
107

-#63°2>(
The U.S. EKS:

Advances in the SP ANK-ba.sed Energy Kernel System

Fred Buhl, Ender Erdem, Jean-Michel Ne.tat and Frederick C. Winkelmann
Simulation Research Group

Abstract

Lawrence Berkeley Laboratory
University of California

Berkeley, CA g4720

Michael A. Moahier
Program in Computing

University of California at Los Angeles
Los Angeles, CA 90024

Edward F. Sowell
Department of Computer Science

California State University at Fullerton
Fullerton, CA 92634

August 30, 1990 (Rev. December 21, 1990)

The Simulation Problem Analysis Kernel (SPANK) was originally described as a pro
totype Energy Kernel System in a paper presented at the Second fnternational
Conference on System Simulation in Buildings In igs6. Since that time, it has
1.1ndergone several enhancements and has been integrated into a. larger software sys
~m that ma.y be more properly called a prototype Energy Kernel System for building
'!llergy analysis, EKS/US.. Among the enhancements is the capability to simulate
1ynamic problems. Also, symbolic manipulation techniques are now used to generate
-,bjects and macro objects rrom equations expressed as text. Currently underway is
:he development of a graphical user interface. Newer developments include a
reevaluation of the semantics of dynamic problem definition, which will ultimately
~esult in much greater generality in u.ser specification of numerical methods. This
paper reportll on these developments and indicates directions for futu re EKS/US
development.

1. Introduction

~!forts were launched in 1985 to improve modeling tools for building energy systems
~Hirsch lll85, LBL 1985, Clarke 1986j. [n this connection, the name " Energy Kernel
::i~em" (EI<S) was coined to refer to ihe envisioned software genre in which the
basi~ elements (i.e., componentll or objects) were to be packaged along with tools
required to assemble them into arbitrary building simulation programs. An

outgrowth of that effort was the Simulation Problem Analysis Kernel (SPAMq,.:
comprising methodology for describing and solving equation systems such as tboer,
that arise in simulation problems. Although the EKS then had yet to be full)
defined, SP A.NI< was intended to lie along the EKS evolutionary path.

lt soon became evident that the fundamental EKS ideas admit to at least e....,
significantly different implementations. One of these, currently under development ill
the UK !Clarke l087J, defines objects to be modules of substantial size and complex
ity that may be extracted from existing software. The second possible implement ...
tlon takes a lower-level view, with individual equations as atomic objects that are
interconnected to form larger entitles (macro objects), which in turn are intercon
nected to form simulation problems. SPANK has evolved into an ~KS of the second
kind, referred to in this paper as EKS/US to distinguish it from its UK counterpart.

Although ambitiously described in earlier papers as a prototype EKS. SPANK is really
a software system for description and solution of general differential-algebraic equ ..
tions. with one of many possible applications being to building energy system simut ..
tion. EKS/US is a more complete embodiment of the original EKS/ US with SPANK u
the nucleus providlng the means for object interconnection and problem solution.

Figure l represents the overall organization of the EKS/US and shows the relation
ship between EKS/US and SPANK. The wser interacts with the system in four basic
ways: defining objects (e.g., component models); defining problems by linking objecr.s
together: specifying run-time data (e.g., coefficients, time-varying data); and specify·
ing desired output. The objects are defined in text files, either as mathematical equa
tions or as component models in Neutral Model Format [Sowell 1Q8Qj. These lites are
processed symbolically with programs written in MACSYMA, producing C language
functions and objects that are stored In libraries. Problems are defined by intercon
necting objects uaing the graphical user interface, producing a problem specification
file in t he Network Specification Language (NSL) [Anderson 1Q86l. The nucleus or
kernel is the dynamic SPANK program system. It works from the NSL description.
generating interns.I data structures based on graphs. Matching and reduction algo
rithms are employed with these graphs to automatically devise an efficient solution
algorithm, producing an executable program for a particular problem. This progrnm
reads constant and time-varying data rrom files, producing t he problem solution.
The output proces90r reads the result file and generates graphica\ displays according
to interactive user requests.

The basic ideas and theoretical development of SPANK were described by Sowell,
Buhl, Erdem, and Winkelmann [1Q86l 1 with extensions to include differential mode1'
reported later by Sowell and Buhl (1Q88l. Buhl. Sowell. and Nataf (1Q8QI have
expanded upon these ideas and analyzed their importance in relation to other simula
tion methodologies. More recently, the use of symbolic manipulation in connection
with SPANK modeling has been demonstrated by Sowell, Nat.a.f and Winkelmann
(lQOOJ, and Moshier and Sowell (H>QOI have reported semantic extensions to allow
more fiexibilit.y in describing _dynamic models. Several application examples for
SPANK have also been reported !Sowell 1086, Sowell 1Q88, Sowell lQQO, Nataf lQQOJ.

The current paper summarizes recent developments in SPANK and reports new work
in progress on a graphkal user interface. For the benefit of those unfamiliar with the
earlier work, we begin with a brief review of the motivation and basic ideas bellln'd
the SPANK kernel.

Analysis Kernel (SP
ation systems such as th
j then had yet to be ruu
onary path.

leas admit to at least t
rently under development i
ibstantial size and comp(
recond possible implement
as atomic object!'l that

.vhich in turn are interco
i into an EKS of the secon
from its UK counterpart.

;otype EKS, SPANK is really
differential-algebraic equ

!ding energy system simul
nal EKS/US with SPANK a'
l and problem solution.

·..ts and shows the relation
th the system in four basic .
?roblems by linking objects
varying data); and specify
ther as mathematical equa
)Well 1Q8Q]. These files are
viA, producing C language
ls are defined by intercon
ng a problem specification
:on 1Q86]. The nucleus or
from the NSL description,
.cbing and reduction algo
ievise an efficient solution
lr problem. This program
ing the problem solution.
aphical displays according

•ere described by Sowell,
nclude differential models
• and Nataf [1Q8Qj bave -
l relation to other simula-
3.Ilipulation in connection i

Nataf and Winkelmann "
:i.ntic extensions to allow !
ipplication examples for
::>well 1990, Nataf 19QOj. f

f
iK and reports new work "
;hose unfamiliar with the :'!
l and basic ideas behind f

.f

f
tc

-· !!

..._ _ .. _ .. _ .. _ .. ___ _
USER CREATES
NEW OBJECTS

OBJECTS IN
NEU"mAL MODEL

FORMAT

OBJECTS IN
SYMBOUC FORM

C CODE
FOR OBJECTS

OBJECT
LIBRARY

109

; Create

USER SELECTS
ANO LINKS
OBJECTS

: slmulatlon
j program

USER INPUTS
RUN-TIME DATA

USER SELECTS
DISPLAY

RESUtTS: OISPt:AY•
PROCESSOR·'

OBJECTS LINKED
ON COMPUTER
SCREEN

j SPANK
1 kernel

GRAPHICAL DISPLAY
OF RESULTS

lRun
! simulation
! program

. . '··-·····-··········-························ ················· ___ __ .. , ;

Figure 1: Configuration of the U.S. Energy Kernel System. Shaded boxes :trr
programs; unshaded boxes are files. Ovals show u::ier n.ctions.

I I'

I'

!!

:t
I

·1

'I

l " •·

·I
I .
!

I

I

110

2. Review of SPANK Principles
Simulation programs differ with regard to how problems :i.re specified and with
regard to how they are solved. SPANK differs from most currently available simula
tion programs in both respects. In this discussion we will attempt to distinguis
between these differences.

2.1 Problem Specification
With respect to problem specification, SPANK is closest in kin to existing modular
programs used in simulating building service systems, e.g., TRNSYS a.ad HY ACSIM+
[TRNSYS 1983, HVACSIM+ 1985J. That is, SPANK allows the user to interconnect
component models in a. flexible manner so that systems of arbitrary configuration
may be defined. However, it goes beyond the existing modular programs in several
ways. First, the atomic element in SPANK is an object representing a single equa
tion. whereas other simulators use the subroutine, normally composed of several or
many equations, as the smallest element available to the user. Larger SP.<\Nl(ele
ments, called macro objects, are definable by the user in terms of equation objects.
One benefit of the SPANK approach is flexibility, because the user can define new
macro objects a.s the need a.rises. Another benefit is code reuse, because the same
equation object can be used in many macro objects. While it is true that TRNSYS or
HY ACSIM+ use~ (who also happen to be FORTRAN programmers) can define new -
component models, sometimes using all or pa.rt of existing ones. SPANK aims for a
seamless simulation environment in which the means of object, macro object, and
problem definition are identical, and code (i.e., existing objects and macro objects)
can be reused without modification.

Another important aspect of SPANK problem specification is that objects and macro
objects are de.fined as mathematical models only, rather than as algorithms. This
means that component models do not have a priori specification of input or output
variables, so that they can be interconnected arbitrarily. In contrast, most widely
used modular simulators employ algorithmic component models with prescribed
input/output relationships. Such models are inherently less flexible, limiting che
class of problems that can be defined without modification of the component models.
These arguments were originally put forth by Elmqvist [1978J and recently summar
ized by Sahlin [19881 and Matts.wn [rn89j.

In SPANl(, components are interconnected merely by identifying object interface
variables with problem variables. Once all objects are thus interconnected. certain of
them are specified by the user to be problem inputs, thereby defining a specific prob
lem. The only requirement is that the problem so specified he well-posed, i.e .. have a
solution that is uniquely determined from the specified inputs. Although proof of
well-posedness io the general nonlinear differential-algebraic system remains an
unsolved problem in mathematics, for simulations of most physical systems it is
sufficient to be sure the number of problem variables (interface variables minus input
variables) is equal to the number of objects (i.e .. equations), and that a complete
matching is possible between problem variables and objects. These requirements are
checked by the SPANK parser.

Summarizing, the important observations .regarding SP:\NK problem specification
are: (a) there is a single implementation of a component model rather than one for
each possible set of input variables; (b) the user need not be concerned about which
are inputs and which are outputs when defining either component models or

;ire
.... n!

-KC.'

: .:!

'!Ul'

'.) .

:r

·:•

.,

·.•.

l 1re specified and with
irrently available simula.
ii :i.ttempt to distincruisb.

• 0

kin to existing modular
TRNSYS and HV ACSIM~
the user to interconnect

f arbitrary configuration
ular programs in several
Jresenting a single equa
, composed of several or
iser. Larger SPANK ele
rms of equation objects.
the user ca.n define new
reuse, because the same
t is true that TRNSYS or
!l.mmers) can define new
ones. SPANK aims for a.
oject, macro object, and
ects a.nd macro objects)

that objects and macro
Lan a.s algorithms. This
Hion of input or output
n contrast, most widely
models with prescribed
ss tlexible. limiting the
·the componem models.
:j and recently summar-

tifying object interface
. terconnected. certain of
defining a specific prob
) well-posed. i.e .. have a
Jts. Although proof of
Lie :system remains an

physical systems it is
e \'ariables minus input
), and that a complete
These requirements are

: problem specification
rlel rather than one for
concerned about which
component models or

blems: (c) invert.Ing a problem. i.e., changing which vn.rinbles are inputs and
~~cb are output, can be done without revising component models or interconnec
~ioll!I: :i.nd (d) the user does not have to devise solution sequences. i. e .. algorithms,
wbcn .leaning either component models or problems.

.. ,., Solution Methodology
T:;e SPANK soluLion methodology is also unique. Because the problem is specified
~:ltirely in terms of individual equations, graph 11.igorithms can be employed to find a
'°Judon sequence. This is a two-step ·process. The objective of the first step is to
~lcct ~ appropriate equation to calculate each problem variable. To accomplish
:lli3. SPANK represents the equation objects a.nd the p.roblem variables as the two
,jj~joiat sets of a bipartite graph [Aho 1083[. The variables appearing in each equa
:ioa object are represented as edges in the graph. When viewed in this way, the
~! ~c~ion of an equation for each problem variable is analagou.s to finding a complete
::ut.:bjo~ in the bipartite graph. There are several well known algorithms for finding

1uc !i maLchings [Johnson 1088!. Currently, SPANK employs the Di.n.ic algorithm
E,· ·n tYillj, although others would work as well. Upon completion of the first step,
:here is :i. one-to-one relationship between equ.ation objects and problem va.riable!!.
_.._ho. the matching identifies the particular inverse of each equation that gives a for
:nula ror the selected variable.

, he '>bjectlve of the second step is to determine a sequence in which the fo rmuln.s
ro11 id be evaluated to determine a solution to the posed problem. This would be
m:iightforwa.rd if the problem was known to be acyclic. i.e., solvable without itera
:ioo: one would simply sort the formulas to ensure that all right-hand-side variables
:o each arc determined by prior formulas (or by problem input). However, in most
::i.ses ~ his will aot be possible due to situations like v-f 1(:r} when :r-f -z(v), i.e .•
·r rii c problems. An iterative solution sequence must then be found. Because most
imulation problems are of this nature. it is important t hat the iterative calculations
• ··:1rried out as efficiently as possible. Since most iterative schemes, e.g., Newton-

:bµ nson. involve solving a linear equation set with a. size equal to the number ol'
'. tcr:i.tion variables, one way of improving efficiency is to reduce the number of itera
:ion \•ariables. Therefore an important part of determi.njog the solution sequence in
.~PA K is finding a small number of iterMion variables. This ls in contrast to con
·:cntional simulation programs that typically t reat every problem variable as an
:~r:Hion variable .

F' : cdi:l~ : he SPAl'll< solution sequence begins with the construction of another graph
-~ ?~esen:ing t he problem. This is a directed graph in which each equation object is a
·:ertex. with edges representing depeudencie.s of an equation on problem variables. In
'l ther words. the in-edges of a vertex represent the variables upon which the equation
'or that ver tex depends. Because of the matching, every vertex also represents a
;>roblem variable. so every in-edge ls an out-edge of another vertex (or an inp11t vari-
1ble). :\. graph constructed in this manner is sometimes co.lied a data flow graph.
Data now graphs can be either acyclic or cyclic. In the first case there is an order in
'N hi~h >?very vertex can be visited without encountering a previously visited vertex .
l).bl'lo11sly, problems that can be solved without iteration have data flow graphs
""'•thout cycles. while cyclic data flow graphs indicate thP. need for iteration.

