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REGRESSION ANALYSIS OF RESIDE~TIAL 
~IR-CONDITIONING ENERGY CONSUMPTION 
~T DHAHRAN, SAUDI ARABIA 

S.M. Zubair 

~tThe energy consumption of a house air conditioner located 
at Dhahran, Saudi Arabia, is modeled as a function of weather 
parameters and total (global) solar radiation on a horizontal 
surface. The selection of effective parameters that significantly 
Influence energy consumption is carried out using general 
stepping regression methods. The problem of collinearity 
between the regressors is a/so investigated. The final model 
involves parameters of total solar radiation on a horizontal sur­
face, wind speed, and temperature difference between the 
Indoor and outdoor condition. However, the model coefficients 
are functions of relative humidity and/or temperature differ­
ence between the indoor and outdoor condition. Model ade­
quacy is examined by the residual analysis technique. Model 
validation is carried out by the data•splitting technique. The 
sensitivity of the model indicates that relative humidity and 
temperature difference strongly influence the cooling energy 
consumption. It was found that an increase in relative humidity 
from 20% to 100% can cause a 100% increase in cooling 
energy consumption during the high cooling season. 

INTRODUCTION 
Present building technology in Saudi Arabia has evolved 

through the rapid economic development of the past two 
decades. During the course of this development, building 
practices of other countries were brought to the Arabian Gulf 
countries with little consideration for local design require­
ments and energy conservation. As a result, a typical new 
residence here consists of a well-built structure with heavy 
masonry construction materials and little or no insulation. 
Most residential buildings are generally equipped with over­
sized air-conditioning system(s). Some studies (Debs 1983; 
KFUPM 1984) have indicated that about 70% of the total 
residential electrical energy consumption In the Arabian Gulf 
region is used for space cooling of buildings. Any attempt to 
reduce this energy consumption should be preceded by a 
rigorous analysis of major factors affecting the thermal load of 
a 'building. These factors are: (i) the weather parameters in 
the location, (ii) the thermal characteristics of the building 
envelope, (Hi) the tightness of the building envelope, (Iv) the 
required indoor temperature and relative humidity, (v) the 
Internal thermal loads, (vi) the schedules of air-conditioning 
and ventilation systems, and (vii) the electrical energy cost. 

With the exception of the weather parameters and electri­
cal energy cost, all these factors vary from one building to 
another. However, all of these factors are considered in 
detailed, hour-by-hour computer codes such as DOE-2 (LBL 
1981). The use of this program is limited to those who have 
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the financial support and access to computers, whereas the 
degree-day method is simple to use but does not provide the 
required accuracy. The degree-day method of energy analy· 
sis is an attractive approach to residential energy estimation 
when time and resources do not permit the use of computer­
ized energy estimation procedures. This simplified method, 
which was first introduced in 1920, has been used for heating 
energy analysis but it has not been an accepted procedure 
for cooling energy estimation. This is because latent loads 
due to infiltration and occupants. and internal loads due to 
occupancy, lighting, equipment, and solar heat gain, are not 
only dependent on outdoor temperature. These loads, there­
fore, may not be accounted for in the degree-day method by 
computing the degree-days from the difference between 
some base temperature (i.e., zero load temperature) and the 
mean daily outdoor temperature. Recently, the degree-day 
method with a variable base temperature was used by Fels 
(1986) in a statistical model for calculating changes in energy 
consumption of a house. 

The objective of this work is to investigate the effect of 
weather parameters and global (i.e., total horizontal) solar 
radiation on electric energy consumption of an air conditioner 
in a residential building at Dhahran, Saudi Arabia. The paper 
outlines the approach used and describes the results 
obtained by the use of multiple linear regression analysis 
techniques. The developed model is validated by comparison 
with the daily metered energy consumption for a 1076 ft2 

(96.5 m2) residence located at Dhahran, Saudi Arabia, which 
has nearly year-round cooling requirements. Secondly, this 
study attempts to help fill a void in the literature on the energy 
consumption of residential building air conditioning as a 
function of the weather parameters and global solar radiation 
in a hot, humid cl imate. 

LOCATION AND CLIMATE 
The region where Saudi Arabia borders the Arabian Gulf 

lies only a few degrees outside the tropics and extends from 
24.8°N, 48.3°E to 28.7°N, 50.9°E (i.e., between 1.3° and 5° 
north of the Tropic of Cancer). Dhahran (26.32°N, 50.13°E) is 
located a few kilometers inland from the Gulf on the eastern 
coastal plain of Saudi Arabia. Although Dhahran is near the 
coast, it is located in a desert environment. Dhahran's cli­
mate, although extremely arid (approximately 80 mm total 
annual precipitation), is significantly influenced by the Gulf 
waters. However, the overall shallowness of the Gulf (average 
depth, 30 m), combined with the occurrence of the deepest 
waters near the Iranian coast against the Zagros mountain 
chain , results In the thermal control of regional weather by 
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TABLE 1 
Climatic Temperature Data for Dhahran, Saudi Arabia, .1950 to 1976 Norms 

Parameter Jan Feb Mar 

Absolute Maximum . 30 36 38 

Average Daily Maximum 21 22 26 

Mean 16 17 21 

Average Daily Minimum 12 13 15 

Absolute Minimum -1 3 5 

the Gulf being much reduced relative to deeper water bodies 
of similar size, such as the Red Sea on the west·-coast of 
Saudi Arabia. 

