to that in the physical modelling discussed in section
4. In our case, the disturbance was implemented by a PRBS on/off input to the electric
extract fan. Were this to be treated as an additional known system input and modelled,
then better forecasts are possible. This two-input case can be, and was, analysed, and
resulted in a model that predicted cell temperatures to within 0.5°C. The prediction errors
for both these cases are shown in Figure 6; these clearly show the improvements. Sums of
the (errors)® over the range 100 mins - 600 mins for single input and two-input cases were
found to be 332.3 and 162.9 respectively.

The off-line modelling process described can be modified for on-line use by employing
recursive identification methods (see for example Norton (8] and Ljung (9]). The main
objective for doing this would be to develop and implement advanced control techniques
for use in building energy management systems. As shown above, the models can accurately
predict the thermal behaviour. It is clear that if such a model is used as part of a control
algorithm better performance is possible together with reduction in energy consumption.
This is because the forecasts permit reductions in the overshoots and undershoots {rom set
points that occur in current PID systems. Research to render this on-line approach viable
for building services control is being actively pursued, Virk et al (4], {5], {10}, Virk and
Loveday [11], Loveday et al {12], [13].

4 PHYSICAL (DETERMINISTIC) MODELLING

At this stage it is useful to show, in general terms, the relationship between the stochastic
modclling method, discussed in section 3, and the deterministic modelling method. Both
represent different aspects of what is termed system identification - the technique for ob-
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Figure 6: Prediction errors

taining a model which describes the behaviour of a system for subsequent use in design
or for control purposes. This relationship is illustrated in Figure 7. Method 1, which
has already been described, finds particular use in control engineering where the model
produced is often used in the design of the controller. Here, stochastic (noise) effects are
accounted for. Method 2 and Method 3, which are essentially the same as one another,
can be used to model systems which are stochastic, but the quality of system description is
dependent on the amount of random influence present in the real svstem. If this is small,
the model produced by Method 2 may be adequate for control engineering purposes. Oth-
erwise, Methods 2 and 3 offer a technique for evaluating component and system designs.
The choice of method is therefore determined by the nature of Lhe system to be modelled.,
and by the subsequent use to which the model is put.

With respect to the modelling of buildings, Method 1 represents a relatively new ap-
proach. Method 2 and Method 3 usually comprise the well-known techniques for describing
thermal behaviour. At its simplest, this can constitute the simple steady state approach:

Q=UA(ti- 1) (s)

where Q is the rate of flow of heat (\Vatts) through a constructional element of area 4 (m?),
t; and 1, are, respectively, internal and external temperatures (/V'), and U is the U-value
(Wm=2K-1) of the element (Markus and Morris [14]). At its most complex, it involves
solution of the three-dimensional transient conduction equation, which, for no internai heat
generation, may be expressed:

aT &k
PP B v )
a  pC, ¥ 9)

Here k,p and C, are, respectively, the thermal conductivity (Wm='K "), the density
kg m~3) and the specific heat capacity (J kg=' K -'), of the building constructional cle-
9 p 1 g



METHOD 1

STOCHASTIC MODELLING

ACOUACE DOTRCHTAL OATA AMD WVOLVEE
AMULTEM O SSUTLOUTPUTE, TREATRG (YETTM

AE BLACKSOX' - MOLUOCE CFFECTE OF wOeRL*
CONTROL
ENGINEERING
APPROACH
[ METHOD 2
SYSTEM DETERMINISTIC MODELLING

IDENTIFICATION

ANALYTICAL O (MEAICAL ATEICAL IOUATONE
OZSCTESE EYSTEM - USCD # ORI 1t CwAll
[HOUGH 10 BE MCOLICTEO

PHYSICAL }
APPROACH METHOD 3

DETERMINISTIC MODELLING

AMALYICAL Of fuwrECAL PHWYEICAL EQUATIONE
OZECMET EVETIM WeuCM 5 ASELMED TO BF
WOWE FACE; F NOME 13 10 8L ACCOUNTLD

TOR =CATAIED WOOLLLMG DUTAR 1S REOLSTD

Figure 7: Overview of system identification

ment, T the temperature (X) and V? the Laplacian operator. defined as:

72 = ﬁ:_ % éf_ + _?i (10)
9z gy 0z

Between these static and fully dynamic extremes exist a number of simplified approaches.
Solution of equation 9 is often restricted to one dimension which permits more practical
techniques such as the response factor method (Kusada {15}; Kimura (16]) to be developed.
Another technique is the “admittance procedure” (Millbank and Harrington-Lynn [17]), in
which the internal temperature of a zone is determined from an assumed sinusoidal external
temperature variation; this requires the assignment of mean and peak temperature values.
The procedure defines the parameters of admittance )’ (1¥Vm~2/A"~'), time lag ¢ (hours)
and decrement factor [ (op cit) which arise as a resull of heat storage effects within the
building fabric. It is less rigorous than other techniques but offers a first step towards the
dynamic analysis of a building design combined with being relatively straightforward to
use. )

The use of such deterministic models as those described above. or ones in the form of
well-known computer programmes such as ESP, SERI-RES, assumes the building/climate
system to be noiseless, that is, [ree of random disturbances. However, buildings are in
reality subject to significant stochastic influences such as natural ventilation effects (from
opening and closing windows), solar gain fluctuations, occupancy and appliance usage
variations. The eifect that such disturbances have on system performance will vary from

case to case but, nevertheless, handling any such disturbance in a deterministic model
presents additional difficulties which are now illustrated.




