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Abstract

The Simulation Problem Analysis Kernel (SPANI) was originally described as a pro-
totype Energy Kernel System in a paper presented at the Second [nternational
Coanference on System Simulation in Buildings in 1986. Since that time, it has
undergone several enhancements and has been integrated into a larger software sys-
tem that may be more properly called a prototype Energy Kernel System for building 114
=nergy analysis, EKS/US.. Among the enhancements is the capability to simulate |
dynamic problems. Also, symbolic manipulation techniques are now used to generate .
abjects and macro objects from equations expressed as text. Currently underway is
‘he development of a graphical user interface. Newer developments include a
reevaluation of the semantics of dynamic problem definition, which will ultimately
result in much greater generality in user specification of numerical methods. This
Paper reports on these developments and indicates directions for future EKS/US
development.

_ 1. Introduction
1§ Efforts were launched in 1985 to improve modeling tools for building energy systems

f_l-ﬁr:ch”was, LBL 1985, Clarke 1988). [n this connection, the name “Energy [Kernel
gmem (EKS) was coined to refer to the envisioned software genre in which the
asic elements (i.e., components or objects) were to be packaged along with tools

Tquired to assemble them into arbitrary building simulation programs. An




outgrowth of that effort was the Simulation Problem Analysis Kernel (SPA
comprising methodology for deseribing and solving equation systems such as thog
that arise in simulation problems. Although the EKS then had yet to be ruu,.
defined, SPANK was intended to lie along the EKS evolutionary path.

P

[t scon became evident that the fundamental EKS ideas admit to at least twy
significantly different implementations. One of these, currently under development i
the UK [Clarke 1987, defines objects to be modules of substantial size and complex.
ity that may be extracted [rom existing software. The second possible implements.
tion takes a lower-level view, with individual equations as atomic objects that are
interconnected to form larger entities (macro objects), which in turn are intercop.
nected to form simulation problems. SPANK has evolved into an EKS of the second
kind, referred to in this paper as EKS/US to distinguish it from its UK counterpart.

Although ambitiously deseribed in earlier papers as a prototype EKS, SPANK is really
a software system for description and solution of general differential-algebraic equa-
tions, with one of many possible applications being to building energy system simula-
tion. EKS/US is a more complete embodiment of the original EKS/US with SPANK at
the nucleus providing the means for object interconnection and problem solution.

Figure 1 represents the overall organization of the EKS/US and shows the relation-
ship between EKS/US and SPANK. The user interacts with the system in four basie
ways: defining objects (e.g., component models); defining problems by linking objects
together; specifying run-time data (e.g., coefficients, time-varying data); and specify-
ing desired output. The objects are defined in text files, either as mathematical equa-
tions or as component models in Neutral Model Format [Sowell 1989]. These files are
processed symbolically with programs written in MACSYMA, producing C language
functions and objects that are stored in libraries. Problems are defined by intercon-
necting objects using the graphical user interface, producing a problem specification
file in the Network Specification Language (NSL) [Anderson 1986|. The nucleus or
kernel is the dynamic SPANK program system. [t works from the NSL deseription,
generating internal data structures based on graphs. Matching and reduction algo-
rithms are employed with these graphs to automatically devise an efficient solution
algorithm, producing an executable program for a particular problem. This program
reads constant and time-varying data from files, producing the problem solution.
The output processor reads the result file and generates graphical displays according
to interactive user requests.

The basic ideas and theoretical development of SPANK were described by Sowell,
Buhl, Erdem, and Winkelmann [1986|, with extensions to include differential models
reported later by Sowell and Buhl [1988]. Buhl, Sowell. and Nataf [1988] have
expanded upon these ideas and analyzed their importance in relation to other simula-
tion methodologies. More recently, the use of symbolic manipulation in connection
with SPANK modeling has been demonstrated by Sowell, Nataf and Winkelmann
[1990], and Moshier and Sowell [1990] have reported semantic extensions to allow
more fexibility in deseribing dynamic models. Several application examples for
SPANK have also been reported [Sowell 1088, Sowell 1088, Sowell 1990, Nataf 1990|.

The current paper summarizes recent developments in SPANK and reports new work
in progress on a graphical user interface. For the benefit of those unfamiliar with the

earlier work, we begin with a brief review of the motivation and basic ideas behifd
the SPANK kernel.
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2. Review of SPANK Principles

Simulation programs differ with regard to how problems are specified and with
regard to how they are solved. SPANK differs from most currently available simulg
tion programs in both respects. In this discussion we will attempt to distinguish
between these differences. '

2.1 Problem Specification
With respect to problem specification, SPANK is closest in kin to existing modular
programs used in simulating building service systems, e.g., TRNSYS and HVACSIM4 &
[TRNSYS 1983, HVACSIM+ 1985|. That is, SPANK allows the user to interconnect §
component models in a flexible manner so that systems of arbitrary configuration ¥
may be defined. However, it goes beyond the existing modular programs in severa|
ways. First, the atomic element in SPANK is an object representing a single equa-
tion, whereas other simulators use the subroutine, normally composed of several or
many equations, as the smallest element available to the user. Larger SPANIC ele-
ments, called macro objects, are definable by the user in terms of equation objects,
One benefit of the SPANK approach is flexibility, because the user can define new
macro objects as the need arises. Another benefit is code reuse, because the same
equation object can be used in many macro objects. While it is true that TRNSYS or
HVACSIM+ users {who also happen to be FORTRAN programmers) can define new
component models, sometimes using all or part of existing ones, SPANK aims for a Tk
seamless simulation environment in which the means of object, macro object, and ot
problem definition are identical, and code (i.e., existing objects and macro objects)
can be reused without modification.

aretiit Al

Another important aspect of SPANIK problem specification is that objects and maero
objects are defined as mathematical models only, rather than as algorithms. This
means that component models do not have a priors specification of input or output
variables, so that they can be interconnected arbitrarily. In contrast, most widely
used modular simulators employ algorithmic component models with prescribed
input/output relationships. Such models are inherently less flexible. limiting the
class of problems that can be defined without modification of the component models.
These arguments were originally put forth by Elmqvist [1978] and recently summar-
ized by Sahlin [1988| and Mattsson (1989). '

T P

[n SPANK, components are interconnected merely by identifving object interface
variables with problem variables. Once all objects are thus interconnected. certain of
them are specified by the user to be problem inputs, thereby defining a specific prob-
lem. The only requirement is that the problem so specified be well-posed, i.e., have a
solution that is uniquely determined [rom the specified inputs. Although proof of
well-posedness in the gemeral nonlinear differential-algebraic system remains an
unsolved problem in mathematics, for simulations of most physical systems it is
sufficient to be sure the aumber of problem variables (interface variables minus input
variables) is equal to the number of objects (i.e.. equations), and that a complete
matching is possible between problem variables and objects. These requirements are
checked by the SPANK parser.

Summarizing, the important observations regarding SPANK problem specification
are: (a) there is a single implementation of a component mode! rather than one for .
each possible set of input variabies; (b) the user need not be concerned about which
are inputs and which are outputs when defining either component models or
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a2 Solution Methodology . .
:;'hf SPANK solution methodology is also unique. Because the problem is speflﬁed
entirely in terms of individual equations, graph algorithms can be employed to hFd a
Qtuaion sequence. This is a two-step process. The objective of the first step is to
select an appropriate equation to calculate each problem variable. To accomplish
.his. SPANK represents the equation objects and the problem va.ri_abies as the two
Jisjoiat sets of a bipartite graph [Aho 1983|. The variables appearing in each equa-
.ion object are represented as edges in the graph. When viewed in this way, the
<elecrion of an equation for each problem variable is analagous to finding a complete
mstehing in the bipartite graph. There are several well known algorithms for finding
such matchings [Johnson 1988]. Currently, SPANK employs the Dinic algorithm
Evea 1979], although others would work as well. Upon completion of the first step,
‘here is a one-to-one relationship between equation objects and problem variables.
Also, the matching identifies the particular inverse of each equation that gives a for-
qula for the selected variable.

The objective of the second step is to determine a sequence in which the formulas
-ould be evaluated to determine a solution to the posed problem. This would be
straightforward il the problem was known to be acyclic, i.e., solvable without itera-
:ion: one would simply sort the formulas to ensure that all right-hand-side variables
‘n #ach are determined by prior formulas (or by problem input). However, in most
-ases this will not be possible due to situations like y=/ (z) when z=[y(y), i.e.,
-veiic problems. An iterative solution sequence must then be found. Because most
amuiation problems are of this nature, it is important that the iterative calculations
= ~arried out as efficiently as possible. Since most iterative schemes, e.g., Newton-
HAapnson, involve solving a linear equation set with a size equal to the number of
‘teration variables, one way of improving efficiency is to reduce the number of itera-
sion variables. Therefore an important part of determining the solution sequence in
SPANK is finding 2 small number of iteration variables. This is in contrast to con-
ventional simulation programs that typically treat every problem variable as an
teration variable.

Finding the SPANK solution sequence begins with the construction of another graph
epresenting the problem. This is a directed graph in which each equation object is a
vertex. with edges representing dependencies of an equation on problem variables. In
sther words, the in-edges of a vertex represent the variables upon which the equation
for that vertex depends. Because of the matching, every vertex also represents a
problem variable, so every in-edge is an out-edge of another vertex (or an input vari-
ible). A graph constructed in this manner is sometimes called a data flow graph.
Oata flow graphs can be either acyclic or cyclic. In the first case there is an order in
which every vertex can be visited without encountering a previously visited vertex.
Obviously, problems that can be solved without iteration have data flow zraphs
without cycles. while cyelic data flow graphs indicate the need for iteration.