The climate of the Dhahran area is discussed in more detail 
in Williams (1979). The parameter of most general interest in 
Saudi Arabia is temperature. The temperature climate of 
Dhahran is summarized in Table 1, which lists means and 
extremes for the period 1950 to 1976 (Williams 1979). The 
absolute maximum temperature recorded at Dhahran was 
51°C and the absolute minimum was-1°C. Average daily max­
ima range between 21° and 42°C and exceed 40°C for four 
months of the year. Average daily minima vary between 12°C 
in December and January and 29°C in July and August and 
reach below 20°C only during the months of November 
to March. 

Despite the desert location of Dhahran, the nearness of the 
shallow Arabian Gulf induces high relative humidity. At 
Dhahran, relative humidity exhlbits·a large diurnal cycle (on 
the order of 60% throughout the year) , with daily maxima 
often rising over the 80% level during most months. Wind 
speeds show a clear diurnal variability within the typical 
range, from near zero to 10 m/s. The synoptic wind direction 
exhibits long periods of more or less constant direction 
between north and northwest. An additional feature with 
some longevity is the tendency for the wind to swing to the 
east, in particular the quadrant between east and south. 

DATA PREPARATION AND COLLECTION 
In an energy conservation program sponsored by a Saudi 

university, personnel instrumented a few houses on the 
university campus at Dhahran with watt-hour meters for 
monitoring the air conditioner electrical power consumption 
on a weekly basis. The data considered in this study are daily 
air conditioner electrical power consumption for a single­
story residence (composed of two bedrooms, a living room, 
and a kitchen). During the monitored period, It was occupied 
by a family of two adults and a child. The layout of the house 
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is shown in Figure 1. As can be seen from this illustration, the 
house is attached to a similar house on the southeast side. 
Also, the house is surrounded by a green fence with a height 
of about 1.5 m and at a distance of about 5 m from the external 
walls. A large umbrella-type tree is located in front of the 
house, providing a shadow over part of It during the day. Air 
conditioner energy consumption and indoor temperature 
data were collected on a daily basis. The other meteorology 
and solar radiation data were monitored at the institute's 
meteorology and solar radiation station on a minute-by­
minute basis, although only daily averages are considered in 
this study. The variation of energy consumption per square 
meter with time (Julian day) is shown in Figure 2. As can be 1 

seen from this illustration, the gaps are due to vacation / 
periods when the house is not occupied. As expected, the air · 
conditioner energy consumption is highest during the sum, 
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May Jun Jul Aug Sep Oct Nov Dec 

48 49 49 51 48 43 '31 32 

37 42 42 42 40 35 29 23 

31 34 36 36 33 29 23 18 

25 28 29 29 Zl 23 18 13 

18 22 23 24 21 16 8 3 

\NORTH ENTRANCE 

Figure 1 House layout. Right-hand side of the house is the 
one considered in this study. 

I. I 

t . D 
\ 

0.1 " . 
t 

I 

' 
0.1 . ........ 

~ 
. \!<.. • 

~ 0. 7 ,..ta\ I 
. 

111 •• 

i 0.1 • , 
i: •• • 'r .. 

i .. . " . . 
0. 1 .... ,f . { .. 

8 . .. .. '· .. . .. 
fl o.c '{ .. ' 
~ 

. ~ .. . . ,,. . 
O.J .:, • • :Jiit -I} • •• 

; ••• w. ... ~ <J'i' i· 
~ I.I ~·' •~ • I' 
,i! , .. l. • .. Yf· 

I. I ·" 
o.o Oc:t . U feb,04 llay 15 Aug.l.l 

200 lDD 410 510 IOI 
Julian Daya 

Figure 2 Plot of normalized air conditioner energy con 
tion vs. time'( Julian day) . · " J• :~ 

.·. r."i . I 

··ori, I 
mer period (March through October), whereas thEf'~ 
consumption during the winter season (Novembei;_l 
February) is minimal. This low energy use during the 
season is due to the fact that in Dhahran the averag! 
temperature rarely reaches below 10°C. 