~in?i o? a small se~ of problem variables to serve a.s iteration variables is equivalent
•0 tind 1ag a small set of vertices. called a cut set, that break all cvcles in the data
!low graph. While findi ng the minimum cut set in the general directed graph is

lll

known t.o be impossible in polynomial time (Karp 19721, there :ire many well kno
algorithms for finding small cut set in such graphs (Levy l086j. SPANK employ,
algorithm developed by Levy and Low (Levy l088I*.

Once the cut set. is known, the data flow graph is modified hy introduction of a ne
auxiliary vertex for each cut set member. These new vertices act a.s source verti
for the outgoing edges of the cut set variables, thus breaking all cycles and creating
directed acyclic graph. The system of nonlinear equations is then solved with th
Newton-Raph'°n method, using the acyclic data flow graph to guide the evaluatio
of functions and derivatives. Specifically, a starting guess is made for each cut St

variable and assigned to the corresponding, newly introduced cut set node. Th~
graph is then traversed in "topological order''. i.e., visiting only vertices whase
incoming edges emanate from already-visited venices. When a vertex is visited, th
corresponding formula is evaluated. This process leads 6nally to calculated values
for the cut set variables. The differences between calculated and assumed values oC-4
the cut set variables are t reated as function values, upon wilich the Newton-Rapbson .
me~ilod operates. Currently, SPANK calculates derivatives numerically, again using.
tile acyclic data fiow graph.

Observe that the dimensionality of the simultaneous set is the dimension of the cut
set, as opposed to the dimensionality of the original problem. This means a smaller
linear set needs to be solved to get the next estimete of the i•eration variables. Typi
cally, HVAC systems show very large reductious. For example a live-zone variable
air volume system with a simple algebraic zone model has a cut set of size three, giv
ing a reduction of about 30:1; this is very significant since solution time is propor- '
tional to the cube or the size of t he linear set. Moreover. it often develops that the .
cut set size grows slower than the number of zones so that lar;er problems have even
larger reduction ratios. For example, with simple algebraic zone models the cut set
size is independent of number of zones, so a 50-zone model would exhibit a reduction
of 300:1.

The preceding paragraphs describe t.he essential lde:i.s emplo~·ed in SP.\NK for solving
algebraic equations. As shown below, t he same techniques ap-ply directly to solution
of differential-algebraic systems. Many other extensions a nd refinements are possible.
some of which are described later in the paper.

3. Dynamic SPANK
3.1 Basic Ideas
SPANK was originally developed to solve simulation problems which could be
described by a set of nonlinear algebraic equations. SP:\N((has recently been
P.Xtended to allow the solution of dynamic problems - f)roblems describable n.s :i.

mixed set of algebraic and first order ordinary differential P.quations l ODE',,).
SP ANK's new capability of solving differential-algebraic systems was designed to
exploit the existing algebraic solver and to be flexible and general in terms <lf prob
lem definition and choice of integration methods.

• Tho Levy 11od Low work wa.s in connec~ion with tbe ENET pro~r:un . the direc t predecessor
or SPANK. See Sowell (19831.

..::.:- . ··· ::'rorl11ction of an
· -~-. :.~ ~• as source vertic

• .- - ': '- · :/des and creaeing
.....=: 1 :.1en solved with th
;;:-::;..: ·--: ~ · tid e r.he evaluatio
~ ~ ::ade fo r each cut se
::-:; - :.:?-:: ·:ut , et node. Th
-:=:. :.;; ·.aly ·1er t ices wh
~ ~ · ·~rtex is visited, the.

i ::=-:... ... ~1 calculated values
....:.:.- : ;..:::'.: assumed va lues or
: .,.-_ ;.: :.: :; '.'Ji:wton-Raphso
- . D.
~ : = =~~::ally, again using

; :" :. -::~nsion Qf tbe cut
· -:: -:-.,_;, means a smaller
:.: ·~..: -::i •1ariah les . Typi
-==: ~ :. 5·t'!-zo ne variable
· ·:: :::: ; f Si7.e three, giv
. ·- - ::. ::i cime is propor
. · i evelops 1.hat the

--= - ~ : ·-:olems have even
- -- : ::',,flels the cut set
· .,._ ·: <:: ::ibit :i. red uction

_ .. .,.. : : ? . '.:'-/ !~ for solvi ng
..:- · · - ~~~I ? :o solution

• --== ~ -:: ~ :: :O"l :;.r~ possib le.

•: ·:d1 ~ould be
....;.: :~ceotly been

·- -=..: :-:scriba ble as a
- - -: ·:.:.:. ions (ODE '.,:) .
-::."'-" • ;:i r.i esi?;ned to
:::::-..=-_ : : ~ rms of prob-

,.

~ic problem with N variables can be described by m algebraic and n
\ ~ynau•)
·.iil!e~ntio.l equations (N-n+m :

o - f 1 (t, :t1, Zzr ···• ZN)

o""' I ~(t. :r1, Zz, •••• :rN)

0 - f ,,.(t, Zt 1 :r2 1 • •• ,zN) (1)

x.,,+1 - g1(t, X11 J:2, ... , XN)

i.,,+2 "" q2(t, Z11 :r2, .•• , ZN)

j;N = gR(t , X11 Zz, •. , xN)

~ince there are N+n variables (N problem variables and n derivatives), another n
<'·lu :nions are needed to form a well-posed problem. These are given by the integrat·
in11; formulas for the dynamic variables Zm+l •···•:rN.

Im+l. i+I = l(Xm+I, j Xm+l, j-1' ···• Xm+I, j+ll Xm+I, i• ···)

Xm+2 , f+I , =l(Xm+2 , j• Xm+'Z , j-11•••1 Xm+2,j+I• Xm+2,j••••) (2)

llere 1 la bels the j th time s tep and l is t he integrating formula. Open integratin~
!'ormul as (explicit methods) involve only pa.st values of a variable and its derivative:
closed formulas (implicit methods) also involve the present (j+l) value of the deriva
th·c. O pen formulas are decoupled from the rest of the problem and thus c:in be
' olved indiv idually. Closed formulas are coupled to the other problem equa t ions
: hrongh i;, i+ I a nd must be solved simultaneously with all or part of t he comp lete
~quation sel. Runge-Kutta integrat ion schemes uae integration form ulas t bnt req\l ire
valuaiion o(the d.erivatives (the '.Ii in (1)) at several points within the integrat ion
tep. but past va lues of the variables and derivatives are not required . Runge-Kui tn

methods are sometimes called single-step methods in contrast to t he mu ltis tep
methods which use past values of problem variables and derivatives. Note tha t if a
predictor-corrector method is used, t he equations in (2) comprise the correctors.
Predictor.i are always explicit formulas involving only prior values and derivativP.s
and therefore are not involved in the simultaneous solution; they are evaluated by :i

s~rictl y sequential process that yields s tart ing values for t he (possibly iterative) si m11l
tnneo11s solu tion o f (l) and (2).

Literatu re o n solving ODE's focuses o n individual equar.ions, with much attention
•levoted to the effi ciency, s tability, and accuracy of integration formulas and step-size

lgorithm.s. T he integra tion of a set of ODE's is usually regarded a.s a straightfor
ward extension of the methods for solving single ODE's. The additional complica
tions introduced by a. mixed d ifferemial-algebraic equation set are rarely discus.sed.

113

,I
''

I
ii
'

Runge-Kutta methods, for instance, are often ra.vored for their flexibility, simplicitr,
and efficiency. Because values at prior tlmes are not used, a Runge-Kutta algoritlun
can easily be started or restarted, and step size can be easily varied. The efficiency of
Runge-Kutta schemes depends on the ability to obtain a value for a derivative func
tion IJ; at each subinterval point. without iteration. Wbile this can be done for a sin.
gle ODE or for a purely differential equation set, in a genera.I differential-algebraic
system the q1 will not be iodependent ·-of the algebraic equations and evaluation or
the g; st each subinterval point will require a simultaneous solution of all or part -or
the equation set. Thus the Runge-Kutta schemes lose part of their simpllcity and
efficiency when extended to general diffcrential-algebrnic problems. ·Implicit mul
tistep methods, on the other hand, which may be less efficient nnd less simple for sin
gle ODE's or for systems of purely differential equations. generalize easily and aatur
ally to differential-algebraic systems.

Dynamic SPANK allows a differential-algebraic problem co be defined in a more gen
eral way than (1), namely:

0 - I ,(x11•••1 xN, Xm-tl• xN)

0 =- fz(X1, ... , XN, Im-ti•···· :i::V)

0 = fN(x1, ·••• XN,Xm+ll ···• :i::V)

(3)

The integrating formulas are the same as (2). This more general problem statement
is a natural extension of the statement of the algebraic problem - dynamic \·ariables
and their derivatives are not singled out for special treatment. Here there may be no
explicit IJ; or a IJ; may be a function of other derivatives. potentially making di rect
solution for derivatives impossible. From (2) and (3) it is evident that. for closed
integrating formulas. a dynamic problem involving N variables and n derivatives
reduces to the problem of solving a system of N+n algebraic equations at each time
step. Creating dynamic SPANK then simply involves choosing an integrating for
mula, devising a scheme for storing, accessing and updating the pas~ values of the
dynamic variables and their derivatives, implementing a ti me step algorithm, and
invoking the old, algebraic SPANK on tbe full ((2)+{3)) equation set at each time
step.

3.2 Current Implementation

For the initial implementation of dynamic SPANK it wos decided to concentrate on
seamlessly merging the integration process with the al1;ebro.ic solver and making tbe
integration method available to the user by treating the iotei;rating formulas as
SPANK objects. Inclusion of variable time step algorithms :ind the cnpability to
switch Integration methods or order! within a calculatio.n was postponed to a future
version of the program. Treating these capabilities in an objeci,-oriented way such
that the time step and method switching algorithms are choosab le and alterable by
the user will require extensions to the SPANK formalism and syn~ax. Definition of
such extensions is near completion and is discussed in Sec. 6, Semantic Extensions.

For the above reasons, a very simple step size algorithm has been implemented in the
current dynamic SPANK - a user-input fixed time step . For similar re:isons.

; r

.\

, \

')(

oi
·.t

[r.

r, r

T.
R:
~r

'.O

C;

cii:
nc
r]e

ro

;ir

heir flexibility, simplicity,
a Runge-Kutta algorithm
· varied. The efficiency of
ilue for a derivative func.
his can be done ror a sio.
eral di fferential-algebraic
ations and evaluation of
solution of all or part of
~ of their simplicity and
>roblems. Implicit mul
t and less sim ple for sin
eralize easily and natur-

! defined in a more gen-

(3)

ral problem statement
I - dynamic \"ariabl.es
Here there may be no

?Otially making direct
ident that. for closed
ies .:i. nd 11 derivatives
~uations at each time
g an integrating for-
1e ;>ast values of the
step algorithm, and

ion set at each time

d to concentrate on
ver and making the
;rating formulas as
:l the capability to
stponed to a future
-oriented way such
le and alterable bv
1tax. Definition o.f
ntic Extensions.

mplemented in the
r similar reasons.

>nLegration schemes requmng subinterval derivat~ve evaluati~ns (Runge-Kut.ta
methods) were disallowed. Although a Runge-Kutta integrntor object could be wr1t
:~n ior r,he current SPANK, it would not fit o.aturally into the existing SPANK formal
::nn. Such an object would need to invoke another object (the derivative formula),
.ind this ability would need to be hardwired into tb.e integrator object. Thus t he
.·:J.p:i.bility to include Runge-Kutta metbods was also deferred to a future version of
:iP·A:-..'K with a more general syntax. (See Sec. 6, Sema.ntic Extenaionit.)

.-\Side from Runge-Kutta methods, the lli!er has considerable flexibility in choosing or
writing an integration method. The methods are embodied io integrating formulas,
which are user accessible objects just like the normal problem equations. Any mul
:istep formula cao. be used, and separate predictor and corrector objects are allowed.

[o dvnamic SPANK the past values of dynamic variables and their derivatives needed
:iv the integrating formulas are called "histories". In order to include histories in the
:iP:\,'[[(formalism in a natural we.y, a separate object class (and data structure) for
histories was created, as well as the capability to pass history data from one object to
:\nether as if it were the value of a problem variable.

lo keeping with the decision to make histories "objects ' ' in the eyes of the user. we
:i.iso chose to make them objects internally. That is, these special objects nre stored
in the same data structure, i.e., a data flow graph, as normal equation objects. Thus
chere is now a history class of nodes whose function is to obtain tb.e appropriate his
tory data structure and provide it to the appropriate integrator objects. History
nodes a.re created when a problem variable is denoted as a ' history" in the problem
lefinition file.

Actually, histories a.re not the only 'special" n.odes in the data ftow gro.ph. Even in
Lhe original algebraic SPANK, for example, there are several special classes of node
that h.ave no in edges. One class comprises input nodes. These nodes obtain values
lor variables the user bas designated as "input" and pass them to t he equation
objects. These values come from program data structures external to the data How

raph . s.nd are obtained either by querying the user at program initiation in the case
of fixed values, or by reading a file in the case of time varying inputs. A..tlother spe
r ia.1 riode class comprises the cut set " guess" nodes. These are the nodes duplicating
the a.odes in the cut set which are used to pass initial or Newton-Raphson guess
"alues to the rest. of t he flow graph.

Integrator objects form two more special classes of node. Corrector objects are
t reated like normal equation objects. but predictor objects need special treatment.
They must not be " Bred" (executed) when the full data Bow graph is executed.
Ra ther a subset of the data How graph (all input and history node.s, followed by the
predictor nodes) is executed to fire the predictor nodes. The output from the predic
tor nodes provide initial guess values for the corrector objects in the cu t set.

Currently, corrector objects (yielding values for the de pendent variables of the
differential equations) are always forced to be in the cut set. F'11n<lamentally, this is
not always necessary, since (a) the corrector might be an explicit formula, or (h) the
rl.erivative cou.ld serve just as well to cut the inevitable cycle even with an implicit
formu la. However. we decided that explicit correctors are rarely used, and initial
guess values to start the Iteration are problematicnl for derivatives been.use most
predictors are formulas for the dependent variable, not the derivative. fn t his

tl 5 .J

manner we explain our decision to force corrector objects into the cut set, but we
recognize the problem it creates, i.e., unnecessarily large cut set size when the
wishes to use explicit integration. The issue will be reopened for future versions.