Fint_iing a small set of problem variables to serve as iteration variables is equivalent
‘o Onding a small set of vertices, called a cut set, that break all cveles in the data
flow graph. While finding the minimum cut set in the general directed graph is




known to be impossible in polynomial time (I arp 1972|, there are many well kng
algorithms for finding small cut set in such graphs [Levy 1986|. SPANK employs
algorithm developed by Levy and Low [Levy 1088|*.

Once the cut set is known, the data How graph is modified by introduction of a ne
auxiliary vertex for each cut set member. These new vertices act as source vertices
for the outgoing edges of the cut set variables, thus breaking all cycles and creating o
directed acyclic graph. The system of nonlinear equations is then solved with thes
Newton-Raphson method, using the acyclic data flow graph to guide the evaluatiop
of functions and derivatives. Specifically, a starting guess is made for each cut s
variable and assigned to the corresponding, newly introduced cut set node. The-'
graph is then traversed in ‘“‘topological order', i.e., visiting only vertices whose 4
incoming edges emanate from already-visited vertices. When a vertex is visited, the-+
corresponding formula is evaluated. This process leads finaily to calculated valyes—
for the cut sev variables. The differences between calculated and assumed values of?;
the cut set variables are treated as lunction values, upon which the Newton-Raphson |
method operates. Currently, SPANK calculates derivatives numerically, again using
the acyelic data flow graph.

Observe that the dimensionality of the simuitaneous set is the dimension of the cut
set, as opposed to the dimensionality of the original problem. This means a smaller
linear set needs to be solved to get the next estimate of the iteration variables. Typi-
cally, HVAC systems show very large reductions. For example a five-zone variable
air volume system with a simple algebraic zone model has a cut set of size three, giv-
ing a reduction of about 30:1; this is very significant since solution time is propor-
tional to the cube of the size of the linear set. Moreover, it often develops that the
cut set size grows slower than the number of zones so that larger problems have even
larger reduction ratios. For example, with simple algebraic zone models the cut set
size is independent of number of zones, so a 50-zone model would exhibit a reduction
of 300:1.

& e

The preceding paragraphs describe the essential ideas emploved in SPANK for solving
algebraic equations. As shown below, the same techniques apply directly to solution
of differential-algebraic systems. Many other extensions and refinements are possible.
some of which are described later in the paper.

3. Dynamic SPANK
3.1 Basic Ideas

SPANK was originally developed to solve simulation problems which could be
described by a set of nonlinear algebraic equations. SPANK has recently been
extended to allow the solution of dynamic problems — problems deseribable as a
mixed set of algebraic and first order ordinary differential equations (ODE's).
SPANK's new capability of solving differential-algebraic systems was designed to

exploit the existing algebraic solver and to be fexible and general in terms of prob-
lem definition and choice of integration methods.

* The Levy and Low work was in connection with the ENET program, the direct predecessor
of SPANK. See Sowell [1983].
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tfere ; labels the jth time step and [ is the integrating formula. Open integrating
‘ormulas (explicit methods) involve only past values of a variable and its derivative:
¢losed formulas (implicit methods) also involve the present ( 7+1) vaiue of the deriva-
ive. Open formulas are decoupled from the rest of the problem and thus can he
solved individually. Closed formulas are coupled to the other problem equations
‘hrough z; .. and must be solved simultaneously with all or part of the complete
squation set. Runge-Kutta integration schemes use integration formulas that require
svaluation of the derivatives (the g; in (1)) at several points within the integration
step, but past values of the variables and derivatives are not required. Runge-Kutta
methods are sometimes called single-step methods in contrast to the multistep
methods which use past values of problem variables and derivatives. Note that if a
predictor-corrector method is used, the equations in (2) comprise the correctors.
Predictors are always explicit formulas involving only prior values and derivatives
and therefore are not involved in the simultaneous solution; they are evaluated by a
strictly sequential process that yields starting values for the (possibly iterative) simul-
taneous solution of (1) and (2).

Literature on solving ODE's focuses on individual equations, with much attention
devoted to the efficiency, stability, and accuracy of integration formulas and step-size
algorithms. The integration of a set of ODE's is usually regarded as a straightfor-
ward extension of the methods for solving single ODE's. The additional complica-
tions introduced by a mixed differential-algebraic equation set are rarely discussed.

e




and efficiency. Because values at prior times are aot used, a Runge-[Kutta algorithyy
can easily be started or restarted, and step size can be easily varied. The efficiency of
Runge-IKutta schemes depends on the ability to obtain a value for a derivative fupe.
tion g; at each subinterval point without iteration. While this can be done for a sip.
gle ODE or for a purely differential equation set, in a general differential-algebraje
system the g; will not be independent -of the algebraic equations and evaluation of
the g; at each subinterval point will require a simultaneous solution of all or part of
the equation set. Thus the Runge-Kutta schemes lose part of their simplicity and
efficiency when extended to general differential-algebraic problems. -Implicit mul.
tistep methods, on the other hand, which may be less efficient and less simple for sin.
gle ODE's or for systems of purely differential equations. generalize easily and natur.
ally to differential-algebraic systems.

Dynamic SPANK allows a differential-algebraic problem to be defined in a more gen-
eral way than (1), namely:

0= fl(zlu"i Ip i‘m-i-lr adicy z.‘\’}
0= Jrfz(zl! s TN im-o-l' Gk I‘V) (3]
0= JFN(ZII - IN,I.,."*_“ ey I.\.’}

The integrating formulas are the same as (2). This more general problem statement
is a natural extension of the statement of the algebraic problem — dynamic variables
and their derivatives are not singled out for special treatment. Here there may be no
explicit g; or a g; may be a function of other derivatives, potentially making direct
solution for derivatives impossible. From (2) and (3) it is evident that. lor closed
integrating formulas, a dynamic problem involving /N variables and n derivatives
reduces to the problem of solving a system of N+n algebraic equations at each time
step. Creating dynamic SPANK then simply involves choosing an integrating for-
mula, devising a scheme for storing, accessing and updating the past values of the
dynamic variables and their derivatives, implementing a time step algorithm, and

invoking the old, algebraic SPANK on the full ((2)4{3)) equation set at each time
step.

3.2 Current Implementation

For the initial implementation of dynamic SPANK it was decided to concentrate on
seamlessly merging the integration process with the algebraic solver and making the
integration method available to the user by treating the integrating formulas as
SPANK objects. I[nclusion of variable time step algorithms and the capability to
switch integration methods or orders within a calculation was postponed to a [uture
version of the program. Treating these capabilities in an object-oriented way such
that the time step and method switching algorithms are choosable and alterable by
the user will require extensions to the SPANK formalism and syntax. Definition of
such extensions is near completion and is discussed in Sec. 6, Semantic Extensions.

For the above reasons, a very simple step size algorithm has been implemented in the

current dynamic SPANK — a user-input fixed time step. For similar reasons.

Runge-IKutta methods, for instance, are often favored for their Hexibility, simplicity;
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‘ategration schemes requiring subinterval derivative evaluutiqns (Runge-l(ut._r.a
Ime'.hods} were disallowed. Although a Runge-Kutta }ntegrnwr _ob}_]ecn could be writ-
«en lor the current SPANK, it would not fit naturally into the exnsumg SP‘ANK formal-
.ym. Such an object would need to invoke another obj'ect (the derivative formula),
\nd this ability would need to be hardwired into the integrator object. Tht_:s the
-apability to include Runge-Kutta methods was also deferred to a future version of
JPANK with a more general syntax. (See Sec. 8, Semantic Extensions.)

sside from Runge-Kutta methods, the user has considerable flexibility in choosing or
;,rit;ng an integration method. The methods are embodied in integrating formulas,
which are user accessible objects just like the normal problem equations. Any mul-
:istep formula can be used, and separate predictor and corrector objects are allowed.

ln dvnamic SPANK the past values of dynamic variables and their derivatives needed
Hy the integrating formulas are called “histories’. In order to include histories in the
<PANK formalism in a natural way, a separate object class (and data structure) for
histories was created, as well as the capability to pass history data {rom one object to
another as il it were the value of a problem variable.

In keeping with the decision to make histories "‘objects’’ in the eyes of the user, we
also chose to make them objects internally. That is, these special objects are stored
in the same data structure, i.e., a data flow graph, as normal equation objects. Thus
there is now a history class of nodes whose function is to obtain the appropriate his-
torv data structure and provide it to the appropriate integrator objects. History
nodes are created when a problem variable is denoted as a “‘history' in the problem
lefinition fle.

Actually, histories are not the only “‘special'’ nodes in the data flow graph. Even in
the original algebraic SPANK, for example, there are several special ciasses of node
that have no in edges, One class comprises input nodes. These nodes obtain values
{for variables the user has designated as “input' and pass them to the equation
objects, These values come from program data structures external to the data flow
¢rapn. and are obtained either by querying the user at program initiation in the case
of fixed values, or by reading a file in the case of time varying inputs. Another spe-
rial node class comprises the cut set ‘'guess”” nodes. These are the nodes duplicating
the nodes in the cut set which are used to pass initial or Newton-Raphson guess
values to the rest of the flow graph.