To correlate residential air conditioner electrical power con­
mption with the weather parameters and global solar radia~ 

on, the dependent variable in the model is defined as the 
(tally air conditioner energy consumption (EC), and the 

dependent variables are the daily means of certain 
eteorological and radiation parameters. Hence, the pre-

electlon predictive model can be represented by the func­
ona· relationship: 

I . ECp "."' F(TA;I'IN,WS,RH,THR) (1) 

where EC is the measured energy consumption (kWh/day), g; is the predicted energy consumption (kWh/day), TA is 
·9 mean air temperature (°C), WS is the mean wind speed 
mi$), RH is the mean relative humidity(%), TIN is the mean 

1r1'door temperature (°C), and THR is the mean global radia­
tion 0/11 ·h/m2 ·day). 

However, it is known that the temperature difference 
between indoor and outdoor conditions is a driving force in 
tieat transfer across the wall; hence, for the present applica­
tion, it has been assumed that the independent variables TA 
and TIN can be replaced by their difference P1 (P1 = 
.)A - TIN). The other independent regressor variables may 
all be influential. In certain applications, theoretical consider­
ations and/or prior experience can be useful in limiting the 
regressors for consideration in the model. However, for the 
problem under consideration, it is more appropriate, in the 
first instance, to use statistical techniques to perform this 
function. A number of approaches were employed to make 
the final variable selection. A statistical analysis package 
(SAS 1985) has been utilized for these tasks and for all other 
statistical analysis discussed in this paper. 

It is important to note that the least-squares fitting tech­
niques are heavily dependent on the coefficient of multiple 
determination, R2 , which is not a very good indicator of the 
model suitability. A systematic and powerful technique is 
described here as a practical guide for any type of energy use 
data. This technique is used to develop the air conditioner 
energy consumption correlation, which describes both heat­
ing and cooling periods, with the weather parameters and 
total solar radiation on a horizontal surface at Dhahran, Saudi 
Arabia. The procedure is detailed in Appendix A. 

ENERGY CONSUMPTION MODEL 
As indicated by the procedure described in Appendix A, 

the best correlation of air conditioner electrical energy con­
sumption data, for both heating and cooling periods, with the 
weather parameters and global solar radiation is given by: 

ECp = 

18.243 - 3.803E - 3 ·THR + 0.4268 • WS + 8.715E --S-•THR ·RH 

+ 3.856E- 2·Pl·RH+ 0.1208·Pl·WS + 0.3452·P1 2 (2) 

The above air conditioner energy consumption model can 
be written as 

ECp =A + B·THR + C· WS + D·Pl (3) 

where 
A = 18.243 
B = -3.803E-3 + 8.715E - 5·RH 
c = 0.4268 + 0.1208·P1 
D = 3.856E - 2·RH + 0.3452·P1 

In the above model, A is defined as the base load of the 
house, which is related to the indoor temperature settings as 
well as heat generated by appliances and occupants; B · THR 
is the contribution due to solar gain; C· WS is the infiltration 
load; and D ·Pl is the sensible and latent load of the house. It 
should be emphasized that the model coefficients B, C, and D 
in Equation 3 are functions of relative humidity and/or temper­
ature difference. 
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Figure 3 Normal probability plot for residuals. Key: 11 +" 
-represents the normal cumulative distribu­
tion, while 11 

·" represents the residual 
cumulative distribution. 
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Figure 4 Plot of residuals (EC - ECP) vs. predicted air­
conditioning energy consumption for the ori­
ginal data set 

MODEL ADEQUACY 
Evaluating model adequacy, which includes internal analy­

sis to investigate the fit of the regression model to the availa­
ble data, is an important part of any multiple-regression 
problem. Several methods can be used for this purpose 
(Montgomery and Peck 1982). Residual analysis was 
adopted for this study. The functional form of the multiple­
regression model presented in Table A3 and discussed above 
is used to predict the power consumption over the domain of 
input data with the residuals (i.e., the differences between 
observed and predicted values of air conditioner energy con­
sumption) being compared. 

A normal probability analysis of the residuals was used to 
check the normality assumption (Figure 3); small departures 
from normality are statistically acceptable and do not cast the 
model into doubt. As can be seen from the figure, the points 
lie along a straight line (idealized type) and no obvious model 
inadequacies or defects•are seen. 

It is, however, important to consider the plots of the resid­
uals vs. the corresponding predicted values of air conditioner 
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TABLE2 
Summary Over a 150-Day Validation Period 

for the Prediction Model j 
1so included are comparable numbers for the full domain 

369 oberservations) used in formulating the model. Addition- / 
'1y listed results are from Perrone and Miller (1985) for fore· 
st using the GEM and MOS techniques. Key: AE absolute 

e i or (kWh/day) , GE algebraic error (kWh/day), LE large 
e(rors (> kWh/day), Hd modified hit rate(± 5.0 kWh/day). 