3.3 Procedure
The general procedure followed by dynamic SPANK is then:

(1) Set up and fill the problem data structure using the inp11t from the user'
problem description file.

(2) Perform matching of equations and variables.

(3) Perform reduction to obtain a cut set.

(4) Deline a fl.ow graph for the problem.

(.5) Obtain an execution sequence for the predictor subset of the How graph :i.11d

for the full How graph.

(6) Set starting guess values for the cut set variables.

(7) Initialize the dynamic variable histories.

(8) Solve the flow graph at the initial time.

(9) Loop over the time steps:

while (t <,. tlimit) {
(a) Execute the predictor subgraph

(b) Increment time and obtain new ,·alues for time \"arying
inputs

(c) Set the cut set variable guess \'alues using predictor
results (if variable is dynamic and there is a. predictor for itj
or use last step values.

(d) Invoke the SPANK algebraic solver

(e) Update dynamic variable histories
} /* End of time loop * /

Note t.hat the integration of dynamic variables. aside from the optional predictor
step, is fully incorporated into the algebraic solver. Integration of a dynamic vari·
able is no different from solving an algebraic equation for :i. steady-state variable.

The present dynamic SPANK is already a useful real world loo!. .-\.~ part of EKS ; GS.
it has successfully solved a variety of dynamic problems 11sin~ several different
integr:i.tion methods (see Sr.c. 5, Applications). Int.he future· wr plan Lo incre:ise its
so phistication and efficiency.

4. Symbolic manipulation in EKS/US
Symbolic manipulation in mathematical computation refers to a utomatic d.erh·ation
of a formula or sequence of formu las that solve a prob lem. Thus the " answer" is \I

fo rmula or a procedure that can be used to calculate a numerical answer. This ls
accomplished by manipulation of the symbols by special software . much as one would
do when manually deriving a formula usin~ the rules of :i.lgehrn. (Hence. the terms
.~ymbolic manipulation or computer algebra :i.re oft.en used.) With l he m()re l"aniilinr
alternative the calculation is entirety numeric. nnd thi: answ er is one or more

- ... ~~ ' . '
~ • . ' . - • I

·itJflliw

.. y1ni11'1
"\lk l'-1r

e th~

:~:1e :;t
~dost. \:
:·rom '. :
~·'.'.di i::
·bj~c~~

·_,., ;et
?u ncnt
··qu:i.cic
:; nt. :1.rC

·_o ..;ene
:,t: :~xp

·.\'ich o"}
:tie •:or:

.\. 1 s~

·:he re
\L-1.CS't
~urren ~

:i1arily
,:nuwn
·~sP.nti:

:·or inv·
1·onstn:
:yn1bo;

\ mo'
'f' .\:'\1'.
::1aLh~:

,! !~ [. rr:>rl I
'f'\Ni\

\l:\C::;1
·.vit.h \:
i.ri;umr
;)le. en'

I !~re l !
the eci1:

CJ.n f!X[1

that m

SP . .\NF
rile. i r
,. ~O'T
!he M,\

;o the cut set, but we alsa
ut set size when the USe

i for future versions.

;he input from the user's

iet of the ftow graph :i.nd

,·aiues for time ~·arying ~

i
i \'al ues using predictor

!re is a. predictor for itj

the optional predictor
ion of a dynamic vari
ad:-·-state variable.

ii. .--\s part of EKs : vS.
11si 111.1 several different

Wf' plan to incren.~e its

> automatic derh·ation
'hus the "answer" is :i

~rical answer. This is
re. much as one would
ra. (Hence, the terms
fith 'he more i'umiliar
>Wer is one or more

i
t

. 111111 i,,·r~. [11 :di b11t the most trivial ~imulution probh.nmi, it is 1111iikely that n. totally
,·,r:ii,.,li•: so l111.ion will be practical. Howevl!r, it is now recognized that there i:; also <L

~.ii' :'or :;ymboiic compt1tation, even though numerical analysis will likely continue to
.. liiP. keystone of continuous system simulation.

'."!ic :3P .\NK methodology offers several opportunities for symbolic manipulation.
\los t importantly, inverne formulas needed by the solution process must be derived
'~om the object equations. This is a laborious task if done by hand, but one that is
--~diiv :i.utomated with available symbolic manipulation software. Also, macro
·,;;jec~s representing models of physical components can be manipulated symbolically
.,, ~eL die rP.quisite atomic equation objects. This is especially important for com
·•onent models that are most easily represented by repeated instances of the same
:qu:ition. e.g., finite-difference models. Such models are tedious to write manually.
:: 11 , :\re easy co express symbolically, and symbolic manipulation software can be used
:a ·;ener::ne che models in the required form. Finally, SPANK objects ultimately must
: ·~ -xor~ssed in a compilable language (now C). This step can also be done readily
.,· \th ~ymbo lic manipulation software, producing text files in the format required by
:!.le •'.ompiler or other software.

1.1 Symbolic Manipulation Software: MACSYMA

.'here :i.re several widely available symbolic manipulation packages [REDUCE 198i.
\l\CSY~lA 1983. MAPLE 1985j. The EKS/US symbolic manipulation software is
:cirrently ·.vritten in the MACSYMA command language. MACSYMA was selecced pri
::1arily hP.r.ausP. a public domain version is available. Also, it is probably the be~t-
• :iuwn package, has good documentation, and runs on a variety of computers. The
,,,• ·ntiai requirement for the SPANK application is the ability to solve symbolical!~·

· ' r i11verses of equations, together with general list processin~ capabilities needed l'0r
· n1s tr11cti 0n of t.he SPANK files. Other MACSYMA capabilities, such a.s derivatiou oi'
.,·111i,11ii,: de rivative or integration formulas, are not currently used in SPANK.

·, :nod est. understanding of MACSYMA is prerequisite to understanding the
~r \.\l\ ,° \-L·\CSTulA .interface. A concise introduction using examples from applied
:~,tii•::nai.ics is provided by Rand [1984j. Here we provide l\Il even more r.oncise
:::r"rl11cti0n with emphasis on the aspects that are especially important in the

..;.p \"Ii\ imerface.

\\:\C''lY\L·\ depends heavily on functions. Many fundamental ['unctions are provided
···i1.h \[..\CSYMA. and users may write their own functions as well. Since funcc.ion
'r~•1mcnts can be of any· type, they can be symbols or strings representing, for ~xam
~ i e. equaLions. Thus, using the NlACSYMA "solve" function. we can write:

'lolve(equation. variable);

: ['·re the argument list has two elements. an equation and a variable t.hat appears in
· h~ eri 11ation. "so lve .. performs symbolic operations on the Hrst argument to gener:iLe
' :'I '!xprc.'ISion •,hat is a. formula fo r the second argument in term~ of o ther variables
· h::i.t mar be in the equaLion. This is an im portant MACSYM,\ function used in Lhe
'P.\ NI\ interfnce; il is used to gener.ate t he inverses rJf object equations. For l!:tam
-, le. if WP. ~onsider a n object representing the S~efan-Boltzmann law of radiation .
·· ""'"7 T'' . t hen Lhe invers~s. i.e., t he fol'mula.s for temperature, can he obtnined with
' he MACSYM.A command:

"

117

solve(e=sigma*t · ·l,t);

This command could be issueJ interactively within the MACSYM,\ system or fro
within a program written in the MACSYMA command lan~uage. [n either c '
MACSYMA will return the solution list for the variable T, whic:h in t.his example wj)

be:

[-(e/sigmar(l/4),
(e/sigma)"(l/4),

-%I*(e/sigmaf (l/4),
%I*(e/ sigrilat{l/4)
l

where %I is t he imaginary number i. Knowledge of the physics of (he problem must
be · used to select which of the four, mathematically correct. inverses is appropriate.
The MACSYMA command language allows selection rules to be programmed. so this
step can also be automated.

The above list of symbolic solutions contains t he one we wan t . 3long with two com
plex solution.s and another that suggestS a negath•e · bsolute tem pera.~ u r . T he
MACSYMA command language can be used to " fil te r .. t his list and gi ve t he ingle
solu tion that makes physical sense. A complete descri ption of ~ he r.letails of this
operation would require more explanation of t he MACSYl-.lA comman<l l a ngu~c l·han
we cau present ln i bis paper. Nonetheless, t he flavor of the mctho<l c:in be seen from
the following code fragment which omits deLails:

/*Condition on the solution t (absolute temperature >O)•;

condit.ions:[t>O,e>O,sigma>Oj;

/*P 11t conditions in current data base*/

for condition in conditions do (if condition#'true ~hen :issume1condition)):

/*Solution filter*/

for solution in solutions do (
/*Keep real solutions~ /

· if ((mem ber(%i,listofvars(solution))- 'false
or realpart(solution)-solution)
/*Keep solutions within range_. /
and is(ev(subst(solution,t t> O)))#'false)
then (goodsolutions:endcons(solutioo, goodsolntions))

);

print("Final Solution is ",goodsolutions);

In this code-fragmenL.· we assume 1.he list " ' sym bolic :;olu~ io ns foi in<l hr :ioh·c is in
t he MACSYMA variable called "solutions". and t he resu lt is placl!d in ·• rooJsolut ion .. .
The temporary variable "solution " holds one mem ber ot' soluticrns ;u ·1 t ime :.i.s it is
tested against t he list of "conditions" that are defined herorr. he loop begins. W e
omit the rather intricate MACSYMA code tbat formats 1. lu: •oodwl ution to SP.-1.N l<
code.

f~\t! >'
~IJ u\ i :!.
-.;(poll

!or:n~ .

,1~de·

~.L\C~
\\tn i ~
;nten~

·.~ r·
~L.\C~

:::P .\ :'
:5uc ·~

.\~ ~\

~n ci '
min.I
r!\'::ll C

envi r

\L.\l
1.lun:::

·. ·.,·ir
~11 '::>:

".10

'.he
0oj
·.10:

\ n.~
·.o
:io

-..:r:

'.!

i\'11,\ system or from
;uage. In either c
1 · • ase
.1 111 ~.his exam pie Will

:>f ~he problem m , us..,
erses is :i.ppropriate.
'rogrammed, so this

Ion~ wiob two com-
temperaiure. The

'lnd give the singJe
the detaiJs of chis

.and language t·han
d can be seen from

itioni):

1 hy soln: is in
'goodso/ ution ".

:.1 time -JS it is
op begins. \Ile
ion to SP.-\NI(

rt t! ~t.ACSYMA solve runction is powerful, but not limitless. It is 11.bl<! to solve poly-
~ials up to the fourth order, and can handle equations requiring inversion oi