[ntegrator objects form two more special classes of node. Corrector objects are
treated like normal equation objects, but predictor objects need special treatment.
They must not be “fired" (executed) when the full data flow graph is executed.
Rather, a subset of the data flow graph (all input and history nodes, followed by the
predictor nodes) is executed to fire the predictor nodes. The output from the predic-
tor nodes provide initial guess values for the corrector objects in the cut set.

Currently, corrector objects (yielding values for the dependent variables of the
differential equations) are always forced to be in the cut set. Fundamentally, this is
not always necessary, since (a) the corrector might be an explicit formula, or (b) the
derivative could serve just as well to cut the inevitable cycle even with an implicit
formula. However, we decided that explicit correctors are rarely used, and initial
guess values to start the iteration are problematical for derivatives beeause most
predictors are formulas for the dependent variable, not the derivative. In this




recognize the problem it creates, i.e., unnecessarily large cut set size when the
wishes to use explicit integration. The issue will be reopened lor future versions,

3.3 Procedure
The general procedure followed by dynamic SPANK is then:

(1) Set up and fill the problem data structure using the input from the user'y L

problem description file.
(2) Perform matching of equations and variables.
(3) Perform reduction to obtain a cut set.
(4) Define a Aow graph for the problem.

(5) Obtain an execution sequence [or the predictor subset of the flow graph and
for the full Aow graph.

8) Set starting guess values for the cut set variables.

(

(7) Initialize the dynamic variable histories.
(8) Solve the flow graph at the initial time.
(

9) Loop over the time steps:
while (t <= tlimit ) {

(a) Execute the predictor subgraph
(b) Increment time and obtain new values for time varying
inputs
(c) Set the cut set variable guess values using predictor
results (if variable is dynamic and there is a predictor for it)
or use last step values. '
(d) Invoke the SPANK algebraic solver

(e) Update dynamic variable histories
} /* End of time loop */

Note that the integration of dynamic variables, aside irom the optional predictor
step, is fully incorporated into the algebraic solver. Integration of a dynamic vari-
able is no different from solving an algebraic equation for a steadyv-state variable.

The present dynamic SPANK is already a useful real world tool. As part of EKS-US.
it lias successlully solved a variety of dynamic problems using several different

integration methods (see Secc. 5, Applications). [n the future we plan to increase its
sophistication and efficiency.

4. Symbolic manipulation in EKS/US

Symbolic manipulation in mathematical computation refers to automatic derivation
of a formula or sequence of formulas that solve a problem. Thus the “answer’ is a
formula or a procedure that can be used to calculate a numerical answer. This is
accomplished by manipulation of the symbols by special software. much as one would
do when manually deriving a formula using the rules of algebra. (Hence, the terms
symbolic manipulation or computer algebra are often used.) \With the more lamiliar
alternative the calculation is entirely numeric. and the aunswer is one or more
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anmipers. il but the most trivial simulation problems, it is nnlikely that a totally
e iwiic solution will be practical. However, it is now recognized that there is also a
e for symbolic computation, even though numerical analysis will likely continne to
. the keystone ol continuous system simulation.

-1« 3PANK methodology offers several opportunities for symbolic manipulation.
\{ost importantly, inverse formulas needed by the solution process must be derived
‘.o the object equations. This is a laborious task if done by hand, but one that is
—eadiiy automated with available symbolic manipulation software. Also, macro
-~'-Jjecc-s representing models of physical components can be manipulated symbolically
, et the requisite atomic equation objects. This is especially important for com-
..‘,[:f_.m models that are most easily represented by repeated instances of the same
quation, e.g., finite-difference models. Such models are tedious to write manually,
~ut are easy to express symbolically, and symbolic manipulation software can be used
.o senerate the models in the required form. Finally, SPANK objects uitimately must
« »xpressed in a compilable language (now C). This step can also be done readily
with ;ymbolic manipulation soltware, producing text files in the format required by
+ie compiler or other soltware.

1.1 Symbolic Manipulation Software: MACSYMA

There are several widely available symbolic manipulation packages [REDUCE 1987.
MACSYMA 1983, MAPLE 1985|. The EKS/US symbolic manipulation software is
surrently written in the MACSYMA command language. MACSYMA was selected pri-
saarilv because a public domain version is available. Also, it is probably the best-
»uown package, has good documentation, and runs on a variety of computers. The
ssential requirement for the SPANK application is the ability to solve symbolically
or inverses of equations, together with general list processing capabilities needed for
mstruction ol the SPANK files. Other MACSYMA capabilities, such as derivation of
vmbolic derivative or integration [ormulas, are not currently used in SPANK.

\ mordest understanding of MACSYMA is prerequisite to understanding the
SPANK MACSYMA interface. A concise introduction using examples (rom applied
.athematics is provided by Rand [1984). Here we provide an even more concise
wiroruetion with emphasis on the aspeets that are especially important in the
*PANK interface.

SMACSYMA depends heavily on functions. Many fundamental functions are provided
with MACSYMA. and users may write their own functions as well. Since function
wrgnments can be of any type, they can be symbols or strings representing, for exam-
~le, equations. Thus, using the MACSYMA “solve’’ function. we can write:

solvelequation.variable);

fere the argument list has two elements, an equation and a variable that appears in
“he equation. “'solve’ performs symbolic operations on the first argument to generate
s ~xpression that is a formula for the second argument in terms of other variables
‘hat may be in the equation. This is an important MACSYMA function used in the
“PANK interface; it is used to generate the inverses of object equations. For exam-
e, if we consider an object representing the Stefan-Boltzmann law of radiation.
==l then Lhe inverses. i.c., the formulas for temperature, can be obtained with
e MACSYMA command:

S




solve(e=sigma™t " -i,t);

This command could be issued interactively within the MACSYMA system or frop
within a program written in the MACSYMA command language. [n either ca

MACSYMA will return the solution list for the variable T, which in this example ‘Hii
be:

[-(e/sigma)"(1/4),
(e/sigma)”(1/4),
-%1*(e/sigma)”(1/4),
%]1*(e/sigma)”(1/4 )
]

where %I is the imaginary number i. Knowledge of the physics of the problem must
be used to select which of the four, mathematically correct. inverses is appropriate.

The MACSYMA command language allows selection rules to be programmed. so this
step can also be automated.

SRR

The above list of symbolic solutions contains the one we want. along with two com-
plex solutions and another that suggests a negative absolute temperature. The
MACSYMA command language can be used to “‘flter” this list and give the single
solution that makes physical sense. A complete description of the details of this =
operation would require more explanation of the MACSYMA command language than
we can present in this paper. Nonetheless, the flavor of the method can be seen [rom
the following code fragment which omits details:

ey

TR P

/*Condition on the solution t (absolute temperature >0)*/
conditions:{t>0,e>0,sigma>0j;
/*Put conditions in current data hase*/

for condition in conditions do ( if condition#+'true rhen assumelcondition}):
/*Solution filter*/

for solution in solutions do (

/*Keep real solutions*/

if ( (member(%i,listolvars(solution))='"Talse

or realpart(solution)=solution)

/*Keep solutions within range*/

and is{ev( subst(solution,t,t >0) ) )#'Talse)

then ( goodsolutions:endcons(solution, goodsolutions))

)i
print("Final Solution is ",goodsolutions);

[n this code fragment, we assume the list of symbolic solutions found by solve is in

the MACSYMA variable called ‘“'solutions'’. and the result is placed in *'goodsolution™

The temporary variable "‘solution” holds one member of solutions at 4 time us it is

tested against the list of “‘conditions” that are defined befere the loop begins. \We

omit the rather intricate MACSYMA code that formats the zoodsclution to SPANK
code.
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\ACSYMA solve function is powerful, but not limitless. [t is able to solve poly-

e
e . — . & -
omials up to the fourth order, and can handle equations requiring inversion of

atial, logarithmic or circular functions. [n common use. as in SPANI, these
¢orms, together with the standard operations (4-,"./), account for most of what is
:we(ied. so the function meets the need.

n
sxpone

VLACSYMA can also solve for systems of equations, but this capability has practical
limits. For one thing, symbolic solution of systems of equations is computationally
‘ntensive and can take inordinate amounts of computer time. Also, the solution is
1exg reliable than when inverting single equations. Indeed, if the system is nonlinear,
\(ACSYMA usually encounters severe problems, and often fails to find a solution at
ail. Although we have not yet found beneficial use for this feature in the
<PANK/MACSYMA interface, it is being considered for certain advanced capabilities,
such as merging of components. .

An additional feature of MACSYMA, which is quite useful, is its ability to evaluate
and simplify expressions. For example, the function RATSIMP(A) simplifies a polyno-
mial A and returns a ratio of two polynomials. The user can control the way the
svaluation and simplification is to be performed through the use of switches. common
environment variables, or optional arguments to functions.

MACSYMA can also check whether a proposition can be derived [rom a set of equa-
tions or other propositions, using its '‘assume'’ facility. This (eature is used in the
SPANK,/MACSYMA interface to solve for piecewise-defined [unctions, where the vari-
ables 1o be solved for have a limited validity range.

While MACSYMA serves well in EKS/US, it is not ideally suited {or the purpose.
Interestingly, the most significant disadvantage is not its weaknesses, but its power: it
is really more than is needed for the job. Because of its power it is large (roughly
twice as large as SPANK in terms of disk space). Ultimatelv, we will incorporate 1
subset of MACSYMA functionality in a C or C++ program to support EIKS/US.