odel (369 days) 
Model (150 days) 
GEM 
MOS 

I 
11 0 

110 

AE 
3.7 
3.7 
2.8 
3.0 

GE 
0.3 

-3.8 
-0.9 
-0.3 

LE Hd 
(%) (%) 
0.3 71 
0.7 72 
1.2 
2.4 

/ 

10 20 JO 40 lO 10 70 IO ID IDG 110 
Metered ener gy c?nsumpt 1on 1 k.Wh/d1y 

Figure 6 Metered air conditioner electric power consump­
tion (EC) vs. predicted power consumption 
(ECp) over 369 days 

energy consumption for detecting several common types of 
model inadequacies. Such plots typically exhibit certain pat· 
terns (i.e., horizontal band , outward-opening, double bow, 
and curved band [Montgomery and Peck 1982)). The desira­
ble pattern for a good model is one where the residuals are 
contained within a horizontal band. A plot of residuals vs. 
predicted values of air conditioner energy consumption is 
shown in Figure 4. This figure shows all the residuals to be 
contained within a horizontal band (idealized plot). There is 
no indication of any model defects. 

Plotting residuals against the corresponding values of 
each regressor variable is also helpful in investigating model 
adequacy. These plots often show the patterns discussed 
above and once again an impression of a horizontal band 
containing the residuals is desirable. Plots of the residuals 
vs. all the effective regressor variables are also shown in 
Figure 5. No obvious model defects are revealed. Finally, 
measured and predicted values of the air conditioner power 
consumption rates are compared graphically in Figure 6 for 
the period from which the model was developed. This figure 
clearly indicates model suitability for its intended aim. 

MODEL VALIDATION 
Model validation, which is different from model adequacy, 

aims to determine if the model will function successfully in its 
intended operating field . Three differing techniques can, in 
general, be used to validate a regression model (Montgomery 
and Peck 1982). These techniques are: collection of fresh 
data to investigate the model's predictive performance; anal-
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Figure 7 Metered air conditioner electric power consump­
tion (EC) vs. predicted values (ECµ) over the 
independent test period (150 days) 

ysis of the model coefficients and predictive values, including 
comparison with prior experience; and use of the data. 
splitting technique. Since no fresh data are available, the 
splitting technique is adopted here. The splitting step was 
completed by randomly choosing a sub-data set from the 
original data set used to develop the model. One hundred fifty 
observations were randomly chosen from the original data 
set of 369 observations. Figure 7 compares measured and 
predicted air conditioner energy consumption using the 
energy consumption model for each day of the validation 
interval. 

On another aspect, four statistical parameters, which were 
introduced by Perrone and Miller (1985), are modified here to 
meet our requirements ; these four statistical parameters can 
be defined in terms of the metered power consumption (EC) 
and the predicted power consumption for the same day (ECP) 
as: 

Hd 

AE 

GE 

and 

=percent number of hits, where a hit occurs when 
IEC - ECPl~5.0 kWh/day; 

= absolute error, defined as the mean of 
IEC - ECPI; 

=algebraic error, defined as the mean of 
(EC - ECP) ; 

LE =percent large errors, i.e. , percent occurrences of 
IEC - Ecp1;;i:10.o kWh/day. 

These parameters were determined for the statistical 
model defined in Table A3 as well as for the 150 split observa­
tions. The results are shown in Table 2, which also includes 
generalized equivalent exponential Marcov (GEM) and 
model output statistics (MOS)- quantitative statistical values 
for comparison purposes. 

SENSITIVITY ANALYSIS 
The energy consumption of a house air conditioner as a 

function of the outdoor and indoor temperature difference, 
global (i.e. , total horizontal) solar radiation, average wind 
speed, and average relative humidity is plotted in Figures 8 
through 10 for the design conditions indicated in Table 3. 
These plots are generated by using the air conditioner energy 
consumption model described in Table A3. Although some of 
these variables do not exist linearly in the regression model, it 
is important to note that these variables are the basic regres-
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Figure 8 Plot of air conditioner energy consumption (EC) vs. 
the temperature difference between indoor and 
outdoor conditions; effect of relative humidity 

TABLE3 
Design Data for the Sensitivity Analysis 

Variable Value 

Wind speed 4.0 m/s 
Relative humidity 50.0% 
Global radiation 4000 W ·h/m2 ·day 

sors that are used to develop the model, as shown in Equa­
tion 3. 

As expected, these curves indicate that the temperature 
difference between the outdoor and indoor conditions, which 
causes the heat to flow from the hot body to the cold body, 
strongly influences the energy consumption of the air condi­
tioner. The negative temperature difference implies the heat­
ing period, when the electric-strip heater is maintaining the 
indoor condition. At a temperature difference of about -3°C, 
the energy consumption of a house air conditioner 
approaches the zero value. The non-zero value of energy 
consumption in the vicinity of the 0°C temperature difference 
is attributed to the base load of the house, which is related to 
intrinsic gains such as heat generated by appliances and 
occupants. 