00
oneatial, logarithmic or circular runction.s. ln common use. as in SPANK. these

~~~::ns. together with the standard operations ( + .... ,/), account for most of what is 
needed. so the .function meets the need. 

~L·\CSYMA co.n also solve for systems of equations, but this capability bas practical 
lirnit.s. For one thing, symbolic solution of systems of equations is computationally 
inLensive and can take inordinate a.mounts of computer time. Also, the solut.ion is 
!ess reliable than when inverting single equations. Indeed. if the system is nonlinear, 
~L·\CSYMA usually encounters severe problems, and often fails to 6nd a solution at 

3 11. Alt.hough we have not yet found beneficial use for this feature in the 
:iP.·\NK/ lvlACSYM.A !oterface, it is being considered for certain advanced capabilities. 
such as merging of components. · 

.\n additional feature of MACSYMA, which is quite useful, is its ability to evaluate 
and simplify expressions. For example, the function RATSIMP(A) simplifies a polyno
mial A and returns a ratio of two polynomials. The user can control the way the 
~valuation and simplification is to be performed through the use of switches. common 
~nvironment variables, or optional arguments to functions. 

~HCSYMA can also check whether a proposition can be derived from a set of equa
tions or other propositions, using its "assume" facility. This feature is useo in the 
3P . .\NK/ MACSYMA interface to solve for piecewise-<iefined functions. where the vari
:tl.Jles LO be solved for have a limited validity range. 

While ~lACSYMA serves well in EKS/US, it is not ideally suited for the purpose . 
!:iterestingly, ohe most significant disadvantage is not its weaknesses, but its power; it 
is really more than is needed for the job. Because of its power it is large (roughly 
twice as large as SPANK in terms of disk space). Ultimately, we will incorporate :i. 
subset of MACSYMA functionality in a C or C++ program to support EKS / US. 

4.2 The SP ANK/MACSYMA Interface 

The SPANK/MACSYMA interface is a collection of programs written in the 
'v!ACSYMA language. The basic module of this package is about 1500 lines of 
'vlACSYMA code. This module allows the user to generate required C functions. 
objects, arid macros in the SPANK format by entering the equations in natural l'orm 
along with intended object names [Sowell 1990J. A second module (which invokes 
•,he basic module) allows generation of a complete simulation file and all a.ssodateu 
objects and functions. This module is about 200 lines of lvIACSYMA code. Addi
tional modules include one ror generation of macros that are composed of many 
instances of the same elementary object (500 lines), and one for merging ot' equaLions 
to eliminate selected intermediate variables (500 lines). Thus, the entire package is 
not a large program. 

So far we have mentioned the c:entr:tl issues in the interfacr.. namelv .~olvin~ r'.q11a
tions using the "solve" MACSYM.A function, dealing with list ol' variable~ to solvP !'or 
11sing the list handling utilities, and checking whether they are within ran~e usin\I the 
relational data utilities. The programs also include code devoted to more mundane 
iss ues, such a.9 formatting the solutions into SPANK or C syntax. It is notable that 
,'v!ACSYMA ha.9 a built-in translator for arithmetic expressions in MACSY?v!A to 

119 



120 

FORTRAN, but not to C. Therefore a MACSYMA to C expression traruslator wa.s dev 
ised using substitution rules. For example, x·y in MACSYMA becomes pow(x,y) in C. 
and %PI in MACSYMA becomes M.J>I lo C. Another problem was the limited for· ~ 
matted output capability of MACSYMA. In order to get text files in the formai 
needed by SPANK and the C compiler it was necessary to develop special file writing .., 
functions using Lisp. Another issue that complicates t he interface code is bookkeep. -j 
ing. In the case or macro objects and global simulation generation, we have to keep ··· 
t rack of what variables are common among different equations to ensurP. proper link- ~ 
ing. La.st, string handling routines are used for SPANK file generation and name gen
eration. The syntax of the MACSYMA language is fairly natural and the fu nction 
names are usually self explanatory {although long). AJI ol' these secondary issues con
stitute about 50% of the code in the interface. 

The derivation of equations and generation of files is performed in a reasonable time 
(from seconds to minutes, depending on system size). Some care must be taken to 
ensure that MACSYMA is not launched into feasible but extremely time consuming 
tasks. A typical example is the symbolic resolution of fourth-order polynomial equa
tions. MACSYMA will do it, but will take an inordinate amount of time, ask for 
much additional information, like the sign of some complicated discriminant. and 
generate huge expressions. To prevent this, a careful user will avoid requesting such 
equations to be inverted. This can be done at the SP ANK/ MACSYMA interface level 
by declaring the variable appearing to the fourth order as n "bad inverse." and not 
try to solve for it (unless it is short and simple, as in the Stefan radiation law above). 

5. 
E. 
\\ 

th 
,h 

s. 
F 
r< 
ti : 

,., 
:l\ 

·1: 

St 

II 
'.1. 
T 
31 

;1: 

: I 
!I 
':> 

ir 
rt 

II. 

F 



. translator was dev. 
omes pow(x.y) inc. 
.vu the limited for. 
files in the format 

' special Hie writing 
e code is bookkeep. 
·n, we have to keep 
~nsure proper link
;ioo and name gen. 
I and the function 
:oodary issues con. 

a reasonable time 
must be taken to 

Y t ime consuming 
polynomial equa
of Lime, ask for 

iiscriminant. and 
d requesting such 
ifA interface level 
nverse. " and not 
Ltion law above). 

- Applications of EKS/US 
~KS us ha.s been tested on a range of simple to complex problems in energy analysis. 
c:.\: 

1
b 'etiv describe here a subset of these problems to give the reader a feeling for 

\ert. · h 
(he scope of applications that are possible. ~eferences are given .w _en . a more 
Jetailed discussion of the problem has been published. Due to space lim1tat1ons. we 
;how results for only the last case, the lighting/HVAC problem. 

..-------
5.1 Three-Node Room CllUNG 

(bl 

-----T1 

121 

Figure 2 shows a very simple 
room model that was used as a 
:lrst test of dynamic SPANK 
Sowell 1988j. The three nodes 
:orrespond to a massless ceiling, a 
::i:issive tl.oor, and massless room 
air. The floor and ceiling 
e:<change long-wave radiation and 
:onvect to the room air. EKS/US 
501\•ed the problem of finding the 
noor and ceiling temperature for 
'.ime-varying air temperature. 
The block diagram, in Fig. 2(b ), 
shows the objects for this problem 
and their links. In addition to 
:he floor. air, and ceiling objects, 
·.here are predictor and corrector 
~bjec ts for different.ial equation 
integration. Sample results of 
:-unning this problem are shown 
in Fig. 2(c ). 

J.-.1-----T2 OUTPUTS 

T1 
---- ----4] .-----

cll------
TJ------

INPUTS ~ ------

a-------+ 
a -----;:.i....,..~.1-..,...._,..1..,,...L-......, 

Cl " ~ T1 T2 TJ Ti 

Pt.OOA 

(a) 

Massless Ceiling 

1 

Air •3 

2 
V/////)77//7/1 Massive Floor 

Figure 2: (a) Three-node room model. (b) Block diagram showing objecLs and 
links; T = node temperature, q = heat addition rate. h = convective 
heat transfer coefficient, dt =- timestep. 

CORR. 



192 
:.: 

"' u ... no 

~ lH 

lll 

l:I: 

~lr---
m l.o-~ 

I : 
' . 
l 

• 8 

c1me (hours) 

10 lD 

,--.-i 
I : 
' ' 

)0 •o 10 

Figure 2(c): Simulation reiiults for 3-node room showing calculated ftoor tempera
ture (or user-input time-varying air temperature. 

5.2 Thermal conduction 
Finite-difference simulation was done for one-dimensional conduction problems with 
variable conductivity, mixed boundary conditions, and bulk domain heat generation. 
Both steady state and dynamic cases were treated with various spatial discretizatioos. 
Figure 3 showii a typical configuration in which the heat flux is constant at one end 
of the conductor and natural convection take9 place on the other end. 

- ' ' - ' ' - ' ' - ' ' ' ' kl kl kl ' k2 k2 - ' - Ut'' u1'' u''• ' u''' u·" 
' . ' ' I 

' I 

' ' - I ' q 
-~ e 0 0 <D 

tl t2 t3 t4 
' ' I 

' ' - ' . h - I I 
I 

' ' ' . 
' ' ' - I I - ' ' - ' I - I 
' 

Figure 3: One-dimensional thermal conduction model; q = heat flux. 
t =- temperature, k =-conductivity, u - heat generation rate, 
h - convective heat transfer coefficient, tinf ~ambient temperature. 

tinf 

,) . 
\ 

n:. 
re 
e: 
p 
0 

n: 
\:'. 

c 

t. 
t' 

5 
f 
fl 
'.\ 

~ 1 
0 

0 

c 
5· 

() 

~ 

" ' 
(' 

c 



\ 
-

so 

alculated floor tempera
!. 

11duction problems with 
lomain heat generation. 
g _spatial discretizations. 

is constant at one end 
1er end. 

) tinf 

h 

at flux. 
. tion rate, 
ent temperature . 

5,J Steady-state zone convection 
'-.':itural convection in a room 
~e:i.ted by a. radiator was modeled 

1ccorciing to the Inard [l 988j for
m:i.lism. As shown in Fig. 4, the 
room is divided into live cells, 
each of which has a. simple flow 
pattern. The primitive cell 
objects are linked into a zone 
macro object. The convective 
conductances between subzones 
:i.re based on empirical correla
lions. Given the heater output, 
Qcoov. and the temperature at 
:i~des l. 3, and 5, EKS/US solved 

123 

Inard/Ngendakwnana Convective Model 
Radiator-Heated Room 

Partitioned into 5 Zones 

-----oTal 

TaS 

H 

0 
ror the intercell heat fluxes and 
the temperature nodes 2 and 4. Figure 4: Five-cell model for in-room 

natural convection: 

5.4 Multiroom air flow 
Figure 5 shows a schematic for air 
tlow between rooms driven by 
wind pressure and stack effect 
[Buhl 198gj. A variable number 
of rooms are connected to each 
other by a. variable number of 
orifices. The smallest problem 
solved had one room with six 
orifices. the largest had 24 rooms 
with six orifices per room. Pres
sures on the orifices connected to 
the outside a.re input, and the 
pressure difference at and mass 
How through each orifice are 
obtained. Reduction factors 
between 10 and 20 were obtained; 
the number of iterations to solu
tion varied from 8 to 44. 

T - temperature, 
Q - radiator heat, 
g - intercell convective 
conductance. 

3 Room Simulation with 

Orifice Equations and Stack Effect 

Room I Room l 

Pl.Tl..rtlal P:l.TI..rhoJ 

m 

Ou11i11a ACdl i\Cdl I 
PO. TO. I Ouu1e11: 
rtlOO.PtO Pn Pfl PIJ P4.T4.rh04. 

'----------------.....; Pr4 

Figure 5: Air flow between rooms driven by 
wind pressure, stack effect: 
P = air pressure, 
T - air temperature, 
rho - air density, 
m,.. mass How. 
AC<l =-effective orifice area . 

I 

\' 



5.5 Hamburg Cell 
The Hamburg Cell, shown in Fig. 6, is an exercise originally used to test the French . 
ZOOM program [Bonin 1987j. We are using it as a test problem to compare El<S1us 
and ZOOM. The problem consists of a idealized three-zone room enclosed by four 
three-node walls. Two of the walls face north and have constn.nt outside &empern. • 
ture; the others face south and are exposed to time-varying out.side air temperature 
and solar radiation. Convection between room zones b modeled, but long-wave radi
ation exchange between room surfaces is neglected. The only nonlinearity is intro
duced by a room neater tnat is controlled by the average of the north wall inside sur
face temperature and the temperature of one of the ai r cells. Preliminary resu lts 
show good agreement between EI<S/ US and ZOOM results on t his ;iroblem. 

6 

FS1 __ 

7 

FS2 

Figure 6: 

I' 
0 I . ' 

Sl . ' 
0 0 0 I 

l 2 J . 
I' 

(Soulh Wail) 

.. 
5 I 

I I 

I' 
I I 

'I 
I I 
I I 

0 0 0 I . 
S2 

I I 

I' 

' 
(South Wail) 

o I 

' ' I' 

,__......._----_....._.,----A----------- -------, 
8 

HO 

CE BA 
(Hc:itcr 

·. ' .... • .. · 
' I 
I 

~l 

0 0 0 
2 3 

(North Walll 

o o a 

'.'l'2 
(North Wall) 

·-----

11 LJ Cancro! 

Elcctnc Supply 

THS 
(Cl TI 

The " Hamburg Cell ", an "idealized" three·;mne room enclosed Ly- four. 
three-node walls. Arrows (except for the one labeled "control'') ;ndi· 
cate energy transfer. 



sed to test the French 
m to compare EKSiUS 
oom enclosed by four 
tant outside tempera-
1tside air temperature 
j, but long-wave radi-
nonlinearity is intro
north wall inside sur

Preliminary results 
s problem. 

·------------------~ 

l 

' 0 ! 3 

1 Walll 

0 

Vall\ 

n i-----

rns/ 
(Ctn 

I 
I• 

·---------------- : 

enclosed l .. y four. 
"control'') ;ndi-

S.6 Desiccant Cooling 
Fil;ure 1 shows o. hybr.id liquid desiccant system that provides cool. dry air to IL .spnce 
!Nataf t900I. The workfog fluid is a solution or lithium chloride in water. The sys
tem contains an interchanger, a heater, and a cooler (all modeled wi~h the LMTD 
method), and a regenerator and conditioner (both of which are modeled with a 
!<atb.abar equation). It also contains two sumps, one of which is massive and, there
fore. dynamic. In the EKS/US object-oriented approach, the conditioner and regen
ero.tor are instantiations of a single object class. Similarly, the cooler, heater, and 
interchanger are iruitantiations of a single beat exchanger object class. The problem 
consists of 83 equations. After reduction there were only 9 iteration variables. 

fil_, 
0 9 

W4 (53175 lb/hrl 
T4(76-96 deqFl 

H4(0.0093l __ ........ 1 