4.2 The SPANK/MACSYMA Interface

The SPANK/MACSYMA interface is a collection of programs written in the
MACSYMA language. The basic module of this package is about 1500 lines of
MACSYMA code. This module allows the user to generate required C f{unctions.
objects, and macros in the SPANK [ormat by entering the equations in natural lorm
zlong with intended object names [Sowell 1990|. A second module (which invokes
the basic module) allows generation of a complete simulation file and all associated
objects and functions. This module i3 about 200 lines of MACSYMA code. Addi-
tional modules include one [or generation of macros that are composed of many
instances of the same elementary object (500 lines), and one for merging ol equations
to eliminate selected intermediate variables (500 lines). Thus, the entire package is
not a large program.

So far we have mentioned the central issues in the interface, namelv solving equi-
tions using the “solve'" MACSYMA function, dealing with list ol variables to solve for
using the list handling utilities, and checking whether they are within range using the
relational data utilities. The programs also include code devoted to more mundane
issues, such as formatting the solutions into SPANK or C syntax. It is notable that
MACSYMA has a built-in translator for arithmetic expressions in MACSYMA to
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FORTRAN, but not to C. Therefore a MACSYMA to C expression transiator was dev..
ised using substitution rules. For example, X'y in MACSYMA becomes pow(x,y) in C. -
and %Pl in MACSYMA becomes M_PI in C. Another problem was the limited for-
matted output capability of MACSYMA. In order to get text files in the format
needed by SPANK and the C compiler it was necessary to develop special file writing -
functions using Lisp. Another issue that complicates the interface code is bookkeep- .
ing. In the case of macro objects and global simulation generation, we have to keep -
track of what variables are common among different equations to ensure proper link-
ing. Last, string handling routines are used for SPANIK file generation and name gen-
eration. The syntax of the MACSYMA language is fairly natural and the function
names are usually sell explanatory (although long). All of these secondary issues con-
stitute about 50% of the code in the interface.

The derivation of equations and generation of files is performed in a reasonable time
(from seconds to minutes, depending on system size). Some care must be taken to
ensure that MACSYMA is not launched into feasible but extremely time consuming
tasks. A typical example is the symbolic resolution of fourth-order polynomial equa-
tions. MACSYMA will do it, but will take an inordinate amount of time, ask for
much additional information, like the sign of some complicated discriminant, and
generate huge expressions. To prevent this, a careful user will avoid requesting such
equations to be inverted. This can be done at the SPANIK/MACSYMA interface level
by declaring the variable appearing to the fourth order as a “'bad inverse.” and not
try to solve for it (unless it is short and simple, as in the Stefan radiation law above).
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5. Applications of EKS/US

EKS, US has been tested on a range of simple to complex problems in energy analysis.
We brietly describe here a subset of these problems to give the reader a [eeling for

1he scope of applications that are possible.

References are given when a more

jetailed discussion of the problem has been published. Due to space limitations, we
show results for only the last case, the lighting/HVAC problem.

5.1 Three-Node Room

Figure 2 shows a very simple
room model that was used as a
arst  test of dynamic SPANK
Sowell 1988]. The three nodes
sorrespond to a massless ceiling, a
massive Hoor, and massless room
vir.  The floor and ceiling
-xchange long-wave radiation and
sonvect to the room air. EKS/US
solved the problem of finding the
door and ceiling temperature for
rime-varving air temperature.
The block diagram, in Fig. 2(b),
snows the objects for this problem
and their links. In addition to
+he Hoor, air, and ceiling objects,
here are predictor and corrector
sbjects for differential equation
integration. Sample results of
running this problem are shown
in Fig. 2(c).
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(a) Three-node room model. (b) Block diagram showing objects and

links: T = node temperature, q = heat addition rate, | = convective

heat transfer coefficient, dt = timestep.
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Figure 2(c): Simulation results for 3-node room showing calculated floor tempera-
ture for user-input time-varying air temperature.

5.2 Thermal conduction

Finite-difference simulation was done for one-dimensional conduction problems with
variable conductivity, mixed boundary conditions, and bulk domain heat generation.
Both steady state and dynamic cases were treated with various spatial discretizations.
Figure 3 shows a typical configuration in which the heat flux is constant at one end
of the conductor and natural convection takes place on the other end.
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Figure 3: One-dimensional thermal conduction model; q = heat fux,
L = temperature, k = conductivity, u = heat generation rate,
h = couvective heat transfer coefficient, tinf = ambient temperature.
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5.3 Steady-state zone convection
vgtural convection in a room
neated by a radiator was modeled
sccording to the Inard (1988] for-
malism. As shown in Fig. 4, the
room is divided into fve cells,
sach of which has a simple fow

The primitive cell

linked into a zone
macro object. The convective
conductances between subzones
are based on empirical correla-
tions. Given the heater output,
Qconv. and the temperature at
aodes 1. 3, and 5, EKS/US solved
for the intercell heat fluxes and
the temperature nodes 2 and 4.

pattern.
objects are

5.4 Multiroom air flow

Figure 5 shows a schematic for air
How between rooms driven by
wind pressure and stack effect
iBuhl 1989]. A variable number
of rooms are connected to each
other by a wvariable number of
orifices. The smallest problem
solved had one room with six
orifices. the largest had 24 rooms
with six orifices per room. Pres-
sures on the orifices connected to
the outside are input, and the
pressure difference at and mass
How through each orifice are
obtained. Reduction  factors
between 10 and 20 were obtained;
the number of iterations to solu-
tion varied from 8 to 44,

123
Inard/Ngendakumana Convective Model
Radiator-Heated Room
Partitioned into 5 Zones
L H
3
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Figure 4:  Five-cell model for in-rcom
natural convection:
T = temperature,
Q == radiator heat,
g = intercell convective
conductance.
3 Room Simulation with
Orifice Equations and Stack Effect
Room | Room 2 Room 3
PLT1shol P2.T2cho P1.T3hod
Acdoy -
m AC42 \
m
ACdl _
AC‘HO Wide
mm utsy
b - i 1;:A'ra.mm.
Figure 5:  Air flow between rooms driven by

wind pressure, stack effect:
P = air pressure,

T = air temperature,

rho = air density,

m = mass fow,

ACd = effective orifice areu.



5.5 Hamburg Cell .
The Hamburg Cell, shown in Fig. 8, is an exercise originally used to test the French *
ZOOM program [Bonin 1987|. We are using it as a test problem to compare EKS/yg =
and ZOOM. The problem consists of a idealized three-zone room enclosed by [our
three-node walls. Two of the walls face north and have constant outside tempera.
ture; the others face south and are exposed to time-varying outside air temperature
and solar radiation. Convection between room zones is modeled, but long-wave radj-
ation exchange between room surfaces is neglected. The only nonlinearity is intro-
duced by a room heater that is controlled by the average of the north wall inside sur-
face temperature and the temperature of one of the air cells. Preliminary results
show good agreement between EKS/US and ZOOM results on this problem.

a a o o ! 1
¢ I 2 3 ! H
:' (South Wall) . .
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(South Wall) | + | (Heater i | (North Wall) ] [
R AR

(1

Coneol

Elecmc Supply

Figure 8:  The “Hamburg Cell*', an "idealized" three-zone room enclosed Ly four.
three-node walls. Arrows (except lor the one labeled “control™) indi-
cate energy transfer.




sed to test the French
m to compare EKS, U3
com enclosed by fonp
tant outside tempers.
itside air temperatyre
1, but long-wave ragj.
nonlinearity is intro.
north wall inside sur.
. Preliminary results
5 problem.

1 :
) Q '
2 3 :
L Wall) H
——l i
THS|
- [(C:'DI '
-y
a IJ '
-
Vall) J
——— L.

enclosed by foyr,
“eontrol™") indi-

5.8 Desiccant Cooling

Figure 7 shows a hybrid liquid desiccant system that provides cool. dry air to a space
(Natai 1990]. The working fluid is a solution of lithium chloride in water. The sys-
tem contains an interchanger, a heater, and a cooler (all modeled with the LMTD
method), and a regenerator and conditioner (both of which are modeled with a
iCachabar equation). It also contains two sumps, one of which is massive and, there-
fore, dynamic. In the EKS/US object-oriented approach, the conditioner and regen-
srator are instantiations of a single object class. Similarly, the cooler, heater, and
interchanger are instantiations of a single heat exchanger object class. The problem
consists of 83 equations. After reduction there were only 9 iteration variables.

W6 (64921 lb/hr), T6,x6

T13(55.04 degf)

Cold water from
auxilliary chiller

{not shown)

Cooler

T4
Concenmated LiCyWater Soludon
Condidoned Air
0 g =
. TS(66.7 degF)
W4 (53175 lb/hr) | Conditioner |gs . g
T4(76=36 degF)
H4 (0.0093)
Cutside Air
——
W40, T40, x40
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T8

—

Interchanger
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Heater
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T2,H82
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41(0.p093p
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W9, T9 1
Sump
T7,m

Figure 7:

T12
W12 (34127 lb/hro)

Liquid desiccant cooling system. (Unknown variables are shown in bold-

face and input variables in lighter type, with input values in
parentheses. W = mass flow, x = salt concentration, [1 = humidicy
ratio, i == specific enthalpy, T = temperature. m = mass ol soluticn in

regenerator sump.