Figure 8 indicates that the cooling energy consumption is a 
strong function of the average relative humidity. It may be 
noticed from this figure that at a temperature difference of 
10°C, an increase in relative humidity from 20% to 100% 
causes about a 100% increase in the energy consumption of 
the air conditioner. This may be explained by the fact that at 
high ambient temperature and high relative humidity the 
amount of moisture in the air is very high, which results in a 
large increase in the latent load of the structure. On the other 
hand, as expected, the effect of relative humidity during the 
heating period is minimal. 

The effect of wind speed and total horizontal radiation is 
demonstrated in Figures 9 and 10, respectively. The wind 
speed, which is expected to cause an increase in the infiltra­
tion load of the house, apparently does not change signifi­
cantly for the range investigated. Similarly, the total horizontal 
radiation alone does not contribute much to the energy con­
sumption of the residence. It should, however, be noted that it 
is not only these variables contributing linearly to the model').· 
as shown in Table A3, but that these variables, with the tern 
perature difference, contribute significantly to the mode! 
coefficients, as discussed in Equation 3. · 
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the temperature difference between indoor and 
outdoor conditions; effect of wind speed 
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Figure 10 Plot of air conditioner energy consumpti~n~ , 
vs. the temperature difference between ind n 

and outdoor conditions; effect of global sot 
radiation on a horizontal surface " 

DISCUSSION AND CONCLUDING REMARKS u 
In this paper, the techniques being used to develop am 

pie linear regression model have been laid out and t~~ 
of daily air conditioner energy consumption of a reside 
Dhahran, Saudi Arabia, has been discussed in detall.­
conditioner energy consumption model adequacy was"' 
sively verified within the data domain from which the 
was developed. The final model for air conditioner 
consumption is seen to satisfy all criteria of statistic81; 
quacy. The measured (EC) and predicted (ECp) air 
tioner energy consumption for each day of the comp 
interval are compared in Figure 6. . ,'/• 

Model validation is also verified within the validaJI . 
val. Figure 7 compares EC and ECP for each day of 
dation interval. The model gave very acceptable IE!Sll 
a mean absolute error (AE) of 3.7 kWh/day. The la 
(LE) is 0.3%, while rates between 1.2% and 2,4 
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cceptable for forecast models GEM/MOS (Perrone and 
]lier 1985). Furthermore, a comparison of Figures 6 and 7 
ows the degradation of model performance between appli­

cation in both domains (split and complete) to be small. 
Quantitatively, the comparison is: 71% number of hits within 
the domain of the complete data set used in generating the 
· ode I, 72% within the split data set, AE 3.7 kWh/day for both 
· omains, large error 0.3% for the complete data set, and 
0.7% for the spilt data set (Table 2). 

Figure 11 represents the variation of residuals with 
predicted power consumption within the validation interval. 
This figure shows the residuals falling within the idealized 
horizontal band, thus indicating no model deficiency (com­
pare with Figure 4 of the complete data set). However, a small 
asymmetry toward negative residuals can be seen in Figure 

' ~ 1 and this is confirmed by the -3.8 kWh/day mean algebraic 
error GE listed in Table 2. This validation discussion has 
demonstrated, through application to a nearly Independent 

. data set, that the developed model is an effective model for 
prediction and estimation of residential air conditioner 

·energy consumption. 
It is Important to note that the present energy estimation 

procedure is different from the f!egree-day method in three 
major aspects: (I) the base temperature is variable and is 
equal to the daily average of the Indoor temperature instead 
of the constant value (18.3°C) used in the degree-day method; 
(ii) the outdoor temperature Is the mean of the hourly aver­
ages, while in the degree-day method it is the average of the 
daily maximum and minimum temperatures; and (iii) most of 
the meteorological parameters are included in the present 
analysis instead of considering the ambient and indoor tem­
peratures only, as is the case in the degree-day method. 

This study shows, as expected, that air conditioner electri· 
cal power consumption is a strong function of the tempera­
ture difference between the ambient and indoor, but the study 
revealed that energy consumption is not zero at a o°C tern· 
perature difference due to intrinsic gains such as heat gen­
erated by appliances and occupants. This investigation 
indicates that at a temperature difference of about -3°C the 
energy consumption of a house air conditioner approaches 
the zero value. It has also been found that air conditioner 
cooling power consumption is a strong function of the daily 
average relative humidity. At a temperature difference of 
10°C, an increase In relative humidity from 20% to 100% 
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causes about a 100% increase in the energy consumption of 
an air conditioner. This is due to a large Increase in the latent 
load of the structure at high relative humidity and ambient 
temperature. 

ljhe total horizontal radiation, as a linear term, has a small 
effect on the power consumption of the air conditioner. This 
may be due to the partial shading provided by a large 
umbrella-type tree located in front of the house. The wind 
speed effect is also small due to the green fence, the attached 
house, and the tree in front of the house. 