Outside Air 

1'16(64921 lb/hrl, T6,x6 
Concantrated LiO/WllCI' Solulioa 

Conditioner 

Condilioned Air 

TS (66. 7 deqFl 
e 

W40,T40,x40 

WlS (4365 lb/hr!, T15 Massless Sum 
'rB ______ _, 

Intcn:hangcr 

'11(22 22 b/hrl 
Tl (76.8 d qf') 

Hl(O. 093 

RetumA 

lf9,T9 

W3(65874 lb/hr) ,T3,x3 

Dilucc LiCVWllCr Solution 

T2,112 

Regenerator 
Exhaus1 Air 

TlJ (55. 04 degf) 

Cold Wlla' from 
awtilliary chiller 

..--,.._..._, (noc •hown1 

Cooler 

Wl.6,1'14 

Tll(l40 degf ) 

Hot wuer from boiler 
(not shovnu 

Heater 

Wl2 (34127 lb / hr) 

Figure 7: Liquid desiccant cooling system. Unknown variables are shown in lJold
face and input variables in lighter type, with input values in 
parentheses. W "" mass flow, x - salt concentration, II .,,. humidiLy 
ratio, i =- specific enthalpy, T = t.emperature. m = ma:;,~ of solution in 
regenerator sump. 

125 



126 

5.1 Boiler plus DHW Heater 
In this problem. shown schematicnlly in Fig. 8, a boiler and domestic hot water 
heater are connected to t he same chimney. Heat t rnnsfer in the chimney is modeled 
using 1-d finite difference. EKS/US solved for the various temperatures and mass 
flows given ambient t.emperature and pressure and the water temperature in the 
boiler and DHW benter. 

k s 1.5 tbric l i=;:::= u: 
Pout 

tCllUhOClll ~ E rhoou1 

Chimney 
----------------------------------- ,_ - - ---------------------------- -- ... 

mbs ibrlcltO u:O mds 
~~b .. -

tds 
thod: 

tbs.rhobs 

Boiler Stack D HW Stack: 

' 

1 
mds -

mbs 

DHWDraft 
Divcner 

mdd -
- mbd -

'~ 
td.rhod.pd 

~oiler J .. f'\111 

tb.rhob.pb 
IVCrt=i 

mb -

Demesne : t Boiler · · Hot ! 
i tbr,rhobr,pbr Water : . ' 

~- -- - -- ---- ----------------- ·--· --- --- -- --- -- ---- ---------- -- ----·---- --·---· 
mbr Boiler and DHW Heater 

Figure 8: Boiler and domestic hot water heater sharing :i common chimney: 
m ,. air mass fiow, t =- t.emperature. rho =density, p =pressure. 

5.8 \ 
F\gur 
versk 
throe 
st re a! 
:iddit 
dashl 
ti um; 

equa.' 
ohe t 
itera 

.... ----
: outside 

··as '' 

Fig 



domestic hot water 
chimney is modeled 
peratures and mass 
temperature in the 

Pou1 
rhoou1 

~------··-------·, 

' 
DHW Stack! 

mds 

:c 

hod.pd 

stic 

-..... --.. ---.... -..... --· 

:m chimney: 
) = pressure. 

' 

,, 
L 

! 
'"i 
~ 

~ 

s.8 Constant Volume Reheat System 
Figure g shows a constant volume reheat system used t.o test the early, steady-:1tMe 
,·ersion of EKS/US [Sowell rns6j. Outside air is mixed with return air and passed 
tbrougb a cooling coil, a heating coil, and a fan to become the zone supply air 
stream. Tb.e zone has sensible heat gain, E;n, air infiltration, min/• and water vapor 
:iddition. water-in. In addition to the physical components the diagram shows 

ashed blocks representing ''data conversion" objects that transform enthalpy and 
:iumidity ratio to drybulb tempera&ure and vice-versa. This problem resulLs in 23 
equations and 38 variables, 15 of which were chosen a.s inpuLS (the circled variabl es in 
the figure), leaving 23 to be solved for. After reduction, t his problem has only one 
iwration variable, the humidity ratio, w2, leaving the cooling coil. 

collector 

"col" 

·as" I 

. -- -- .... 

® hr 

@ wr 

G mr 

hi wl ml cooling 
coil 
"cc" 

hZ wZ m2 heating h3 w3 m3 
COii 

h2 

wZ 

:- -hdbw : 
: "tempi": 

'·--i© 

"he" 

fan 
parameters 

h4 

w4 

127 

discnbutor hS wS mS .---,-o ... ne-..., 6;Q@ 
~-----~ ~----------------------1 "dis" '' zl 0 

:· -hdb.;-: 

:.:·=1~ 

Figure 9: Constant volume reheat system showing problem variables. [np11ts :trr 
circled, unknowns uncircled. T =-temperature. m = rna.'is ttow. 
h =specific enthalpy, w = humidity ratio. E = ~cnsiblc heat gain. 
RH = relative humidity, P = pressure. 

I' 

I .. 



6.9 VA V Reheat System 
Figure 10 shows a variable volume reheat system containing :i preheat coil , COOiin 
coil, zone heating coils, supply and return fans, and nonlinear controls. The syste 
can serve an arbitrary number of zones: the 5-zone case is shown in the figure. In th 
problem analyzed, zone loads were input. For dynamic simulation, there a.re fou 
iteration variables independent of the number of zones. The reduction factor can 
therefore be quite high; for example, for 20 zones there a.re 264 equations and four
iteration variables, giving a reduction factor of 66. 

ZONE 1 

:NTERIOR 

cs 
(1'9) 

1------t 

ZONE2 

EAST 

c 
c 

Fan 1 

ZONE3 

SOUiH 

ZONE4 

NORnt 

Figure 10: VAY reheat system serving five zones. HC = heaLing coil, 
CC - cooling coil, C - control , T - type of r.ontroi. 

ZONES 

WEST 

5.10 
F\g,1: 
'.So\\ 

.\0.L' 
belc· 
?ien 
shO' 
nur. 
e1iti 
?er : 
.::i.D 

:o,o 
.,·ec 
J~l 

:ID " 

Fo: 
~ i \' I 
:i.ls· 
bel 
f:J.( 

l r 

T 
Ct 

B 
rt 
er 



· preheat coil, COolin 
controls. The sysce 

. h II\ 
1 1~ t e figure. In the 
.at1on, there are rou 

d 
. r 

re uct1on factor can 
-4 equations and four 

fE 4 

tTH 

. coil, 

ZONES 
WEST 

10 Lighting/HVAC Problem 
~- re l l :;hows the schematic of a model used t.o study lighting/HY L; interactions 
.:~ell tygo1. Lighting ls provided_ ~y B.uorescent lamps in the plenum spnce of :t 

· 
0 

OOO-W room. A translucent ceiling lens separates the plenum from the room 
~ j w. Supply air enters the room, mixes with the room air, then exhausts to the 
e 

0 
um through small openings in the ceiling lens. Input power leaves the lamp by 

;ib~~twave (visible) and longwave (Infrared) radiation and by convection to the ple-:um s.ir. The radiative portion undergoes interreflectlon and transmission, and is 
. ' timately absorbed by surfaces in the plenum and the room. If the plenum air tem-
:ii Ll f h . . er:i.ture is greater than the room temperature, some or a o t e convective portion 
~:i.n also escape t he plenum by conduction through the transparent ceiling to the 
:oom nir. Ultimately, all lamp power must be removed by the airstream after con
,.e~tive t rallllfer from t he various solid surf~ces in the room and plenum. We wish to 
. i~cermine the surface and air temperatures, and the heat removal rate in the room 
!•nd plenum. Naturally, these will be functions of the mass .flow rate of air and the 
~upply air temperature. 

For simplicity, we !15Sumed that the dimensions in the horizontal plane are large rela
:i•·e to room and plenum height, thus making losses through walls negligible. It is 
tl1'o assumed that the floor and ceiling are adiabatic, i.e., that no heat transfer occurs 
between the ceiling and the room above or the floor and the plenum below. View 
facwrs fo r radiation exchange were calculated with a. separate program. 

The convective heat transfer coefficie.nts used assume free convection and were taken 
'.o be constant. A later improvement to the model used recently measured correla
tioa.s [Spitler 1991] giving these coefficient.s as a function of supply air jet momen
tum. 

· he ::ibove problem can be formulated ~ an n-node network in which each node is 
,·iew'ed as a surface that can em.it, absorb, reflect, and transmit radiant energy in the 
ihorL nod long wave bands. Also, nodes can interact through surface-to-air convec-
ion. :ind through bulk How convection. The system variables include node tempera

Lures. short and long wave radiosities and irradiations at each node. The basic physi
" :l.I laws governing the system are those of diffuse radiative transfer, convective heat 
tr::ins r'er. and conservation of energy and mass [Sowell 1973j. 

The block diagram, Figure 12, shows the macro objects for this problem and their 
connections. The equations corresponding to these objects are given in [Sowell 1990j. 
By virtue of designation of particular system variables as "inputs'', Fig. 12 also 
represents a particular "problem". One problem that can be represented (which 
i:orresponds to case (1), below) is: 

Given: 
All geometric and property data, and convection coefficients. 
The short wave emission at each surface, JOS. 
The source energy addition/removal rates at all surface nodes and plenum 1ir 
node, QO(l)-Q0(6). 
The temperature at the room air node, T(7). 

Find: 
The temperatures at all surface nodes and plenum air node, T( 1 )-T(G ). 
The heat addition/removal rate at the room air node, QO(i). 



The short and long wave radiosities and irradiations at each node. 

An important feature of EI<S/US is that different problems on the same system can 
be specified without .structural changes in the model. For example, if we wished to 
speciCy a surface temperature and solve for the required heat addition/removal rate 
we could simply designate a different input set. 

Dynamic simulation results for some of the problem variables a re shown in Fig. l3. 
Two cases a.re shown: fixed room air temperature ~nd fixed supply air temperature. 
For this study the air fiow rate was set at 1.0 cfm/ft~. A run period of 200 hours was 
chosen, with a. time step of 6 minutes. Initially, all of the node tem peratures a re near 
the steady-state lights on condition. Then, at time iero, the lights a.re wrned off and 
remain off for 50 hours, during which time the system :ipproaches a steady-state 
lights off condition. The lights are then switched on with an input powe.r or 3 . .> 
W/ft2

• 

The general behavior observed in Flg. 13 is an initial decrease in temperatures, fol
lowed by an asymptotic a.pproo.ch to equilibrium lights-off values. then a relativeh· 
rapid increase at 50 hours when the lights are turned 0n. followed by an asymptoti~ 
approach to equilibrium lights-on values. The initial decrease is d ue to the fact that. 
the temperature starting values chosen for t he simulation were above the equilibrium 
lights-off values. 

This example shows that EI<S/US can be used to solve complex. nonlinear dynamic 
heat transfer problems involving simultaneous radiative, conducth·e and convective 
processes. 

L:imps - Node 2 
0 0 0 

Lens Too - Node J 

Lens Bollom - Node 4 

l11suJ"1ctJ 

Plenum 
0 Air- 0 

Node 6 

Room Air · Node 7 

0 ~--- .. 

••••••••••••• Air Plow ••• • 
··········································-··· 

ln<11Ja1ctl 

Figure 11: Lighting heat transfer problem: vertical section throu!!;h room 
and plenum. 

: 

·. 

Fig 



ch node. 

l the same system 
imple, if we wished 
addition / removal 

are shown in Fig. 13 
lp.ply air tern perature:. 
mod of 200 hours was 
t emperatures are near 
hr.s are turned off aod 
::ia.ches a steady-state 
l input power of 3.S 

in temperatures. fo(. 
1es, then a relative!\' 
ed by an a.symptoti~ 
d ue to the fact that .. 

bove the equlllbrium ' r s 
.f:t 

· .nonlinear dynamic f 
:tn·e and convective 

0 ~····· 

.v ... ..... ........ 

'M· ~~- t~·-. • r.; • '14 ~. l'<I • -"· - . . 

1 room 

. . 

Rs--------- R 
r.auss -- --.----- taus 

JOs ·--- :·----
,---. ' 

I I ,.-

.. 
I ' . ' 

' 

Radiosity 

(Shan Wave) 

A.X 
F .. ,.------

' .. 
I ' 
I ' 

Q06 901 
I 

' 
QO 1 - - - - - -r:;::-;:;-i ... ::::::~ 
QOS :::::: I 

: QO 

taul 

' . . . ' 
r-

' 

: \\~l:~.x 
·: ~-1- 4 :-; - A I 

I I I I 

I I I • 
I I 0 

' . ' . . 
~-

!..--------

J 

A 
tau 
taus 
Qr 

Net 
Radiation 
(Long Wave) 

---------
Qrl . 

' ---·----------------

Energy 

Balance 

Uc 

Figure 12: Block diagnim showing objects for the lighting heat transfer problem. 
· Da.5hed ·lines inaicate inputs or system variables shared by objects . 
T =- temperature, J =- radiosity, F J =-irradiation. · 
R ,. rellectance, tau =- transmittance, A =- area, 
U =- conductance, QO =- heat addition rate, 
Qr =- ~et radiant heat transfer rate. 



. , 

., 

"' .. 

.. 

.. 

.. 

... 

Supply Air 
Tem!'erature 

... ... 
I•- (Hour>) 

.. ... 

Ceiling 
Temperature 

Ut . .. 
I;,,.. (Hours) 

. .. 

, .. 
""+---~,,....-~--~--~--· I ... 
... 
... 

, .. 
I;,,.. (Hours) 

Lamp 
Tempernture 

. .. 

. 

. .. 

..... -

.... r-----------
:::I 

' •• . s Supply Air 
Tem!Jerature 

... ... .. ... 

... ... 
u .,, 

•• .• -t----•• :------,-.-. --,..,. .. --..L . .. 

.. 

.. 

~ 1me (Hout ii 

, .. 

Co?.ilin~ 
Tempera cure 

, .. ... 
l imo ( Mau,.) -

... r __ ...._ __ ..._ __ ..._ __ ...._ __ .,. 

... 

... 

... 
, .. 
" 

,. 

La mil 

Temperature 

••-1----.------...... ------... . .. .. . 

Figure 13: Simulation results for the lighting heat transfer pro blem. The ligltt..<; 
are turned on at t - 50 hours. The supply air llnwr:uc h; li xed ;Lt l.ll 
CFM/sf. For the left-band graphs, ~upply :iir temperature 1·:1ri•~:; lo 

maintain a fixed 75F room air temperature. For the right-hand gr:iphs 
the supply air temperature is 6.xed at 70F. 

F 



133 

.. 

.. 
l?lenum i\1 C' .. Plenum AiC' - Tempet'ature Temperature 

= ' ... 
upply ; v 

Air .,. ,. 
mperature ... 

I 
.. , 

-
" ... ... 

" , . .. ... ... ... - .. , .. . .. , .. , .. 
time (Hours) t ime (Hours) 

?•.• ,., 
,. 

Ceil i n~ 
T, , 3 Room Air Room Air 1peracure 

Temperature 
,. 

Temperature 
,. 

l!i . O ~ ::-
~ I ,, ... ; v 

~ 

- " 1 4 . j I -
" 

m uo , ... ,. .. ... LH ... "' ... . .. 
lime (I-louts) lime (Hours) ..... 

LJHU u .... 

I.amr:> , ..... 
~mper a cu re ·-· ..... 

': ..... ~ 

' Load ...... Load 3 ~-.. 
;;; ..... e 
... ..., ...... 
0 HHI " . 0 

HIM 

... 
• lttte .. ... ... "' . .. .. . .. .. . ... 

l ime (Hours) time (Hours) 

T he lig h ts Figure 13: Simulation results for the lighting heat transfer problem. (Cont .) 