5.7 Boiler plus DHW Heater )
[n this problem, shown schematically in Fig. 8, a boiler and domestic hot wartep Flgur
heater are connected to the same chimney. Heat transfer in the chimney is modeleq versit
using l-d finite difference. EKS/US solved for the various temperatures and mass throt
flows given ambient temperature and pressure and the water temperature in the strea:
boiler and DHW heater. Jddit
tbrick15 wls dasht
Pou i
tcm.rhocm rhoout e
Chimney equa:
e e e S e —= e T 0 M I YL LT 0 e o ¥ the @
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Figure 8: - Boiler and domestic hot water heater sharing a common chimney:
m = air mass flow, t = temperature. rho = density, p = pressure.
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5.8 Constant Volume Reheat System

Figure 9 shows a constant volume reheat system used to test the early, steady-state
version of EKS/US [Sowell 19868]. Outside air is mixed with return air and passed
through a cooling coil, a heating coil, and a fan to become the zone supply air
stream. The zone has sensible heat gain, £y, air infiltration, m,, and water vapor

addition.

water—in,

[n addition to the physical components the diagram shows

iashed blocks representing “‘data conversion' objects that transform enthalpy and
yumidity ratio to drybulb temperature and vice-versa. This problem results in 23
equations and 38 variables, 15 of which were chosen as inputs (the circled variables in
the figure), leaving 23 to be solved for. After reduction, this problem has only one
iteration variable, the humidity ratio, w2, leaving the cooling coil.
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Figure 9:

Constant volume reheat system showing problem variables. [nputs nre
circled, unknowns uncircled. T = temperature. m = mass How,

It = specific enthalpy, w = humidity ratio. £ = sensible heat gain.
RH = relative humidity, P = pressure.




5.9 VAV Reheat System L
Figure 10 shows a variable volume reheat system containing a preheat coil, coolipg#
coil, zone heating coils, supply and return fans, and nonlinear controls
can serve an arbitrary number of zones: the 5-zone case is shown in the figure
problem analyzed, zone loads were input.
iteration variables independent of the number of zones.

. The S¥ste |:

- [n the
For dynamic simulation, there are foy

The reduction factor cap

therefore be quite high; for example, for 20 zones there are 264 equations and four
iteration variables, giving a reduction factor of 86.

s

ZONE 1
{NTERIOR

ZONE 3

ZONE 4
NORTH

ZONE 5

Figure 10: VAV reheat system serving five zones. HC = heating coil,
CC == cooling coil, C = control, T

= type of control.
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5.10 L;ghtinngVAC Pr?blem o " ‘
Figure L1 shows the schematic of a model used to study llgthllii;fHV:\b mteruc!.:c{ns
'.:owgu 1990|. Lighting is provided by fAuorescent lamps in the plenum space of a
':-0‘000-“: room. A translucent ceiling‘ lens ‘separaaes the Ipienum from the room
selow. Supply air enters the room, mixes with the room air, then exhausts to the
um through small openings in the ceiling lans.. Input power leave?s the lamp by
shortwave (visible) and longwave (infrared) f-adiat.ton and by convection to the pl?-
qum air. The radiative portion undergoes interreflection and Lransmnss:on.'a.nd i
sitimately absorbed by surfaces in the plenum and the room. [f the pienn_m air te_rn-
perature is greater than the room temperature, some or all of the ccnvec!;l’ve portion
-an also escape the plenum by conduction through the transparent ceiling to the
_;oom air. Ultimately, all lamp power must be removed by the airstream after con-
cective transfer from the various solid surfaces in the room and plenum. We wish to
jetermine the surface and air temperatures, and the heat removal rate in the room
and plenum. Naturally, these will be functions of the mass flow rate of air and the

supply air temperature.

alen

For simplicity, we assumed that the dimensions in the horizontal plane are large rela-
sive to room and plenum height, thus making losses through walls negligible. [t is
also assumed that the floor and ceiling are adiabatic, i.e., that no heat transfer occurs
between the ceiling and the room above or the floor and the plenum below. View
factors for radiation exchange were calculated with a separate program.

The convective heat transfer coefficients used assume {ree convection and were taken
'o be constant. A later improvement to the model used recently measured correla-
tions [Spitler 1991| giving these coefficients as a [unction of supply air jet momen-
tum.

The above problem can be [ormulated as an n-node network in which each node is
viewed as a surface that can emit, absorb, reflect, and transmit radiant energy in the
snort and long wave bands. Also, nodes can interact through surface-to-air convec-
tion. and through bulk flow convection. The system variables include node tempera-
tures, short and long wave radiosities and irradiations at each node. The basic physi-
‘al laws governing the system are those of diffuse radiative transfer, convective heat
transfer, and conservation of energy and mass [Sowell 1873].

The block diagram, Figure 12, shows the macro objects [or this problem and their
connections. The equations corresponding to these objects are given in [Sowell 1990].
By virtue of designation of particular system variables as “inputs™, Fig. 12 also
represents a particular “‘problem’”. One problem that can be represented (which
corresponds to case (1), below) is:

Given:

All geometric and property data, and convection coefficients.

The short wave emission at each surface, JOS.

The source energy addition/removal rates at all surface nodes and plenum air
node, Q0(1)—Q0(8).

The temperature at the room air node, T(7).

Find:
The temperatures at all surface nodes and plenum air node, T(1)—T(6).
The heat addition/removal rate at the room air node, QO(7).




The short and long wave radiosities and irradiations at each node.

An important feature of EKS/US is that different problems on the same system cap
be specified without structural changes in the model. For example, if we wished 1o
specily a surface temperature and solve for the required heat addition/removal rate
we could simply designate a different input set.

Dynamic simulation results for some of the problem variables are shown in Fig. 13,
Two cases are shown: fixed room air temperature and fixed supply air temperature,
For this study the air fow rate was set at 1.0 efm/ft°. A run period of 200 hours was
chosen, with a time step of 6 minutes. [nitially, all of the node temperatures are near
the steady-state lights on condition. Then, at time zero, the lights are turned off and
remain offl for 50 hours, during which time the system approaches a steady-state
Iigl‘xr.s2 off condition. The lights are then switched on with an input power of 3.3
W/ft®,

The general behavior observed in Fig. 13 i3 an initial decrease in temperatures, fol-
lowed by an asymptotic approach to equilibrium lights-off values, then a relatively
rapid increase at 50 hours when the lights are turned on, followed by an asymptotic
approach to equilibrium lights-on values. The initial decrease is due to the fact that
the temperature starting values chosen for the simulation were above the equilibrium
lights-off values.

This example shows that EKS/US can be used to solve complex. nonlinear dynamic
heat trapsfer problems involving simultanecus radiative, conductive and convective

processes. tnsulated
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Figure 12:

Block diagram showing objects for the lighting heat transfer problem.

Dashed lines indicate inputs or system variables shared by objects.

T = temperature, J = radiosity, FJ = irradiation.
R = reflectance, tau = transmoittance, A == area,
U = conductance, Q0 = heat addition rate,

Qr == net radiant heat transfer rate.




1 0 (deyl)

Supply Air
Temperature

. " e ILO l;l i
Lime (Houra)
- e S ——
- -
- -
Ceiling
w Temperature
AL L
s
- Mmd b
" | 5
T
L i1} i M 109 ive
lime (Maurs)
i3e ‘/
i -
us | Lamp N
Temperature
L LU -
e
-
el
-
~ 7 r
- -k -

Figure 13:

time (Hours)

(degf )

(]

11 (degf)

12 (degf)

time (Hours)

T —

3

1 Sueply Adr |
Temperactura

* " e 138 108 *

1 / L
- ,1': B
] f Ceiling

| Temperacture |
1 | 5

|

;
- |r L
4 \ I !
1\ [
. e i (31 e e

4 f L
| Lamn

‘ | Temperatute [

4 ’ L

4& L

L n e e e 11

time (Hours)

Simulation results for the lighting heat transfer problem. The lights
are turned on at t = 50 hours. The supply air lowrate is lixed at LD
CFM/sf. For the left-hand graphs, supply air temperature varies Lo
maintain a fixed 75F room air temperature. For the right-hand graphs

the supply air temperature is fixed at 70F.

V6 Laeg b

b eyl )



upply Air L
mPeracu re

Ceiling
Werature

e

Lamp
mperatute

—
e FTT)

he lights
ed at .0
varies Lo

d graphs

Plenum Air
Temnerature

- ke
L.
<
x -
ot “w
L
"
ol o T
' " t 158 e 134
Lime (Hours) '
.. 0 L e
] Room Air L
Temperature
P L
=
=
-
_ s 9
M. T Y
f 30 100 138 tH 130
Lime (Hours)
Lasepe
Lageee | L
[ETITTI b
wvenn | L
= ssee -
= Load
3
o veees | L
b4 FLI11] -
= -
. o b
LTS - -
3 s e ise e 158

lime (Hours)

1_6 (deg )

(deg_F)

17

Plenum Air
Temperature

time (Hours)

"

Room air

Temperature

resee

L] (L] (87 )]

lime (Hours)

s

time (Hours)

Figure 13: Simulation results for the lighting heat transfer problem. (Cont.)