It should be emphasized that the air conditioner energy 
consumption model discussed In Equation 3 is general, and 
includes all the important meteorological parameters as well 
as global solar radiation contributing to the air conditioner 
load of a given house or building. Furthermore, to compare 
air conditioner energy consumption of different houses, it is 
recommended that the variables used in Equation 3 be fixed, 
permitting the model parameters to be compared for analysis 
and interpretation of various components of a building load. 
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NOMENCLATURE 
AE =absolute error defined as the mean of IEC - ECPI 
Cp = (SSEplS2) - n + 2p · 
EC = measured electric power consumption (kWh/day) 
ECp =predicted electric power consumption (kWh/day) 
GE = algebraic error defined as the mean of 

(EC - ECp) 
Hd = percent number of hits, where a hit occurs when 

jEC - ECPI ~ 5.0 kW ·day 
LE = percent large errors, i.e. , percent occurrences of 

IEC - ECPI ~ 10.0 kW ·day 
n = number of observations 
p = number of model parameters (i.e., p - 1 regres-

sors plus intercept) 
P1 =TA - TIN 
P2. = THR2 

P3 = THR·RH 
P4 =RH2 
P5 =RH·WS 
P6 = WS·THR 
P7 = ws2 

P8 =P1·THR 
P9 =P1·RH 
P10 =P1 ·WS 
P11 = P12 
RH =mean relative humidity(%) 
SSEP = sum-of-squares error for a model with p 

parameters 
S1- = full model mean square error 
TA = mean air temperature (°C) 
TIN = mean inside temperature (0 C) 
THR = mean global radiation (W ·h/m2 ·day} 
VJF1 = variance inflation factor, 1/(1 - R1) 
WS = mean wind speed (m/s) 
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APPENDIX A 

MODEL TYPE 
The first step was to determine the relative contributions of 

linear, quadratic, and crossproduct expressions derived from 
the variables list described in Equation 1. This step was com­
pleted by fitting the parameters, using the SAS RSREG pro­
cedure, of an optimized full quadratic response surface and 
then determining critical values to optimize the response with 
respect to the factors in the· model. This analysis gave the 
values (listed in Table A1) for the coefficient of multiple deter­
mination (R2

), F-ratio, and model sum of squares (SSmode1), 

respectively. 

TABLEA1 
Contribution of Linear, Quadratic, and 

Crossproduct Terms to the Regression Model 
Model R2 F-ratio SS model 

Linear Regression 0.594 1203.4 95,937 
Quadratic Regression 0.325 659.1 52,550 
Crossproduct Regression 0.037 50.6 5,994 

The results clearly show considerable model enhance­
ment from the quadratic and crossproduct terms and hence a 
multiple linear regression model is deemed the most appro­
priate for the present application. Hence, the regressed 
energy consumption equation is redefined as 

ECp = 

F(Pl ,RH, WS, THR ,P2.,P3,P4,P5 ,P6,P7 ,P8,P9 ,Pl O,Pl 1) 

(A1) 
where 

P1 =TA - TIN 
P2 =(THR)2 

P3 =THR·RH 
P4 =(RH)2 

P5 =RH·WS 
P6 = WS·THR 
P7 =(WS)2 

PB =P1 ·THR 
P9 =P1 •RH 
P10 =P1 ·WS 
P11 = (P1)2• 

STEPWISE REGRESSION 
Four variable selection procedures are appropriate to the 

present application. All should be applied with care (Mont-
gomery and Peck 1982). / 
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Forward Selection 
The forward selection process begins with the assumption 

that there are no regressors in the model other than the inter­
cept. The first regressor selected for entry into the model has 
the largest simple correlation (R2

) with th_e response.varia­
ble, ECp. This is also the regressor that will produce tne lar­
gest value of the F-statistic used in testing regression 
significance. The first regressor entered, PB, has a partial 
correlation of 0.650 and an F-to-enter of 680. 7. Since 680. 7 is 
greater than a preselected F-value (2.17 for this case; Mont­
gomery and Peck 1982), the variable PB is included in the 
model. This process continues until the partial F-value at a 
particular step falls below the preselected F-value. The last 
regressor entered, P5, has a partial correlation coefficient of 
0.0004 and an F-to-enter of 3.0. Note that variables are 
entered into the model up to 0.1 significance level. 

Application of this forward selection process indicates an 
11-variable model with an R2 of 0.956, Mallow's CP of 10.2, 
and F-ratio of 708.1 ; the effective regressors, in the order of 
insertion in the model, are PB, P11, P9, RH, P3, P10, THR, 
WS, P4, P1, and P5. 