xed a t !.O 

1·a rir~;; to 
nd gr:i phs 



f-----1+ 

, 
I 

/ 
I 

•:J !.1.....Z 'o i 11 • 11" 
IJ • ..:: 
1\l .• '1 1•J ~: •J l q1;() ~J11> 1(1v L'I : u ,-.> ) 

• · ~ll . ! l.J ) ~~· . :·)O> .. so . ~ 
> (50.ao> · 

•I 

11 1J. ;, -~1) . 51)) ~ ·) ~) 

iz t= ·. -:o. ;.50l <0 . 1$01 : 
o , 1120 .100) ClOO . lWl 

dtf l f'W! ~Ullli.I! { 
o a ~ uot.2 .c. -. 11. 11 l : 
1 I .t .ia....2~1 \ o . 12 t : 
~ 2 • nA2 .1C o, ' ' ) : 

... ·~ : 

t}. 

:J, l 

,, n· 
·.:l)n 
?re' 

:e r 
·:di 
.; t• p ' 

r et'J"n I 1 l • 12 1 : -~ ;' '. 

Figure 14: Example screen from the Kernel Graphical E1faor (I<CE), the !!;raphical 
user interface for EKS/ US. The three windows show: harmonic oscilla
tor problem with mul t iplier, sum. and integ rator objects and links 
(upper left); the 'sum " macro object show i n ~ its onstituent objects 
(lower middle ); texcual input fo r t he ' 'sum " objcrt with associated r; 
code. Buttons a long t he left side ril' t he ">c ree11 pe rfo rtn operations such 
as positioning objects in a window . drawin g links h tween objects . and 
grouping objects into macro o bj ects. 

•• \l!'" 

f3. 
n 

ll 

~ ·. 

)' 

(] 



: ~ ~ · ;.,:. .:; ; =~ 1 

-=: :. : -.. -;c: .. ~ .. 
. -.: :.: : .:::..: 

.~ :: :.-.:"! ::-

·J . UJ 

B. Semantic Extensions 
tl.l Current Limitations 

The or iginal design of SPANK was based on static models. As such only algebraic 
svs ~ems could be specified. As demonstrated a.hove, we were able to implement 
~igaificant dynamic simulation capability with minor modifications to the original 
~--n ~ a..'<. However, the user i5 currendy limited to a. sma.H ra.nge of numerical integra
:iou methods, namely those with predictors a.nd correctors employing three or fower 
previous values of variables and derivativl?ll and a fixed, global time-step. Although 
;luoge-Kutta integrators can be specified, doing so is awkward, requiring the integra
.or object to involve elements of the particular problem rather than being a semanti
.:illy istinct entity. More complex iCltegration schemes, including those with 
·eparate start-up methods, cannot be specified. Moreover, certain kinds of dynamic 
~ ,·stems cannot be specified. such as those with some constraints applying only at cer-
~in lm~s or under certain conditions depending on system state. 

Other current limitations, unrelated to dynamics, have to do with the way objects. 
:u::i.cro objects, and problems are specified. The current implementation lacks unifor
:niLY in t he we.y Lhese entities are seen by the U3er, imposing unnecessary burdens on 
·he user to keep track of the differences between various constructs which semanti
; :i lly ought to be treated the same. Similarly, in the current implementation there ure 
:\ni licial d ifferences betweeCl 'scalar" values, such as temperature, and "compound" 
,-nJues. such as a.Ir flow, wb.icb are characterized by several variables. e.g, t.empera
•ure . humid ity ratio, pressure, etc. [t is often the case that statement of a problem is 
more naturally expressed In t.erms of such compound values. but ~he current imple
me ntation forces the user to decompose them into their constituent scalar values. 

Consideration of these needs led to reevaluation of the semantics of dynamic simula
don as che first step toward a completely new specification language. Below we 
;J resent a specification for this new language, called the Component Definition 
:"anguage (CDL). 

6 .2 Component Definition Language (CDL) 
in the following section, we describe a grammar for COL along with an informal 
o~man tic s p.ecification. We use certain conventions for describing the grammar. In 
;>::inicu lar, keywords are always t.yped in bold face. e.g., object is a keyword. Like
·.v1sr. . pu nctuation marks in t he o bject language are typed in boldface. Thus. " (" is 

11 1Jhje1:t language punctuation mark as distinct from "(", which serves to group 
-:on:;truct.s together in the grammar. Syntactic variables (think of them as namts t'or 
:iY ll LacLic caLegories) are denoted by italic ~ypeface enclosed in angle brackets. e.-; .. 
< type> is a certain syntactic category. [n the grammar, a construct with a super
script asterisk means zero or more occurrences of the construct, a superscript plus 
means one or more occurrences. Vertical bars separating constructs means exactly 
oae of the constructs must occur. Finally, a construct in square brackets is optional. 

B.2.1 The Basic Semantic Categories 
The semantic entities of CDL fall into seven basic categories: kin<ls, classes, objects, 
types, 1'alue:i, variables, and connections. Roughly speaking, t.he relation of class to 
kind is the same as that of value to type. That is, a type is a certain collection of 
·raiues all having similar shape. Likewise. a kind is a certain collection of classes all 
having similar shape. 



The semantic notion of a. value is fairly clear. Likewise, the notion of a. variable iu~ 
COL is essentially the familiar notion of a variable in programming languages. 

Types are built up inductively from a collection of simple types (double, real, int, 
etc.) together with a. construct essentially like the "struct" type in C. Any value 
must fall into one of these types. Likewise, any variable has an associated type con
straining the possible values for that variable. Th.e kinds are also built up induc
tively from structured types together with a construct that describes functions frotn 
kinds to structured types. 

The semantic intuition for objects is that they correspond to physically real objects 
obeying certain laws, or constraints. For example, an object might correspond to a 
specific fan in a system. And there might be more than one fan obeying the same 
constraints. By contrast, a. class corresponds to a. collectio.n of all similal'iy behaving 
objects. So we could have a. class named fan which embodies the physical 
specifications of all fans of a. particular sort. Then, we might have objects fan-a and 
fan-b both of the class fan. Thus fan-a and fan-b are distinct objects (so they may be 
in different states at a given time), yet they both obey the same laws. Somewhat 
more formally, in the :iimple case a class is a collection of laws. However, a class may 
depend on other classes in its definition. So, in general, a oln.ss is a function from ,.. 
tuples of cl8.S9es to a collection of laws. [N.B. n may be zero here. taking care of the 
simple case.j An object is a variable of :i structured type, constrained by the laws of 
some clMS. 

A connection is an equality constraint between (fields of) variables, together with an 
indication of the role ·that the con.strained variables play in a network. In particular. 
a connection tells us where the value for th.at variable is obtained, i.e .. from exo
genous sources, by feedback from solution of the network, a.s unknowns in the net
work that can be solved iteratively, or as unknowns that must be solved explicitly. 

6.2.2 Naming Things 
As usual. we have to provide some sort of collection of names for the entities of a 
category. For most purposes the collection of C identifiers will suffice. So we have 
our first (informal) grammar rule: 

<identifier> ::=- The usual C identifiers 

A variable is named by an identifier, as are objects and classes. 

[N.B. An object will go by the same name as the variable of which it is composed.] 
The names of types are built inductively following the inductive definition of type~. 

<type> 
<simple-type> 
<struct-type> 
<typed-id> 

::= <simple-type> I <struct-type> 
::- double I int 1 bool J ••• 

::s: (<typed-id>(. <typed-id>)*) 
::- <identifier> I <type>! 

If a <typed-id> is an <identifier> only, it is implicitly assumed t.o be of type dou
ble. 

Because <type> expressions can be rather verbose, we also allow abbreviations to be 
defined by the following construct. 

<type-def> ::"" type<zdentijier > = <type> ... 

,\i ' 

·.:\• 

z 
z 



on of a variable in 
languages. 

{double. real , int. 
1° C. .-\..oy value 

socia ted trpe con
o built up ind uc
es funct ions fror:n 

caJJy real objects 
; correspond to a 
,b~ying che same 
m1 larly behaving 
es. the physical 
•b1ects fa n -a and 
(so they may be 

aws. Somewhac 
ver, a class may 
unction from ·n.
king care of the 
I by the laws of 

•gether wi ch an 
In particular 

i.e .. from exo-' 
•ns in the ner
:i explicitly. 

entities of 1 

So we have 

)ffiposed. 1 
n of type;. 

r type dou-

1tions to be 

\n ,I wP :i. llow < struct-type> to use these abbreviations. Thus, we add a clause Lo 
: :i e i;r:imm:ir rule for <struct-type>: 

<struct-type> ::- <identifier> I <type-id> (,<type-id>)* 

:3 imilarly, kinds are defined inductively, allowing for defined abbreviations. 

< (·ind> 
<hnd-list> 
< ~· ind- def> 

::- <identifier> I <atruct-type> I [<hnd-list>>><struct-type>I 
::- <kind>(* <kind>)* 
::=- kind<identifier> - <kind> 

:: x names a variable of structured type that has a field named field, then we can 
':id icatc the value of that field by writing x.tleld. In general, names of values 
)C tained in this way are called descriptors. 

<descriptor> ::- <identifier> (.<identifier>)* 

C01rnections do not have to be named. However, if the constrained fields are to be 
· 1 ~ed :i.s a single unit elsewhere, then they must share a name. So a connection can 
.1p Lionally be named by a simple <identifier>. The effect of this is to associate a 
·; :iriable with the name <identifier> with the connection. 

~ . ::l.3 Declaring Objects 
:\n object is declared by specifying its name, and its associated class. Remember 
·. h a~ a class may depend on other classes, so specifying a class may involve parnrne
. ·~ :-s. Thus. 

<declaration> 
<class-instance> 
< p aram-list > 

::- declare <identifier>(, <identifier>)[ <param-list>j; 
::- (<identifier> J <class>)[ <param-list>I 
::..,. [<class-instance> (;<class-instance> )*I 

l' . ::l.4 Making Connections 
:-0 specify a connection, we give a keyword indicating the relation of the constrained 
::eids to the advancement of time, followed optionally by a name for the connection, 
:a ll owed by a list of fields of variables (typically, fields of objects) that are to be 
~qua.ted , and finally followed by a. specification of how the value of the connection 
snould be obtained from previous time steps (if this is appropriate). 

There are five sorts of connections: inputs, feedbacks, unknowns, clocks, and signals. 
inputs are essentially initial values. They do not change over time. Feedbacks are 
.,·alues that cannot be solved for; they are used to communicate values from one time 
step to t he next. Unknowns are values that are suitable for solving at a time step. 
Clocks are mechanisms for advancing the system time. Signals are values similar to 

·mknowns . but which are not allowed to enter into the iterative solution for unk
:iowns. Typically, signals will be of some discrete type. e.g., boolean, so that 
:'\ewton-Raphson would not make sense if it involved values of that type. In addi
•ion to these five sorts of connection, we allow for a "link" connection, which simply 
: nherits its sort from the fields it equates. The grammar for the connections is this. 

<connection> ::- <link> J <unknown> t <feedback> 

137 



<link> 
<unknown> 

<feedback> 

<clock> 

<input> 
<signal> 

<clock> t <input> I <signal> 
::- link <connection-id>( <descriptor-list>); 
::- unknown <connection-id>( <descriptor-list>) 

predict-init < e:rpr >predict- next < expr >; 
::- feedback <connection-Id>( <descriptor-list>) 

init <e:rpr >n,ext <e:rpr >; 
::- clock <connection-id>(< descriptor- li6t>) 

init <e:rpr >next <e:rpr >; 
::- input <connection-id>( <descriptor-list>); 
::- signal <connection-id>( <descriptor-list>); 

<descriptor-list> ::- <descriptor>(,< descriptor>)* 

<connection-id> ::- <identifier> I <typed-id> 

<expr> ::- A.ny C expression with variable names drawn 
from the names of connections. 

We assume that several clocks can be extant in a simulation. This rneans that the 
current time should be . available to t he system as a specially named variab le, say 
current-time. The value of a clock connectiQn will advance only when it is 
scheduled to tick. Thus, if t is a clock connection, t hen t he boolean exp ression 
current-time=- twill evaluate to true if and only if the clock t has just ticked . 

6.2.5 Defining classes 
A class is defi ned by giving a <struct-type > called the <interface> , and then speci
fying constraints on values of the interface type. Typically, the interface tias two 
parts: the object interface and the class interface (the class interface may be empty). 
T he object int erfe.ce s imply tells us t he type of objectS of the Jefi ned class. The cl:iss 
interface tell us t hat t he class itself has a variable associated with it. This is fo r the 
purpose of specifying information shared amo ngst all objects of a particular class. 
The class in terface is similar in spirit to the notion of class variable in Sma lltalk. 
except that class variab les in Small talk are typical ly hidden from all objects outside 
the class, whereas a class interface is necessarily visible to the rest of the system. 

The grammar for class definitions is the following. 

<class-def> ::= <ide11tifier >-<class> <identifier> ; 