—
=8 1

— fald

i

(D P TR AT T 1 T 1) TR

0.3

s

L (=I0.500  <nEHy e
12 1-20.550 10,150 i

a 3 120, 1000 €100, 2000
o * sual e il a2 )2 .
R T VT I P ik
23 am2 it o, i | W
2 tnale ‘ -t
=42 e
Lt
ole ?
ur
'

i |

a
B

Figure 14: Example screen from the Kernel Graphical Editor (KGE), the graphical

user interface for EIKS/US. The three windows show: harmonic oscilla-
tor problem with multiplier, sum. and integrator objects and links
(upper left); the “sum™ macro object showing its constituent objects .
(lower middle}); textual input for the “sum’™ object with associated (7 ’
code. Buttons along the left side of Lhe screen perforin operations such
as positioning objects in a window. drawing links hetween objects. and
grouping objects into macro objects.




bt T

8. Semantic Extensions
g.1 Current Limitations

he original design of SPANK was based on static models. As such only algebraic
-vstems could be specified. As demonstrated above, we were able to implement
_..,jgniﬁcnm. dynamic simulation capability with minor modifications to the original
sntax. However, the user is currently limited to a small range of numerical integra-
.ion methods, namely those with predictors and correctors employing three or fewer
previous values of variables and derivatives and a fixed, global time-step. Although
unge-Kutta integrators can be specified, doing so is awkward, requiring the integra-
-or object to involve elements of the particular problem rather than being a semanti-
cally distinet entity. More complex integration schemes, including those with
.eparate start-up methods, cannot be specified. Moreover, certain kinds of dynamic
wstems cannot be specified, such as those with some constraints applying only at cer-
tain times or under certain conditions depending on system state.

Other current limitations, uarelated to dynamics, have to do with the way objects,
macro objects, and problems are specified. The current implementation lacks unifor-
ity in the way these entities are seen by the user, imposing unnecessary burdens on
-he user to keep track of the differences between various constructs which semanti-
-ally ought to be treated the same. Similarly, in the current implementation there are
arrificial differences between ‘‘scalar’’ values, such as temperature, and "compound”
walues, such as air flow, which are characterized by several variables, e.g, tempera-
zure, humidity ratio, pressure, etc. It is often the case that statement of a problem is
more naturally expressed in terms of such compound values, but the current imple-
mentation forces the user to decompose them into their constituent scalar values.

Consideration of these needs led to reevaluation of the semantics of dynamic simula-
tion as the first step toward a completely new specification language. Below we
oresent a specification for this new language, called the Component Definition
l.anguage (CDL).

8.2 Component Deflnition Language (CDL)

in the following section, we describe a grammar [or CDL along with an informal
semantic specification, We use certain conventions for describing the grammar. In
narticular, keywords are always typed in bold face, e.g., object is a keyword. Like-
vise, punctuation marks in the object language are typed in boldlace. Thus, (" is
ul object language punctuation mark as distinct from “‘("', which serves to group
ronstructs together in the grammar. Syntactic variables (think of them as names lor
syntactic categories) are denoted by italic typeface enclosed in angle brackets. e.q.,
< lype> is a certain syntactic category. [n the grammar, a construct with a super-
script asterisk means zero or more occurrences of the construct, a superscript plus
means one or more occurrences. Vertical bars separating constructs means exactly
sne of the constructs must occur. Finally, a construct in square brackets is optional.

8.2.1 The Basic Semantic Categories

The semantic entities of CDL (all into seven basic categories: kinds, classes, objects,
tvpes, values, variables, and connections. Roughly speaking, the relation of class to
kind is the same as that of value to type. That is, a type is a certain collection of
vaiues all having similar shape. Likewise, a kind is a certain collection of classes all
naving similar shape.




The semantic notion of a value is {airly clear. Likewise, the notion of a variable j5°
CDL is essentially the familiar notion of a variable in programming languages. -
Types are built up inductively from a collection of simple types (double, real, ing,
ete.) together with a comstruct essemtially like the “struct” type in C. Any valye
must [all into one of these types. Likewise, any variable has an associated type cop.
straining the possible values for that variable. The kinds are also built up indue.

tively from structured types together with a construct that desecribes functions {rom
kinds to structured types.

The semantic intuition for objects is that they correspond to physically real objects
obeying certain laws, or constraints. For example, an object might correspond to a
specific fan in a system. And there might be more than one fan obeying the same
constraints. By contrast, a class corresponds to a collection of all similarly behaving
objects. So we could have a class named fan which embodies the physical
specifications of all fans of a particular sort. Then, we might have objects fan-a and
Jan-b both of the class fan. Thus fan-a and fan-b are distinct objects (so they may be
in different states at a given time), yet they both obey the same laws. Somewhat
more formally, in the simple case a class is a collection of laws. However, a class may
depend on other classes in its definition. So, in general, a class is a function from »-
tuples of classes to a collection of laws. [N.B. n may be zero here. taking care of the

simple case.] An object is a variable of a structured type, constrained by the laws of
some class.

A connection is an equality constraint between (fieids of) variables, together with an
indication of the role that the constrained variables play in a network. Ia particular,
a connection tells us where the value for that variable is obtained, i.e.. from exo-
genous sources, by feedback [rom solution of the network, as unknowns in the net-
work that can be solved iteratively, or as unknowns that must be solved explicitly.

6.2.2 Naming Things

As usual, we have to provide some sort of collection of names for the entities of a
category. For most purposes the collection of C identifiers will suffice. So we have
our first (informal) grammar rule:

<identifier> := The usual C identifiers

A variable is named by an identifier, as are objects and classes.

[N.B. An object will go by the same name as the variable of which it is composed.]
The names of types are built inductively (ollowing the inductive definition of types.

<type> u= <simple-type> | <struct-type>
<sstmple-type> ::m double | int | bool | ...
<struct-type> u= ( <typed-id>(, <typed-id>)*)
<typed-id> n= Jidentifier> [ <type>|

If a <typed-id> is an <idenlifier > only, it is implicitly assumed to be of type dou-
ble.

Because <type> expressions can be rather verbose, we also allow abbreviations to be
defined by the [ollowing construct.

<lype-def> 1= type<identifier> = <lype>
e
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we allow <struct-lype> to use these abbreviations. Thus, we add a clause Lo

<struct-type> u= <identifier> | <type-id> (, <lype-id>)*

Zimilarly, kinds are defined induectively, allowing for defined abbreviations.

Slind> uwe <identifier> | <struct-type> | [<kind-lst>> > <struct-type>|
<land-list> = <kind>(* <kind>)*
~ind-def> == kind <identifier> = <kind>

't names a variable of structured type that has a field named fleld, then we can
‘ndicate the value of that feld by writing x.fleld. I[n general, names of values
strained in this way are called descriptors.

<descriptor> um <identifier> (. <tdentifier>)*

Connections do not have to be named. However, if the constrained fields are to be
sed 13 a single unit elsewhere, then they must share a name. So a connection can
sptionally be named by a simple <identifier>. The effect of this is to associate a
variable with the name <identifier> with the connection.

5.2.3 Declaring Objects

An object is declared by specifying its name, and its associated class. Remember
*hat a class may depend on other classes, so specifying a class may involve parame-
»rs. Thus,

<decluration> = declare <identifier >(, <identifier > )| <param-list >|;
<class-instance> = ( <identifier> | <cless>)| <param-list>|
<param-list> u= | <class-instance > (; <class-instance>)*|

4.2.4 Making Connections

7o specify a connection, we give a keyword indicating the relation of the constrained
“elds to the advancement of time, followed optionally by a name for the connection,
‘ollowed by a list of felds of variables (typically, felds of objects) that are to be
»guated, and finally followed by a specification of how the value of the connection
sbould be obtained from previous time steps (if this is appropriate}.

There are five sorts of connections: inputs, feedbacks, unknowns, clocks, and signals.
inputs are essentially initial values. They do not change over time. Feedbacks are
values that cannot be solved for; they are used to communicate vaiues from one time
step to the next. Unknowns are values that are suitable for solving at a time step.
Clocks are mechanisms for advancing the system time. Signals are values similar to
inknowns, but which are not allowed to enter into the iterative solution for unk-
nowns. Typically, signals will be of some discrete type. e.g., boolean, so that
Newton-Raphson would not make sense if it involved values of that type. [n addi-
rion to these five sorts of connection, we allow for a2 “link'' connection, which simply
inherits its sort from the fields it equates. The grammar for the connections is this.

<connection > wwm <link> | <unknown> | <[eedback>




<clock> | <input> | <signal>

<link> = link <connection-id >( <deseriptor-list>);
<unknown> = unknown <connection-id>( <descriptor-list>)
predict-init <ezpr>predict-next <eczpr>;
<feedback> = feedback <connection-id>( <descriptor-list>)
init <ezpr >next <ezpr>;
<clock> 1= cloek <connection-id >( <descriptor-list >)
init <ezpr>next <ezpr>;
<input> ;= input <connection-id >( <descriptor-list >);
<stgnal> 1= signal <connection-id >( <descriptor-list>);

_ <descriptor-list> 1= <descriptor >(, <descriptor>)*
<connection-td> = <identifier> | <lyped-id>

<ezpr> = Any C expression with variable names drawn
P P
from the names of connections.

We assume that several clocks can be extant in a simulation. This means that the
current time should be. available to the system as a specially named variable. say
current-time. The value of a clock connection will advance only when it is
scheduled to tick. Thus, if t is a clock connection, then the boolean expression
current-time == t will evaluate to true if and only if the clock t has just ticked.