Backward Elimination 
The backward elimination process involves a search to 

find the best parameter combination by working in the oppo­
site direction, starting with a model that includes all candi­
date regressor variables. This process is carried out to 
examine the effect of including all the candidate regressors 
as well as the order of the regressors in the model. The partial 
F-statistic is computed for each regressor as if it were the last 
regressor to enter the model. The process of removal con­
tinues until the partial F-value of all parameters exceeds th.a 
F-to-remove value. The last regressor removed is WS with a 
partial F-value of 0.8. This process suggests a 10-variable 
model with R2 of 0.956, Mallow's Cp of 8.6, and F-ratio of 
780.2; the effective regressors are RH, P1, P2, P3, P4, P5, 
PB, P9, P10, and P11. 

Stepwise Regression 
The stepwise regression process is a modification of for­

ward selection, with the difference that at each step all 
regressors previously entered into the model are reassess~ 
based on their current partial F-statistics. Hence, a rewess?r 
added at an earlier step may now be removed. In this case. 
the model obtained by applying stepwise regression is a,s X· 
variable model with R2 of 0.954, Mallow's Cp of 17.5, ani:I F­
ratio of 1252.4. The effective regressors are THR , ws .. 
P9, P10, and P11 . . ·: .... 
Mallow's Cp Statistics .. 

Mallow's Cp is a criterion related to the mean square.a .. 
of the model. It is defined as (Montgomery and Pec~}~8 

Cp = (SSE/S2) - n + 2p , ~rf!( 
where SSE is the sum-of-squares error for a model witb p • 
parameters, S2 is the full model mean square error, n. IS 
number of observations, and p is the number of~m 
parameters (i.e., p - 1 regressors plus intercept). 1 

This step was completed, using the RSQUARE proc~ 
by finding subsets of independent variables that b~st P 
the dependent variable and by employing correlation ..... 
cient statistics as the selection criteria. Mallow's Cp Is 
lated for each subset and the subset with minimum 
recommended for incorporation into the model. In this . 
this criterion indicated a 1 a-variable model. The varfi 
PB, P11, P9, RH, P3, P10, P2, P1. P5, and P4 (Cp 
are the effective regressors, equal to the backward e I 
tion result described earlier. .: ~ 

The above four processes suggest different model$ 
the backward elimination and Mallow's Cp procedur 
cate the same model, while the forward selection 
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TABLEA2 

Correlation Matrix 

PS P11 pg RH P3 P10 PS P2 P4 P1 
1.00 0.09 0.90 -0.46 0.16 0.90 -0.48 0.68 -0.43 0.97 

1.00 -0.17 -0.29 -0.30 -0.17 0.00 0.08 -0.26 -0.08 
1.00 -0.37 0.37 0.88 -0.51 · 0.63 -0.37 0.96 

1.00 0.35 -0.42 0.44 -0.68 0.99 -0.42 
1.00 0.23 -0.06 0.35 0.30 0.29 

1.00 -0.54 0.65 -0.38 0.94 
1.00 -0.45 0.43 -0.50 

1.00 -0.66 0.69 
1.00 -0.40 

Symmetric 1.00 

4.1E3 45.9 -76.2 62.2 3.0E5 -5.9 306.3 2.7E7 4.1E3 -0.5 
3.6E4 42.1 404.2 15.7 7.5E4 38.3 137.4 1.4E7 1.9E3 6.8 

~ise regression procedures suggest two other models. 
Hence, all the regressors are held for further consideration. 

COLLINEARITY DIAGNOSTICS 
If any selected regressor can be closely approximated by a 

linear relation with one or more of the other regressors in the 
modet, then the affected estimates (i.e., the model coeffi­
cients of the collinear terms) are unstable and have high 
standard errors. This collinearity (or multicollinearity) prob­
lem is not statistical in nature (i.e. , it is not related to the 
model) but it is a problem inherent in the data (Balsley et al. 
1980). It Is essential to investigate this problem with regard to 
the previously selected variables listed above. 

One method for the identification of simple collinearity is 
the inspection of the off-diagonal elements of the correlation 
matrix shown in Table A2; collinearity exists if the absolute 
value of an element is near unity. Table A2 reveals a high 
correlation between relative humidity (RH) and the square of 
RH (P4) (0.99), between P1 and P8 (0.97), and between P1 
and P9 (0.96). However, examining pairwise correlations is 
not a complete diagnostic measure since one is unable to 
distinguish among several coexisting near dependencies. 

Another diagnostic criterion is based on variance inflation 
factor (VJF) analysis, where VIF; = 1/(1 - R2

1) and R2
1 is 

the multiple correlation coefficient of the ith explanatory vari­
able regressed on the remaining explanatory variables. The 
V/Fof each term in the model measures the combined effect 
of the dependencies among the regressors on the variance 
of that term. A high VJFvalue must point to collinearity. VJFs 
below 10 are statistically acceptable (Montgomery and Peck 
1982). The V/Fvalues for the 10 effective regressors sug­
gested by the backward elimination procedure and Mallow's 
Cp criteria are: PS-86.1 , P11-3.5, 1'9-35.2, RH-155.1, 
P3-16.0, P10-12.3, THR-20.7, P5-1 .7, P4-93.5, and 
P1-158. The V/FsofRH,P4,andP1 are exceptionally high. 
The correlation matrix and VIF results reveal that there is 
simple collinearity between RH and P4, between P1 and PB , 
and between P1 and P9 . This collinearity is sufficient to affect 
the accuracy with which the regression coefficients can be 
calculated. 