<class> ::"" (<simple -def> I <macro-def> I <switch-def> 
<simple-def> ::- simple class<inter/ace> 

<inverse>*end 

<macro•def> ::- class! <param-spec>J <struct-type> 

<switch-de/> 

[class interface< struct-type >I 
<library>* 
<definition>* 
<declaration>• 
<connection>* 
<equation>* 

end 

::=- switch( <param-spec>I <struct-type> 
(class interface < struc t-typ e > j ls 

:-:~ 

.C ·. b 

:e?" 

: \ 

::::1 

tl.'.!. 
::-: .·. 
. ~\! 

•.::c 

' \.' O 

:3 •. 

\ 

Jr. 

' ;'.• 



t.> ); 

tor-li'st>) 
<ezpr..>; 

or-hst>) 

st>); 
st>); 

s drawn 

This means that 
named variable. 

nee only when it. 
e boolean exp • 
' has just ticked. 

ce> , and then 
he interface fias 
:face may be emp 
rned cJass. The 
;b it. This is for 
·f a particular d 
iriable in Small 
n all objects ou 
t of the system. 

dej..> 

<library>* 
<definition>* 
<cases>* 

end <identifier>; 

~l&d,, > ·· '!:II 1 <mterface-def> I <kind-def> 

-:.a.c :ic .:Me..;or.r <library> will be ex~la.ined below. The ~param-spec> part 
~~-~~::it:o u iodic:ites (op_ti?na..lly) the kinds of classes on which the macro class 
~ • .i < param·spcc> 1s given by 
~ ::-o. 

< ?.sre1m· ·pu > ::• (<identifier>: <kind>(; <identifier>: <kind>)*] 

~ essentially like the switch construct. in C. 

<cases> ::= ( <booi-expr >:<class-instance>;)* 
else: <class-instance>; 

..... . 1 .,.,; . ~ _..,r > is j usL an <':rpr > that returns a boo.lean value. The se.mantics 
~ a,.., :;:: , : hat :i. t <? ach time s tep t he boolean expressions are evaluated in order 
...,... :!.~ :.:!"!': er 1 ~ .:xpression is found . Then the switch class is constrained as if it. 
_. ~c:i :ieu by the ~ccompanying declared class. If all expressions are false. the 
·~ · : ::u:i ·_, u.sed instead . 

&.U £quacion ::d Constraints 
;;e ~o( :i :nacro class. we can specify that certain variables are constrained by an 
~a. 7!-ie •lfect of this is essentially to define an anonymous simple class and an 
_,:ioU3 -i bj •cc of t hat cl ass, the interface of which is connected to the variable 
~:l( ::i ll1c equation. 

<'o:.ialwn> ::= eqn <expression>-<expression>end eqn: 

r-.. '.~ '-'"~ <>i :nod1ilarity, a collection of definitions can be stored in a separate Ille 
.. '- :.....,<i :a 'l tber definitions. So, a library is simply a file containing 
· « °\•ur1on > ·. To refer to a library in another file, we have the construct 

<library> ::"" library <.filename>: 

..__,. .---·::,.,.,m-. > is the name of a file containing a library. 

LU S)"•tems 

~ ft"ll#m '.3 '\ special macro class, analogous to the main procedure in a C program. 
·• 114<l •rnly 0ne system must be specified in any simulation. When SPANK runs a 
--~. :t :11:1tantiate:i an object of the system class with initial values determined bv 
• -arT, -~ad tben runs the simulation. A system is specified by the following. . 

< s'!stem> ::= <library>• 
system <identifier>[ <interface>jis 

<library>• 
<definition>" 
<declaration>* 
<connection>* 

end <identifier>. 



6.3 Example 
The ideas formalized above a.re made concrete in the example shown in the Appen. 
dix. There we show a COL problem specification for the three-node room problem 
described in Sec. 5.1, Three Node Room. Comments in the code should allow the 
dedicated reader to see how the COL specifies the problem. \Ve will not describe the 
example line by line, but a few comments are lo order. 

First, note that the system definition (called "room" ) ls completely in terms of 
objects that have intuitive meanings, st.roogly coup.led to the physics of the problem. 
Numerical details are contained within the objects, out of view at this level. Yet the 
knowledgeable user can, for example, change to a different . integration method. 
presently Milne4, by changing the argument in the declaration of Lhe massive object, 
"fioor". Also note that we can link the room interface variables h, alpha, sigma. T. 
T.-air, and dt directly to interfaces of objects comprising the system wherever 
needed; this is exactly the same as when defining a clo.ss in terms of simple r.la.sses (or 
other classes), thus demonstrating the intended seamless transition from class 
definitions to problem definitions. 

Classes used in the system definition are defined in separate COL files referenced with 
the keyword lihl"ary. These files are included in the Appendix. For example. 
energy.cdl contains all classes pP.rtaining to the problem physics, while Milne4 has 
those for the Milne fourth order integration method. In energy.cdl we see how simple 
classes are defined as a single equation. This equation is placed directly in the COL 
fi le, in contra.st to the current SPANK implementation which requires an intermediate 
C function definition. In the same file we see the class " air' ' defined in terms of the 
simple class 'conductive..lieat", augmented with one equation. In the class " mas
sive" we see that classes can also employ other classes in their detinition. 

1. Graphical User Interface 
Currently user.i of El<S/US must express their problems textually using the .\!'etwork 
Specification Language. While this language h.as served well for the development and 
testing of the program, it leaves much to be desired as an intuitive :ind efficient user 
interface. Currently under development is a graphical user intl'rface called the Ker· 
ne! Graphical Editor (KGE) that will come closer to these goals. 

The basic idea of tbe KCE is that objects. macro objects, and problems are specified 
by the user by manipulation or screen !cons. Available object i: insses are selected 
from libraries. using a browser. and then appear :i.s icons on n. menu, from which the)' 
can be selected (lruitantiated) and placed anywhere on the screen. Once placed. they 
can be interconnected to form a macro object or a problem. The objects i:an also be 
moved, deleted, or modified in any way. Also, any object can be expanded to show 
internal structure when needed. When Lhe problem image is complete, the KGE will 
create a COL file for SPANK processing. The implementation employs the X:
Windows system in order to allow maximum poriab\iity. Figure l-1 shows a prelim4 

inary KGE screen. 



e shown in the Appen
:ee-tiode room problem 
code should allow th 

le will noc describe th; 

:>mpletely la terms of 
,hysics of the problem 
' ~t this level. Yet Lb~ 
t 1megration method, 
of the massive object, 
es h, alpha, sigma. T. 
the system wherever 

1.s o f simple r. lasses (or 
:ra osition from class 

~ fi les referenced with 
~ndlx. For example. 
1cs while Milne<! has 
:di .we see how simple 
I d irectly in the CDL 
uires an intermediate 
fined in terms of the 

fn the class "ma.s
linition. 

r using the .\"etwork 
he development and 
ve and efficient user 
face. called t.he Ker-

>blems are specified 
ciasses are selected 
u, from which thev 
Once placed. the~ 

objects can also b~ 
expanded to show 

>lete, the f\:GE will 
1 employs the X
>! shows a prelim-

8. Conclusions 
The cnrrent state of the U.S. Energy Kernel System has been reviewed, and its rela-
1 ionsbip to the Simulation Problem Analysis Kernel (SPANK) has been described. It 
,·urrently has the capability to simulate general differential-algebraic systems, with 
r-nodest flexibility in specification of numerical methods to be used. Also, objects, 
:nacro objects, and problems can be described in concise textual form and symboli
r·:i.ilv manipulated to create needed SPANK and C code for the simulation. Ten 
app.licn.tion problems that have been solved were briefly discussed. Finally, we 
described current work aimed at improving EKS/US capability·and user interaction 
mechanisms. The Component Definition Language is the result of reassessing the 
semn.ntics of dynamic model specification and, when implemented, will allow more 
r:omplex system models to be expressed, as well as affording greater flexibility in 
specifying numerical methods. The Kernel Graphical Editor, currently under 
.ie,·elopment using the X-Windows protocols, will allow users to define simulation 
problems on the computer screen using pointing devices, rather than expressing the 
problem in a textual language. 

EKS/US will be released for public use in IQg2/93 after we have completed the user 
Interface, implemented the Component Definition Language, and built up the object 
library. In parallel, we plan to integrate the EKS/US approach into the SYSTEMS 
:i.nd PLANT portions of the existing DOE-2 hourly energy analysis program [BffiD
SALL 1990). The resulting program, to be called DOE-3, will allow object-oriented 
cechniques to be used in the context of a whole-building program that many users are 
:i.lready familiar with. With DOE-3 users will be able to configure anci model 
:i.civanced HVAC components and systems that cannot be simulated with DOE-2. 
while retaining DOE-2's powerful LOADS program. 

9. References 

.-\ho 1083 

.-\.nderson 1086 

Birdsall 1990 

Bonin ln87 

Buhl L\J8\J 

Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ullman . 
Data Structures a.nd Algorithms, Addison-Wesley. 

Anderson, J.L., A Network Definition and Solution of Simula
tion Problems, Lawrence Berkeley Laboratory report LBL-
21522. 

B. Birdsall, W.F. Buhl, K.L. Ellington, A.E. Erdem and F.C. 
Winkelmann, Overview of the DOE-2 Building Energy 
Analysis Program, Version 2.lD, Lawrence Berkeley Labora
tory report LBL-19735. 

Bonin. J.L., J.Y. Grandpiex, A. El Hasnaoui and J.L. Joly, 
Coupling Analysis in Building Thermal Simulation: The 
ZOOM Program, Proc. Int'! Solar Energy Society Conference. 
Hamburg. 

Buhl, W.F., E.F. Sowell and J.-M. Nataf, Object-Oriented 
Programming, Equation-Based Submodels, and System Reduc
tion in SPANK, Proc. Building Simulation 'SQ, Vancouver, 
B.C.; Lawrence Berkeley Laboratory report LBL-'.!8272. 

141 

•' 

j I 

. 
' ' ·' 

'.It .. , 



Clarke 1986 

Clarke 198i 

Elmqvist 1Qi8 

Even 1Q79 

Hirsch 1985 

HVACSIM+ 1985 

Inard 1988 

Johnson 1988 

Karp 1972 

LBL 1985 

Levy 1986 

Levy 1988 

MACSYMA 1083 

Clarke. J.A .. The Energy Kernel System : A. Technical Ot•e r. 
view, Proc. Second International Conference on System Simu. 
lation in Buildings, Liege. 

Clarke, .I.A., The Energy Kernel Sy:;/em: A.n Overview in 
Support of Three Grant Proposals. Energy Simulation 
Research Unit, University of Strathclyde, U.K. 

Elmqvist, H., A Structured Model Language for Large Continu. 
ous Systems, Ph.D. Thesis. 
Report CODEN: LUTFD2/(TFRT-l015) , Dept. of Automatic 
Control, Lund Institute of Technology, Sweden. 

Even, S., Graph Algorithms, Computer Science Press. 
Inc., Potomac, Maryland. 

A Plan for the Development of the ,Vext Genera.lion Building 
Energy Analysis Computer Software, Proc. Building Simula
tion '89, Vancouver, B.C.; Lawrence Berkeley Laboratory 
report LBL-19830. 

HVACSM' Bu1"1ding Systems and Equipment Simulation Pro
gram (Reference Manual and Users Guide), U.S. Department 
of Commerce, National Institute of Science and Technology, 
Gaithersburg, :VID. 

Inard, C. and N. Molle, Etude du Coup/age Therm1que Entre 
Dea Corps de Chauffe et un Local CETIAT, BP 6084. F-OQ104. 
Villeurbanne, France, 1988. 

Johnson, D., Matching Algorithms for Equation Selection . 
Lawrence Berkeley Laboratory report LBL-23276 . 

Karp, R.M., Reducibility Among Cumbl11ator1al P ro o/ems . in 
R.E. Miller and J.W. Tatcher's Complexity of Computer 
Computations, Plenum Press, New York. pp 85-103. l 9i2. 

A Proposal to Develop a Kernel System for the Next Genera· 
tion of Building Energy Simulation Software, Simulation 
Research Group, Lawrence Berkeley Laboratory. Internal 
Report. 

Levy, H .• A Comparison of Low Complexity A.lgorithms for 
Finding Smail Cycle Cut sets. Proc. 24th Annual . .\llerton 
Conference on Communications. Control, and Computation. 
Allerton House, Monticello. IL. pp.-19-.)8. 

Levy, H. and D.W. Low, ;l Contraction :llqorithm for Findinl) 
Small Cycle Cut sets, J. Algorithms. IJ, pp.-170-493. 

MACSYMA Referrnce Manual. Version 10, :vfathlab 
Group, Laboratory for Computer Science. Massachusetts fnsti
tute of Technology, Cambridge. :\L-\. 



Teclmlcai Ot•er
on System ~imu-

Overview in 
~rgy Simulation 

,,. Large Continu-

pt. of Automatic 
n. 

~n.ce Press. 

ierati"on Building 
3uilding Simula
eley Laboratory 

Simulation Pro
J.S. Department 
LOd Technology, 

'hermique Entre 
, 6084, F-69104. 

ection. 
'6. 

al Problems. in 
of Computer 

5-103. 19i2. 

e Next Genera
re, Simulation 
ltory, Internal 

Algorithms for 

nnuaJ Aller(on 
Computation. 

~m for Finding 
J3. 

Jab 
Lchusetts fnst·i-

\\.\PLE l!Jll.'i 

.\fo~hier l!JOO 

:'-l:itaf 1090 

Rand l!l84 

REDUCE 1987 

.Sahlin l!l88 

Sowell 1973 

Sowell 1984 

Sowell 1986 

Sowell in88 

.Sowell 1 \l89 

Char. B.W. et.al., ,\,fAPlE User '.t Guide: 1st Leaves. A. 

Tutorial Introduction to 1'4A.PlE and the MAPlE Reference 
Manual. -Hb Edition. Series Title: WATCON Series in 
Computer Science and Computer Applications, 
WATCOM Publications. Ltd., Waterloo, Ontario, Canada, 
1085. 

Mattsson, S.V., Concepts Supporting Reuse of .'vlodels. 
Proc. Building Simulation '89, Vancouver, B.C. 

Moshier, M.A., Specifying Dynamic Models in the Sim·ulation 
Problt!m Analysia Kernel. Proc. Modeling and Simulation on 
Microcomputers, Society for Computer Simulation, San Diego: 
Lawrence Berkeley Laboratory report LBL-28275. October 
198Q. 