8.2.5 Deflning classesa

A class is defined by giving a <struct-type> called the <interface>, and then speci-
{ying constraints on values of the interface type. Typically, the interface has two
parts: the object interface and the class interface (the class interface may be empty).
The object interface simply tells us the type of objects of the defined class. The class
interface tell us that the class itself has a variable associated with it. This is for the
purpose of specilying information shared amongst all objects of a particular class.
The class interface is similar in spirit to the notion of a class variable in Smalltalk,
except that class variables in Smalltalk are typically hidden from all objects outside
the class, whereas a class interface is necessarily visible to the rest of the system.

The grammar for class definitions is the [ollowing.

<class-def> u= <identifier >=<class > <identifier >;
<class> u=  (<simple-def> | <macro-def> | <switch-def>
<simple-def> = simple class <interface >

<inverse>*end

<macro-def> =  class|<param-spec>| <struct-type>
[class interface <struct-type>|
<library >*
<definition >*
<declaration>*
<connection>*
<egquation>*
end

<switch-def>  u=  switch|<param-spec>| <struct-lype>
[class interface <struct-type >lis
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<library>*
<definition>*
<cases>"
end <identifier>;
‘iom | <interface-def> | <kind-def>

Clfmion >
gory <library> will be explained below. The <param-spec> part

:~ition indicates (optionally) the kinds of classes on which the macro class
o \3m -f:‘;' '_\ < param-spec> is given by
s param-spec > = [<identifier>: <kind>(; <identifier>: <kind > )*|
<? ™8

e praiaciic cate

sees> is essentially like the switch construct in C.

asd <O _ "
<cases> = (<bool-ezpr>:<class-instance>;)
else: <class-instance >;
vou.sespr> is just an <srpr> that returns a boolean value. The semantics

smiten s that at each time step, the boolean expressions are evaluated in order
s ,.,‘.':-‘» crue expression is found., Then the switch class is constrained as if it
e ‘::i"ru by the accompanving declared class, If all expressions are lalse. the

~edpe: a3 i3 used instead.

028 Equational Constraints ‘ ’
8 srdsing 3 macro class, we can specify that certain variables are constrained by an

sgeatwa. The eifect of this is essentially to define an anonymous simple class and an
sy =ous object of that class, the interface of which is connected to the variable
ewersak 0 the equation.

<rgualion> 1= eqn <ezpression>=<erpression >end eqn;

e2.7 Libraries

fa 12 vaxe of modularity, a collection of definitions can be stored in a separate file
w Y wed n other definitions. So, a library is simply a file containing
+ #s5mnion >°. To refer to a library in another file, we have the construct

<library> = library <filename >;

®ers ~“lemame > is the name of a file containing a library.

-

@218 Systems

A wwtem i3 1 special macro class, analogous to the main procedure in 2 C program.
“® 34 only one system must be specified in any simulation. When SPANK runs a
*exm. (t instantiates an object of the system class with initial values determined by
B 3er, and then runs the simulation. A system is specified by the following.

<system>  u= <library>*
system <identifier >( <interface >|is
<ltbrary>*
<definstion> *
<declaration>*
<connection> *
end <identifier >.




8.3 Example

The ideas formalized above are made concrete in the example shown in the Appey. %
dix. There we show a CDL problem specification for the three-node room problem -

described in Sec. 5.1, Three Node Room. Comments in the code should allow the
dedicated reader to see how the CDL specifies the problem. \We will not describe the
example line by line, but a few comments are in order.

First, note that the system definition (called “room') is completely in terms of
objects that have intuitive meanings, strongly coupled to the physics of the problem,
Numerical details are contained within the objects, out of view at this level. Yet the
knowledgeable user can, for example, change to a different integration method,
presently Milned4, by changing the argument in the declaration of the massive object,
“foor’'. Also note that we can link the room interface variables h, alpha, sigma, T,
T.air, and dt directly to interfaces of objects comprising the system wherever
needed; this is exactly the same as when defining a class in terms of simple rlasses (or
other classes), thus demonstrating the intended seamless transition [rom class
definitions to problem definitions.

Classes used in the system definition are defined in separate CDL files referenced with
the keyword library. These files are included in the Appendix. For example.
energy.cdl contains all classes pertaining to the problem physies, while Milned has
those for the Milne fourth order integration method. In energy.cdl we see how simple
classes are defined as a single equation. This equation is placed directly in the CDL
file, in contrast to the current SPANK implementation which requires an intermediate
C function definition. [n the same file we see the class “air'" defined in terms of the
simple class “conductive_heat’’, augmented with one equation. In the class “mas-
sive’" we see that classes can also employ other classes in their definition.

7. Graphical User Interface

Currently users of EKS/US must express their problems textually using the Network
Specification Language. While this language has served well for the development and
testing of the program, it leaves much to be desired as an intuitive and efficient user
interface. Currently under development is a graphical user interface called the [Cer-
nel Graphical Editor (KGE) that will come closer to these goals.

The basic idea of the KGE is that objects. macro objects, and problems are specified
by the user by manipulation of screen icons. Available object ciasses are selected
from libraries, using a browser, and then appear as icons on a menu, from which they
can be selected (instantiated) and placed anywhere on the screen. Once placed. they
can be interconnected to form a macro object or a problem. The objects can also be
moved, deleted, or modified in any way. Also, any object can be expanded to show
internal structure when needed. When the problem image is complete, the KGE will
create 2 CDL file for SPANK processing. The implementation emplovs the X-
Windows system in order to allow maxirmum portability. Figure 14 shows a prelim-
inary KGE screen.

AT “f‘?‘* #
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8. Conclusions

The current state of the U.S. Energy Kernel System has been reviewed, and ’it.s rela-
rionship to the Simulation Problem Analysis Kernel (SPANK) has be‘en described.' It
surrently has the capability to simulate general differential-algebraic systems, with
modest (lexibility in specification of numerical methods to be used. Also, objects,
nacro objects, and problems can be described in concise textual form and symboli-
rally manipulated to create needed SPANK and C code for the simulation. Ten
application problems that have been solved were briefly discussed. F.ina.iiy, we
deseribed current work aimed at improving EKS/US capability 'and user interaction
mechanisms. The Component Definition Language is the result of reassessing the
semantics of dynamic model specification and, when implemented, will allow more
somplex system models to be expressed, as well as affording greater flexibility in
specilving numerical methods. The Kernel Graphical Editor, currently unFier
ievelopment using the X-Windows protocols, will allow users to define simulation
prcblems on the computer screen using pointing devices, rather than expressing the
oroblem in a textual language.

EKS/US will be released for public use in 1992/93 after we have completed the user
interface, implemented the Component Definition Language, and built up the object
library. In parallel, we plan to integrate the EKS/US approach into the SYSTEMS
and PLANT portions of the existing DOE-2 hourly energy analysis program [BIRD-
SALL 1890]. The resulting program, to be called DOE-3, will allow object-oriented
techniques to be used in the context of a whole-building program that many users are
already familiar with. With DOE-3 users will be able to configure and model
advanced HVAC components and systems that cannot be simulated with DOE-2.
while retaining DOE-2's powerful LOADS program.
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10 Appendix: Example of Problem Speciflcation in CDL

elmann, Radiang
"Symbolic Mode! Gen.

rev. January 1090, + 4 svstem modeling energy balance in a room with

« File: room.cdl */

1990 Western My, (1) massive floor,

ley Labaratory reporg * lf, rnB.SBiESS ceiling,
' (3) height/floor-area aegligible.

enne and J. Caatillo, 15 .lescribed in Sec. 5.1 and in [Sowell 1988|.
n of Interior Convee. \'» assume that the floor, air and ceiling are held at a constant temperature TO prior
s, Vol.97, Pt.1, 1991, .o the simulation; and at time t0 the air temperature is instantaneously changed to

~_sir. and is held constant thereafter. The model then simulates the ensuing loads.
Interior Convectine

nltiats . ;
v Fow Rates, i+ The ceiling is modeled by the energy balance equation for o massless object:

) = sigma*(T—rad**4 - T**4) + h*(T-air - T);
nergy Laboratory,

pa -

21 Tlhe air is modeled by the air energy balance equation

no = h*(T—surfacel - T) 4 h*(T_surface2 - T);

ation and Renewable - . ) _ . .
i 3) Toev odeled by the energy balance differential equation for a
viaterials Division of 3) The vceiling is m y energy q

6SF00098. .aassive object:
alpha*T" = (sigma*(Trad**4 - T**4) + h*(Tair - T)
where T = integral of T' dt;

vith
; = convective film coefficient
voha = Hoor thermal capacitance
sigma == Stefan-Boltzmann constant

{n *his lile, the integration in (3) is done by a 4th order Milne method. Comments

adicate exactly where changes must be made to change to another integration
n=thod,

ibrury stdio.cdl /* alibrary that implements the standard i/o */

iorary energy.cdl /¥ read in the energy balance objects */

ibrary Milned.cdl  /* read in the 4th order Milne method. Change this to
“library RungeK2.cdl" for 2nd order Runge-[Kutta */

AR A o
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system room(h, alpha, sigma, T, T—air, TO, tO, dt)

declare ceiling massless;

declare air air;

declare floor massive[Milned|; /* Replace "Milne4" with "Rungel<2"”

for 2nd order Runge-Kutta */

declare report_load reporter; /* reporter is an output class defined in stdio.cdl
that records its interface at each time step */

input h(reom.h, floor.h, air.h, ceiling.h); /* convective film coeflicient */
input alpha(room.alpha, floor.alpha); /* floor thermal capacitance */
input sig(room.sigma, flcor.sigma, ceiling.sigma);/* Stefan-Boltzmann constant */
input TO(room.T0, floor.T0); /* As everything else is massless, the flooris

the only object that "remembers” the

temperature prior to simulation time */
input Tair(room.T-air, floor.T_zair, air.T, ceiling.Tair); /* air node temperature */
input dt(room.dt, Goor.dt); /* time step (in hours) */

link qo-air(air.q, report_load.x); /* load */
link T_floor(floor.T, air.T—surfacel, ceiling. T—rad); /* floor temperature */
link T—ceiling(floor.T—rad, air.T_surface2, ceiling.T); /* ceiling temperature */
link t(floor.time, report_load.time); /* communicate the time from

the floor to the reporter */

end room.

o 4/
/™ File: energy.cdl */
f"

This file contains definitions for various heat balance equations. As of now, we have
three kinds implemented: massless, air and massive. The definitions should make
the underlying models evident.