However, there are several techniques that can be applied 
to overcome collinearity problems (Montgomery and Peck 
1982). Elimination of one of the variables (i.e., respecification 
of the model) is the most appropriate solution here. The 
model was respecified by eliminating the regressors RH and 
P1. 

Repeating the above steps (i.e., the forward selection, 
backward elimination, and stepwise regression procedures) 
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TABLEA3 
Mallow's Ce Criteria Analysis 

Number of Variables in 
Parameters R2 cp c.v. Model 
1 0.650 2368 31,6 PB 
2 0.892 477 17.5 P9 P11 
3 o.g35 135 13.5 pg P11 P4 
4 o.g46 66 12.9 P9 P11 P4 P3 
5 o.g53 12 11.7 pgp11 P3THRP10 
6 0.954 3.6 11.5 THR WS P3 pg P10 P11 

and investigating the Mallow's Cp criteria for the reduced 
parameter list gave the following results: (i) forward selection 
indicated that the effective regressors are WS, P2, P3, P4, PB, 
P9, P10, and P11, model R2 is 0.954, model Cp is 8.2, and 
model F-ratio is 932.6; (ii) backward elimination indi­
cated that the effective regressors are THR , WS, P3, P9, P10, 
and P11, model R2 is 0.954, model Cp is 3.6, and model F-ratio 
is 1252.4; (iii) the stepwise regression procedure Indicated 
that the effective regressors are THR, WS, P3, P9, P10, and 
P11, model R2 is 0.954, model Cp is 3.6, and model F-ratio is 
1252.4; and (iv) Mallow's Cp criteria indicated that the effec­
tive regressors are P9, P11, P3, THR , P10, and WS, model R 2 
is 0.954, model Cp is 3.6, and model F-ratio is 1252.4. 

Backward elimination and Mallow's Cp criteria resulted in 
the elimination of another two variables. The best model thus 
obtained (as indicated by three procedures: backward elimi­
nation, stepwise regression, and Mallow's Cp) includes the 
effective regressors THR , WS, P3, P9, P10, and P11. The cor­
responding VIFs are, respectively, 2.5, 1.2, 1.7, 5.3, 5.5, and 
1.3; these values are all statistically acceptable. 

Mallow's Cp criteria also indicated the best 1, 2, 3, 4, 5, and 
6 parameter models. The results are summarized in Table A3. 

GENERAL LINEAR MODELING 
The effective regressors recommended by the stepwise 

regression , backward elimination, and Mallow's Cp criteria 
are; THR , WS, P3, P9, P10, and P11 , were introduced to the 
general linear modeling procedure to determine the unknown 
coefficients of the model as well as other statistical parameters; 
the results are summarized in Table A4. In this particular case, 
the significance level terms, PR>I Tl, for all the regressors 
included are small and much less than 0.05 (the acceptable 
limit value), indicating that all submitted regressors contribute 
significantly to the model. Multiple linear regression models 
were also developed for the first six models listed in Table A3 
and the results are shown in Table A5. 



TABLEA4 
General Linear Models Procedure Results for the Selected Model 

Source OF SS MS F-value R2 c.v. RMSE 

Model 006 154112 25685 1252.4 0.954 11.5 4.5 
Error 362 7427 20.5 
Corrected total 368 1611536 Adj R2 = 0.953 

Tfor HO: STD Error of 
Parameter Estimate Parameter = o PR> ITI Estimate 

Intercept 18.243 11.8 0.0001 1.54 
THR -3.803E-3 -14.6 0.0001 2.6E-4 
ws 0.4268 3.23 0.0013 0.13 
P3 8,715E-5 21.0 0.0001 4.2E-6 
pg 3.856E-2 28.8 0.0001 1.3E-3 
P10 0.1208 8.4 0.0001 1.4E-2 
P11 0.3452 54.6 0.0001 6.3E-

TABLE AS 
Derived Coefficients of the 1 to 6 Variable Models 

Number in 
Model Intercept P8 pg P11 P4 P3 THR P10 ws 
1 37.41 4.74E-4 
2 29.57 0.0442 0.2867 
3 16.99 0.04955 0.3266 0.00271 
4 9.19 0.04624 0.3321 0.00207 3.37E-5 
5 20.32 0.03828 0.3449 8.34E-5 -3.SE-3 0.1136 
6 18.24 0.03856 0.3452 8.71E-5 -3.BOE-3 0.1208 0.4268 