-

L (]

(10)

ied approaches.
more practical
o be developed.
i-Lynn (17]), in
soidal externa
erature vajyes.
lag ¢ (hours)
cts within the
P towards the
chtforward (o

n the form of
ding/climate
Idings are i
effects (from
liance usage
1l vary from
nistic modef

4.1 Deterministic Modelling of Test Cell

The test cell system described in section 2 was modelled using Lhe admittance procedure
in the form of a modified version of the computer programme BRE-ADMIT written by the
UK Building Research Establishment (Bloomfield, 1985). This programme is designed for
single-zone modelling of building structures, so in order to adequately model the test cell,
the following modifications were made.

(i) The minimum dimensions of the cuboid that could he modelled were reduced to
0.1m x 0.1m x 0.1m high. Though this will affect the values of surface resistance
the original programme values were retained since this is to be a comparative study
based on changes in ventilation rate. .

(ii) The maximum permissible value of internal temperature was raised from 25°C to
100°C, and that of day-time/night-time ventilation rate from 50 ach to 500 ach.

(iii) The thermal conductivity range was increased to permit inclusion of the value for
steel (60Wm=1K-1).

The above modifications constituted a new programme entitled “BREAMOD2" which
was used to model the test cell. Since the cell was locatcd inside a laboratory the absence of
solar radiation was treated by setting to zero the solar ahsorptivity values of the modeiled
cell surfaces. The laboratory air temperature (Lhe internal temperature in “BREAMOD2")
was modelled by setting the mean value to 28°C, with a swing (maximum minus mean)
of 0.5°C and a value of one cycle per day (24 hours). The “heating plant” output was set
at 15 Watts continuous operation, this value being lound to produce the correct order of
magnitude for results of internal air temperature by off-setting Lhe effects of other approxi-
mations; the value is consistent with the intermittent operation of the 50 Watt heater in the
actual test cell. An effect of the canister which enclosed the heater was to reduce radiant
emission. This was modelled by setting the convective:radiative emission ratio to 0.9:0.1.
Figure 8 illustrates the cell arrangement for modelling purposes. Table 1 gives the values
of the relevant thermophysical properties and Table 2 the derived quantities as obtained
from the “BRE-ADMIT THERMAL FACTORS" sub-routine. These show the cell to be an
extremely lightweight structure, even with the steel plates, and to have negligible thermal
storage. This confirmed results obtained from step response tests carried out on the actual
cell. Therefore the steel plates do not sufficiently siow the dynamics, and other materials
will need to be employed in future work.

The chief stochastic disturbance in the actual test cell systemn was the operation of the
electric extract fan driven by a pseudo random binary sequence. This produced a cell air
changerate estimated to be 400 ach when the [an was on. A background infiltration rate of 2
ach was assumed when the fan was off. Since “BRE-ADMIT" (aud hence “BREAMOD2")
is a relatively simple simulation model, this disturbance can he handled only coarsely.
Hence simulations were performed for four values of ventilation rate: 2, 5, 200 and 400 ach,
and the results compared. Simulations showcd that the small casual heat gain from the
fan motor had a negligible effect on resuits, and so this gain was ignored.

Figure 9 shows the effect, on cell internal teinperature, of varying the ventilation rate.
These results are in good agreement with the ineasured temperatures in the actual test
cell (see Figure 3(a)), thus validating the simulation model. Ventilation rate is a stochastic
disturbance, and is seen to have a significant cffect upon simulated cell temperature. This




Table 1: Cell thermophysical properties

Surface | No. of | Width | Density | Conductivity | Sp. heat capacity
layers | (mm) | (kg m=3) | (1V m=" N'-1) | (J kg~' K~1)
1,2,3,4 1 5 105 0.047 1507
5 2:
first 5 105 0.047 1507
second 3 105 0.047 1507
6 3z
first 1 7854 (0 434
second 5 105 0.047 1507 ;
third b) 105 0.047 J 1507 ‘

Table 2: Derived quantities {rom “THERMAIL FACTORS”

Surface U-value Y-value { )
(Wm=2 K=Y | (1 m~2 K=" (hours)

1,2,3,4 3.492 3.492 1 0

5 2.546 2.5-6 1 0

2.546
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Figure 8: Mlustration of the test cell as simulated

is because the size of the disturbance is very large (for demonstration purposes). However,
even small variations in infiltration rates, such as from 2 ach to 5 ach, affect the cell
temperature by about 0.3°C. Prediction of the cell internal temperature at any given time
is therefore difficult, because this particular model is unable to handle ventilation rate
changes over small time steps. To deterministically model this system adequately it would
be necessary for the model to cope with infiltration data over a finer time resolution -
provided that such data were available. Thus model complexity must be increased. A
similar approach would be needed if other disturbances such as occupancy changes and
other casual gains variations were to be modelled. This would require more detailed data
on these variations and this might be both difficult and expensive to obtain.
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5 CONCLUSIONS

The stochastic approach to system modelling has been described. Its application to a
test cell subject to random disturbances resuits in a good mathematical description of
that system which incorporates stochastic effects within a relatively compact model. The
deterministic approach has also been described and applied to the same system. It has
been shown that to model stochastic effects accurately, the complexity of the models needs
to be increased. .