Nataf, J.-M. and F.C. Winkelmann, Dynamic Simulation of 
Liquid Desiccant Cooling System Using the Simulation Prob
lem Analysis Kernel, Lawrence Berkeley Laboratory report -
in preparation. 

Rand, R.H., Computer Algebra in Applied Ma.thematics: An 
Introduction to MACSYMA. Pitman Advanced Publishing 
Program, Boston. 

REDUCE-9 User's Manual, Version 3.9, Rand Corporation. 
Pub. CP78(7 /87). 

Sahlin, P ., MODSIM: a Program for Dynamical Modeling and 
Simulation of Continuous Systems. Report from che Swedish 
Institute of Applied Mathematics, P .0. Box 26300. S-100 l I 
Stockholm, Sweden. 

Sowell, E.F . and P.F. O'Brian, The Trrmsport of Llqhtin9 
Energy,, ASHRAE Trans. pt.2. 

Sowell ; E.F., et al., Generation of Building Encrqy System 
Afodels, ASHRAE Trans. vol. 90. 

Sowell, C:.F., W.F . Buhl, A.E. Erdem. and 
F .C. Winkelmann. .1. Prototype Object-Based System fur 
HV1lC Simulation, Proc. Second International Conference 011 

System Simulation in Buildings, Liege: Leiwrence Berkeley 
Laboratory report LBL-22106. 

Sowell, E.F. and W.F. Buhl, Dynamic E:z;tension uf the 
Simulation Problem Analysis Kernel (SPANK). Proc. User- I 
Conference. Ostend, Belgium; Lawrence Berkeley Laboratory 
report LBL-26262. 

Sowell, E.F. and P. Sahlin, Neutral Format and A utom11t1r 
Translation for Building Simulation Submode.ls, Proc. ot' Build
ing Simulation '80, Vancouver, B.C.; Lawrence 8erkeley 

143 



Sowell 1900 

Spitler 1901 

TRNSYS 1Q83 

Laboratory report LBL-:!827-1. 

Sowell, E.F., J.-M. Nata.I' and F.C. Winkelmann. Radiant 
Trana/er Due to [.,ighting: An E::ample of Symbolic _\;fodel G.:n. 
eration for SPANK, October 1080, rev. January 1900. 
Proc. Society for Computer Simulation 1090 Western '.\'1ul
ticonCerence. San Diego; Lawrence Berkeley Laboratory report 
LBL-28273. 

Spitler, J., C. Pedersen, D. Fisher, P . Menne and J. Cantillo, 
An Ezperimental Facility /or Investigation of Interior Convec
tive Heat Trana/er, ASHR.AE Transactions. Vol.07, Pt.l, 1991. 
and 
Spitler, J., C. Peder.Jen and D. Fisher, Inten'or Convective 
Heat Transfer in Buildinga with Larf)e Ventilative Flow Rates. 
ASHRAE Transactions, Vol.97, Pt.1, 1991. 

A Transi1mt Simulation Program, Solar Energy Laboratory, 
University of Wisconsin. 

This work was supported by the Assistant Secretary for Conservation and Renewaule 
Energy, Office of Building Technologies, Building Systems and Materials Division ol' 
~he U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. 

"' .. 



:elmann, Radiant 
f Symbolic .Hodel Ge11• 

rev. January i 9oo. 
I moo Western Mul
!ley Laboratory repon; 

fenne and J. Cantillo. 
in of lnterior Cont1ec-
1s, Vol.07. Pt.l, 1991. 

Interior Convective 
~nlilative Flow Ratu. 
L. 

nergy Laboratory, 

·~ 

acion and RenewaLle 1· 
\taterials Division o( I 
6SF00098. 

. 

c\.ppendix: Example of Problem Specification in CDL 10 .. 

• File: room.cdl • / 

• -\. ~vstem modeling energy balance in a. room with 
· l i) ma.ssive floor, 

l'.!) massless ceiling, .. 
(3) height/floor-area neghg1ble. 

"',:escribed in Sec. 5.1 and in [Sowell 1088j. 

\\'~ 3.S.'lume that the floor, air and ceiling are held at a constant tempernture TO prior 
._ 0 the simulation; and a.t time tO the air temperature is instantaneously changed to 
·:-.-:lir. :i.nd is held constant thereafter. The model then simulates the ensuing loads. 

l . ''."'.ie ce iling is modeled hy the energy balance equation for a massless ohject: 
.J == si gma*(T..rad**4 - T 0 4) + h"(L.air - T); 

~: ·:-lie '.'. ir is modeled by the air energy balance eguation 

co= h*(T....surfacel - T) + h*(T....surface2 - T); 

:.; 1 The ,·e iling is modeled by the energy balance differential equation for ~ 
:::~i·;r object: 

'.1iph a •T' = (sigma"(T..rad**4 - T 0 4) + b.*(T...air - T) 

·.\· i:J ere T = integral of T' dt; 

,. it ~1 

·1 = convective film coefficient 
\i:Ji1~ =floor thermal capacitance 
' i>! m::i =-Stefan-Boltzmann constant 

!:i ·~ii~ lile, the integration in (3) is done by a 4th order Milne method. Comments 
:i·ik'.1tc exactly where changes must be made to change to another intr.i;ratio11 
;i ~(~hJd . 

i nr:cr:: 'i tdio.cdl 
.inrnry .,nergy. cdl 
.in rary .\·lilne<l .cdl 

/ * a library t hat implemenr.s the stando.r<i i/ o • / 
/* read in the energy balance objects '/ 
/* read in tb.e 4th order Milne method. Change this to 

"library RungeK2.cdl" for 2nd order Run~e-Kutta * / 

145 



146 
system room(h, alpha, sigma, T. T....air. TO, tO, dt) 
declare ceiling massless; 
declare air air; 
declare ftoor massive(Milne4j; /* Replace "Milne4" with "RungeK:!" 

for 2nd order Runge-Kutta • / 
declare report.Jon.d reporter; /* reporter is an output class define<l in stdio.cdl 

that records its interface at each time step • / 

input h(room.h, lloor.h, air.h, ceiling.h); ;- convective film cneUicient • / 
input alpha(room.a.lpho., 8oor.alpha); /* Boor thermal capacitance • / 
input sig(room.sigma, floor.sigma., ceiling.sigma.);/* Stefan-Boltzmann constant •t 
input TO(room.TO, floor.TO); /* As everything else is massless, the ftoor is · 

the only object t hat "remembe1'S" the 
temperature prior to simulation time * / 

input T....air(room.T....air, fioor.T....air, a.ir.T, ceiling.T....air); /*air node temperature•; 
input dt(room.dt, B.oor.dt); /* time step (in liours) * / 

link qo...air(air.q, reporUoad.x); /* load •; 
link T-fioor(floor.T, air.T....surfacel, ceiling.T_rad); /* Boor temperature * / 
link T...ceillng(ftoor.T_rad, air.T..surface2, ceiling.T); /*ceiling temperature•; 
link t(floor.time, report.Joa.d.time); /• communicate the time from 

the floor to the reporter * / 

end room. 

/*-----·-------- -----*/ 
/* File: energy.cdl * / 
/* 
This file contaiI15 definitions for various heat balance equations . .-\.s of now. we h:l\·e 
three kinds implemented: massless, air and massive. The definitions should make 
the underlying models evident. 

CONVENTION: Loads transfers will always be measured as positive \'alues indic:i.t· 
ing incoming heat. 

*/ 
radiant-heat - simple class (T, T_rad, q, sigma) /* radiant heat transfer •; 

q - sigma*(T_rad**4 - T**4) 
end radianLheat; 

conductive-heat - simple class(T. T_cont, h. q) is /* conductive heat transfer•/ 
q .. h*(T-cont-T) 

end conductive-heat; 



I "Runge!(~" 

:I~ detineu in stdio.cd! 
t time :.tep •I 

lrn coeOlcient •; 
capacitance •; • 

n-Boltzmann constant •; 
iss/ess, the floor is 
nbers" the 
ition time * / 
't' air node temperature ; 
I 

r temperature "I 
i.flng temperature "/ 

;1 me from 
•orter •; 

ns . .-\.s of now. we ha\·p 
definitions should niak~ 

positive ''a/ues indic:ic-

eat transfer ~ / 

uctive heat transfer •' 

_1 (T. T.....surfacel, T...surface2, h, q) 
ur • "'.!l.St 

• . obi· ect obeys the heat balance: \r. :i1 r 

-l _ h'(Tl-T) + h*(T2-T) 

·~~ 'I i!l the load, 
'"-· 'r ::i die temp of the air object, 

Tl :J.nd T2 are temps of surfaces. 

it"Ci:i.rc ~lcond, s2cond conductive...heat; 

:::it.: T(:iir.T. slcond.T, s2cond.T); 
:i!lil: L.surfacel(air.T-Surfacel, slcond.T_cont); 
.i:i,; :'_,urf:ice2(air.T.....surface2, slcond.T_cont); 
:in'.,; :1(air.h. sleood.h, s2cond.h); 

"<In 
:1i r .'1 = ~l.q + s2.q 

rnd ~qn: 
•nd :iir: 

:n=iess =- class(T, T_rad, T-air, h, sigma) 

• :\ :na.ss/ess object obeys the heat balance: 

o- sigma*(T_rad.,..4 - T**4) + h*(T-air - T) 

·•·here T is temp of the object, 
T....air is temp of air, 
T-rad is temp of nearby radiator 

· lcclare r radiant...heat; /* q -sigma•(T_rad**4-T**4) */ 
·!edare c conductive...heat; /* q ... h*(T-cont-T) * / 

link h(massless.h, cv.h)i 
link sigma(massless.sigma, rd.sigma); 
link T(massless.T, cv.T, rd.T); 
link T2(massless.T_rad, rd.T); 
iink T3(massless.T-air, cv.T_cont); 

eqn 

0 = r.q + c.q 
end eqn; 

P.nd massless; 

147 

ii 

y 
I 



148 
mlldSive ,. clnMjlntlODE(y, y ', ql(Y, y '. t, cit, yO, tO)l{T, T _r:i.d, T _.1ir. t . dt, TO. tO, h. si~ma. ~ 

/* A massive object obeys the heat balance equation: 

alpha*T' - sigma"'(T...rad,...4 - T .. 4) + h*(T.--iir-T) 

where T is temp or the object, 
T..-air is temp of the surrounding air 
T....rad is temp of nearby radiator 

Because this is a dynamic object (involving T'), it is only well defined when given a 
method or integration Int. The class Int has the interface (y, y' I t . dt. yO, tO) and 
depends on a class ODE with interface (y, y', t). Specifically, this definition assumes 
that the integrator doesn't require any start-up values beyond the initial conditioll!: 
(y0, to). 

*/ 
MMS-Ode - class(y, y', t) class interface (T-rad, T..-air, h, sigma. alpha) 

declarer radiant-heat; /* q - sigma•(T-rad*'"4 - T"'*4) */ 
declare c conductive_heat; /* q - h*(T_cont.-T) * / 

li nk sigma(Mass....ode.sigma, r.sigma); 
link h(MB.93-0de.h, c.h); 
link y(Ma.ss...ode.y, rd.T, c.T); r T is renamed y for the 00.E ~I 
link T-rad(Mass...ode.T-rad, r.T-rad); 
link T._a!r{MB.93-0de. T...air, c. T_cont); 

eqn 
/* T' is named y' ror the ODE • I 

Ma.ss....ode.alpha * M88S-Ode.y' ""r.q + c.q 
end eqn; 

end Mass_ode; 

declare mass Int[Mass....ode]; /* the mass object integrates y by the 
method implemented in the class Int ~ / 

link T(massive.T, mass.y); /* the integrated variable y is really T •; 
link T_air(ma.ssive.T...air, Mass...ode.T-air); 
link T-rad(massive.T...rad, Mass....ode.T-rad); 
link t(ma.ssive.t, mass.t); 
link dt(massive.dt. ma.ss.dt); 
link tO(ma.ssive.tO, mass.tO); 
link TO(massive.TO. mass.yO); 
link sigma(massive.sigma, Mass.....ode.sigma); 
link alpha(massive.alpha, Ma.ss....odc.alpha); 
link h(massive.h, M8.SS-Ode.h); 
link T'(ma.ssive. T', mass.y'); 

end massive: 



I defined when . 
. ' d &l 
' ~ ' t. t, yO, tO) 
this definition 
· the initial eondl 

a. alpha) 
I 

JE •I 

he 

nt */ 

. T ~/ 

• -------------------------------------'"I - '/ -• r:i.: \lilnc4.crll 

• 
- •

1 
un •1mplement a 4th Order Milne integration method. 

• 1.:llll J e " ,_ 
.;.a • ·

1 
·inJ OeBoor p385 for an explanation of the method. 

S.. l~D ~ -

•• 
..,.,_ ._ti~q...oype - (y. y', t); 
~ :::wifL.t!q_type .. (y, t, yO, ta, dt); 

~ - ci:IS!IODE:diJLeq_typej(int-dilL..eq_type) 

!«•~ ~. eq_next of class ODE; /* eq is used in the corrector part, 
eq...next in the predictor part * / 

149 

~!..,...? ,jmple class(y..Jcpl, y_km3, f_k, Lkml, f-km2, dt) /*4th order Milne predictor•; 
,_:.:;i l - ,._i.,:m3 + 4•dt .. (2*f..Jc - f..Jcml + 2'"f...mk2)/3; 

~ ~: 

i-1..,...: ,jmple cla.ss(y..Jcpl, y..Jcml, f..Jcpl, f..Jc, f-kml, dt) /*4th order Milne corrector*/ 
r_A:;>l - ::-kml + dt*(f..Jcpl + 4*f_k + f-kml)/3; 
~4 c; 

Wti:a.r- :im~tcp ~um: 

:ai:ll&Jwn ::1\liine·Ly, c.y..Jcpl, eq.y) init yO predict y...next; /*y is solved for by corrector•; 
.:&r.'-'wn y"(c.U..:pl. p.f..Jc. eq.y') init 0 predict y'...next; /* y' is solved for by corrector*/ 
'""""' :·\liinc·U. eq.t) init tO next t_next; 

.. :a ::t\l ilnc·Ut. c.dt, p.dt); /"use constant time step of dt */ 
.::i: .~~ \t :lnc4 .ytl); /* initial value of y * / 
;Q& ·.tll\tiinc·l.IO) ; /*simulation start time*/ 

·-i~"'ic :;..J.:ml() init yD next y; /*cascade historical values of y */ 
·_,b"c.; :,.~..:m:.l(c.y..Jcml) init yO next y_kml: 
!--lbOM:.; :.- ~o;m3(p.y..Jcm3) init yD next y_km2; 

~~b~~ .- ·..kml(d..Jc, p.f_kml) init 0 r.ext y'; /*cascade historical values of y' */ 
~-.ibacic y·.J..:m::!(c.f..Jcml. p.f...Jcm2) init 0 next y'-kml; 

-.ia~oc•n y...next(p.y...Jcpl, eq-llext.y); /*predicted next value of y •; 
a1ocwn L.next(eq...next.t); /*next time * / 
Uknown ~"-IJext( cq...next.y'); /* predicted next value of y' 

.... 
~·-..:x~ • 1. + dt 

~"'ln: 
~ ~·filn~ -1 : 

(calculated from y...next and t_next •; 



Sowell/2 

DISCUSSION 

HANBY V. I. (UK) 

1. We have found that equating number of system variables 
to equations is not sufficient for a well-posed problem 
with non-expert users. Information derived from system 
graphs can be used to improve this. 

2. The "atomic" (equation) view of objects ma1ces this type 
of approach powerful in that it can be applied to a 
large number of non building situations. At LUT we have 
exported this kind of approach to two other disciplines. 
Have the authors had any opportunity to do this ? 

ANSWER : 

1. A matching implies more than equal numbers of equations 
and variables. Also, there are additional requirements 
for well-posedness, see the paper by SANLIN and SOWELL 
i n the proceedings, Building Simulation '89. However, we 
agree that non-experts have difficulties i n specifying 
well-posed problems. 

2. SPANK applications so far have been concentrated on HVAC 
problems. We are aware of the wider applicability of the 
methods and intend to pursue this. 

LORENZ F. (Belgium) 

I would like to have more information about how you intend 
to deal with switches, which are a difficult problem with a 
bunch of implications. 

ANSWER : 

Our proposal is that switched portions o f the system must be 
encapsulated i n a class-l ike ent i ty. The proposed semantics 
are presented in the paper. Implementat i on i ssues, such as 
whether to preprocess the alternate graphs (matching and 
reduction) or to perform these operati ons on an as-needed 
basis, have yet to be resolved. The former approach poses 
time and space complexity problems i f there are many 
switches i n the problem, if the latter approach is used, it 
will probably be advantageous to also do "cacheing". 