CONVENTION: Loads transfers will always be measured as positive values indicat-
ing incoming heat.
]

radiant-heat = simple class (T, T-rad, q, sigma) /* radiant heat transfer */
q = sigma®*(T_rad**4 - T**4)
end radiant_heat;

conductive.heat = simple class(T, T_cont, h, q) is /* conductive heat transfer */
q = h*(T—cont-T)
end conductive_heat;
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| "Rungeica”

*lass defined in g

dio.cq)
I time step i/

Im coeflicient b
tapacitance */
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1ssless, the floor is
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stion time */

/* air node temperagyre Y
vy
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2, h, q)
. facel, T_surfaceZ2,
ass (T, Tsur
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ir object obeys the heat balance:
* \n Al
h*(T1-T) + b*(T2-T)
q -

iy the load, _ .
gt .?hte temp of the air object,
%1-53;“1 T2 are ternps of surfaces.

iare slcond, s2cond conductive_heat;
ieciar ’

d.T);

Tair.T, slcond.T, s2con - .
::tl:rt‘acel(air.’lf.surfacel, slcond.T_cont]:
‘L"-D-urface"(air.TJurfa.cez sleond.T_cont);
- — -

lak
Gax

.:: 4{air.h, slcond.h, s2cond.h);
? I.‘If]r.q i 51‘(.1 + 5‘2-Cl
I temperature 7 = +ad eqn:
iling temperature i & ; and air:
‘ime from § ‘
orter */ :

e - ™

agsiess = class(T, T_rad, T_zir, b, sigma)
1341

* A massless object obeys the heat balance:

D= sigma®(T_rad**4 - T**4) + h*(T_air - T)

where T is temp of the object,

0S. s of now,

we have
definitions shoui

d make

positive vajyes indicat-

"t transfep =/

uctive heng transfer =/

end massless;

T_air is temp of air, )
T—_rad is temp of nearby radiator

: wry Tk *
‘leclare r radiant_heat: /* q= SIgfm*(T_r:.%) *4/ T**4) */
declare ¢ conductive_heat; /* q = h*(T—_con

link h(massless.h, cv.h); ‘ :
link sigma(massless.sigma, rd.sigma);
link T(massless.T, cv.T, rd.T);

link T2(massless.T_rad, rd.T); .
fink T3(massless.T_air, cv.T_cont);

eqn
O=r.q+ecq
end eqn;




148

1T

massive = cluss|[Int[ODE(y, y', t)|(y, y', t. dt, y0, tO)|(T, T—rad, Tuir, t. dt, TO, 10, I, :\'Igma_g

]

/* A massive object obeys the heat balance equation:
alpha*T' = sigma*(T-rad**4 - T**4) + h*(Tair-T)

where T is temp of the object,
T—air is temp of the surrounding air
T_rad is temp of nearby radiator

Because this is a dynamic object (involving T'), it is only well defined when given 3
method of integration [nt. The class [nt has the interface (y, y', t. dt, 0, t0) and
depends on a class ODE with interface (y, y', t). Specifically, this definition assumes
that the integrator doesn't require any start-up values beyond the initial conditions:
(y0, t0).
b |
Mass_ode = class(y, y’, t) class interface (T—rad, T_air, b, sigma. alpha)

declare r radiant_heat; /[* q =sigma*(T_rad**4 - T**4) */

declare ¢ conductive_heat; /* q = h*(T_cont-T) */

link sigma(Mass_ode.sigma, r.sigma);

link h(Mass_ode.h, c.h);

link y(Mass_ode.y, rd.T, ¢.T); /* T is renamed y for the ODE */
link T—rad(Mass_ode.T_rad, r.T—rad);

link T—air(Mass_ode.T_air, c.T—cont);

eqn
/* T is named y' for the ODE */
Mass_ode.alpha * Mass_ode.y’' =r.q + c.q
end eqn;

end Mass _ode;

declare mass Int[Mass_ode|; /* the mass object integrates v by the
method implemented in the class [nt */

link T(massive.T, mass.y); /* the integrated variable y is really T */
link T—air(massive.T_air, Mass_ode.T—air);
link T—rad(massive.T_rad, Mass_ode.T_rad);
link t(massive.t, mass.t);
link dt(massive.dt, mass.dt);
link tO(massive.t0, mass.t0);
link TO(massive.TO, mass.y0);
link sigma(massive.sigma, Mass_ode.sigma);
link alpha(massive.alpha, Mass_ode.alpha);
link h(massive.h, Mass_ode.h);
link T'(massive.T", mass.y');
end massive;




{r, Lot To, W, h,

| deﬁued When Kl -

B y'r L. dt! }"0, m
this definitiop 4 .

the initia] conditlq

fa. alpha)

OE */

-

-
._..-—--...-—--—------?-.: ........ },
o yrte: Milned.cdl %)

ile we implement a 4th Order Milne integration method.
: J DeBoor p385 for an explanation of the method.

R
$ee Cuonte 00

fifleqcype = (v. ¥' U o
:: ot _tiff_cqtype = (¥, t, y0. 10, dt); il

\Gioed = ciass|ODE:difleq-type|(int—difl eq-type)

seqiare ¢q, cq-next of class ODE; /* eq is used in the corrector part,
eq-next in the predictor part */
sectare p simple class(y-kpl, y-km3, [k, fkml, f_km?2, dt) /* 4th order Milne predictor */
expl =v_km3 + 4*dt*(2*k - kml + 2*_mk2)/3;

rad T

- simple class(y—kpl, y_kml, f-kpl, £k, f_kml, dt) /* 4th order Milne corrector */

teciare °

roipl = vkml + dt*(fkpl + 4*{k + f-km1)/3;
ad ¢

Seciare timestep sum;

segpown < Milned.v, c.y—kpl, eq.y) init yO predict y—next; /™y is solved for by corrector */
.aasown v le.f_kpl. p.fk, eq.y') init O predict y'_next; /* y' is solved for by corrector */
cwen ' Milned.t., eq.t) init tO next t_next;

Ak UMiined.de, e.dt, p.dt);  /* use constant time step of dt */
.2z v Milned.yO): /* initial value of y */

g Miined.10); /* simulation start time */

‘esaback v_kml() init yO next y;  /* cascade historical values of y */
eeback voxmi{c.v_kml) init v0 next y_kml;
feeaback v_km3(p.v—km3) init y0 next y_km2;

feedbacx v _kml(c.fk, p.fkml) init O next y'; /* cascade historical values of ¥’ */
feeiback v’ _km2(c.fokm], p.[_km2) init O next y'_kml;

sakpown v_aext(p.y_kpl, eq-next.y); /* predicted next value of y */
sakpown t_next{eq_next.t); /* next time */

wknown v'_next(eq_next.y’); /* predicted next value of y'
(calculated from y_next and t_next */

q.
Loext w1 4t

*od eqn:

~ .‘aﬁ{nwi:
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DISCUSSION

HANBY V.I. (UK)

1. We have found that esquating number of system variables
to equations is not sufficient for a well-posed problem
with non-expert users. Information derived from system
graphs can be used to improve this.

2. The T"atomic" (equation) view of objects makes this type
of approach powerful in that it can be applied to a
large number of non building situations. At LUT we have
exported this kind of approcach to two other disciplines.
Have the authors had any opportunity to do this ?

ANSWER

1. A matching implies more than equal numbers of equations
and variables. Also, there are additional requirements
for well-posedness, see the paper by SANLIN and SOWELL
in the proceedings, Building Simulation '89. However, we
agree that non-experts have difficulties in specifying
well-posed problems.

2. SPANK applications so far have been concentrated on HVAC

problems. We are aware of the wider applicability of the
methods and intend to pursue this.

LORENZ F. (Belgium)

I would like to have more information about how you intend
to deal with switches, which are a difficult problem with a
bunch of implications.

ANSWER

Our proposal is that switched portions of the system must be
encapsulated in a class-like entity. The proposed semantics
are presented in the paper. Implementation issues, such as
whether to preprocess the alternate graphs (matching and
reduction) or to perform these operations on an as-needed
basis, have yet to be resolved. The former approach poses
time and space complexity problems L(f there are many
switches in the problem, if the latter approach is used, it
will probably be advantageous to also do "cacheing”.