Since building thermal behaviour can be subject to significant random influences, the
stochastic approach in some respects offers better potential. This is particularly the case if
some form of on-line model implementation is contemplated. An example of this is on-line
control via a building energy management system (BEMS). Here, due to the parsimony of
the model, implementation would require less computer power with reduced computation
time. However, since such a model is drawn [rom input/output data, a building must
already be constructed and functioning to obtain the model. The deterministic approach,
while producing models which might prove too unwicldy for on-line implementation pur-
poses, does offer the advantage of being usable at the pre-construction stage of a building
for the evaluation of different designs. However, a (urther use might be Lu assess the sensi-
tivity of, for example, a zone temperature in response to variation in a stochastic variable
(occupancy, ventilation, casual gains). This could aid the selection of the important vari-
ables to be monitored prior to developing a stochastic madel for on-line control purposes,
and since this is dependent upon the type, design and location of a building, it could be
carried out at the design stage. The authors are currently investigating these aspects.
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DISCUSSION

JIANG Y. (China)

1. What rule should we use to determine the time step ? It
is very important for your time series model.

2. What does fan input mean ? During your test, is the fan
turned on and off sometimes ? The air flow rate is a
non-linear parameter, I believe that the RAMA model
(stochastic model) is not very suitable for this kind of
non-linear influence. If you use your model to control a
VAV system there may be some problems.

ANSWER

The sampling time depends on the dominant time constants
and dead times of the system; therefore tests need to be
performed on the building to establish these
characteristics. Also, a lower limit that the sampling
rate must exceed for adequate representation is provided
by the Sampling Theorem (twice the highest important
frequency component in the analogue signals being

considered). In practice, for good performance, much
faster rates are used; 10-40 times faster than the
fastest frequency have been used in various
applications.

2. The fan input is introduced to represent occupancy and
other stochastic effects into our test-cell work; it is
an on-off input of random form, hence it is on sometimes
and off at other times. The pattern can be chosen to
represent various occupancy, daily and seasonal
patterns; in our work a white noise distribution was
applied to demonstrate the technique.

Although a linear analysis is assumed, it is unknown at
this stage whether such an assumption is adequate for
use in the modelling and control of buildings. We accept
that buildings are nonlinear systems, but linearised
approximations may still be valid for control purposes.

LARET L. (France)

In your conclusions, when you compare stochastic and
deterministic models, the comparison can be different if you
use very compact deterministic physical models where some
_ parameters are identified in line. With the physical model
formulation, you naturally take into account some essential
properties, as for instance energy conservation. These

constraints can be very important and difficult to introduce
in stochastic models. '
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ANSWER

In the comparison of deterministic and stochastic models, we
make the point that a high integrity, complex, deterministic
model would be more cumbersome to operate on-line than would
a compact stochastic model identified from input/output
data. In your research, you have developed very compact
deterministic models, and of course these would be easy to
operate on-line because of their compactness. However, as we
understand it, your compact models are derived from much
more complex deterministic models which are assumed to

.represent the actual behaviour of a real system. Even though

it might be possible to alter your compact model on-line,
its format, quality and content must be dependent upon the
initial complex deterministic model from which {t was
derived, and this cannot easily self-adapt to possible
changes In the physical system. Since no simulation model
can fully and accurately represent real building thermal
behaviour, or changes in that behaviour, we identify
stochastic models from the actual system data I1tself.
Complex and compact deterministic models have, however, an
important role to play in the design of buildings and their
controller algorithms as discussed in our paper, but their
self-adaptive properties are subject to constraints as
outlined above.

We don't agree with your comment that properties such as
energy conservation are difficult to introduce in stochastic
models. In our work (reported elsewhere), the stochastic
model is used as the basis of a controller, the operation
of which can be arranged so as to reduce energy consumption
(and hence increase energy conservation). The stochastic
model itself is simply a mathematical description of the
thermal behaviour of the physical system as it stands
(inclusive of random effects) and the model can self-adapt
to form a modified description, should that system change.
In a similar way, a physical model formulation 1is also
simply a mathematical description of system behaviour.
Energy conservation is a quality resulting from system
performance rather than being a modellable property.

DEGUNDA N. (Switzerland)

Suppose heating with a heating coil. Assume that the
temperature of the heating medium is varying (perhaps because
of capacity problems during heating up and c¢old morning).

Should the model follow these changing parameters 2 Don't
you think you need a supervisory level to detect illegal
situations ?
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