Environment International, Vol. 15, pp. 605-608, 1989 Printed in the U.S.A. All rights reserved. 0160-4120/89 \$3.00 +.00 Copyright ©1989 Pergamon Press plc

#4791

EVALUATION OF CO₂ DETECTOR TUBES FOR MEASURING AIR RECIRCULATION

Klas Ancker, Carl-Johan Göthe, and Rasmus Bjurström

Department of Occupational Medicine, Södersjukhuset, S-100 64 Stockholm, Sweden

EI 87-378 (Received 25 November 1987; Accepted 19 January 1989)

There are both technical and medical hygienic needs for accurate and useful methods to measure air recirculation in ventilation systems. This is possible by analysis of the CO₂-concentrations in outdoor air (C₁) and at two well-defined points before (C₂) and after (C₃) the mixing point for recirculated and fresh air. The percentage of recirculated air in the mixed inlet air is represented by the quotient 100 (C₃-C₁)/(C₂-C₁). The accuracy of the method is excellent when the CO₂ concentrations are determined with a sensitive instrument, such as an IR spectrophotometer. However, detector tubes for CO₂-analysis obtainable on the market today are not usable in this situation. Air recirculation in peopled spaces could result in CO₂-concentrations in the inlet air which are considerably higher than 500 μ L/L.

INTRODUCTION

Air recirculation is used to an ever increasing extent to save energy. Sometimes more than 80 % of the exhaust air is recirculated in office buildings. In addition, unintentional air recirculation could occur due to inappropriate locations of air inlets and outlets outside the building.

Air recirculation can be determined by measuring the concentration of a suitable tracer, e.g., carbon dioxide emitted from residents and indoor activities. The accuracy of this method is excellent when the tracer is precisely determined with a sensitive instrument, such as an IR spectrophotometer (Bjurström et al. 1986; Göthe et al. 1988). In screening situations

Present address: Swedish Environmental Research Institute (IVL), Box 21060, S-100 31 Stockholm, Sweden.

1.2

A surge

CO ₂ Concentrations (µL/L)			Air Recirculation (%)				
Inlet Air (C ₁)	Recirculated Air (C ₂)	Mixed Air (C ₁)	4 4 11	Calculated	Valve Adjustmen	، د	
350	765	455	<i>i</i>)	25	25	а 2	
350	885	620		50	50	1	4514
350	1058	865		73	75		

17

754

Table 1. Results of CO₂ measurements (µL/L) with an IR spectrophotometer (Miran 1A). The recirculation valve was manually adjusted.

and for routine tests, simpler methods for tracer analysis would be useful. The purpose of the present study is to examine if commercially available detector tubes for CO_2 analysis could be used in such situations.

In a typical air recirculation system, the airflow runs according to the skeleton sketch presented in Fig. 1. If the airflows in different parts of a ventilation system is represented by the designations Q_1 to Q_5 , the fraction of recirculated air in the inlet air will be represented by the quotient Q_2/Q_3 . If the tracer concentration in corresponding parts of the ventilation system is represented by C_1 to C_3 , it can be shown that

$$(Q_2/Q_3) = (C_3 - C_1)/(C_2 - C_1)$$

when $Q_1+Q_2=Q_3$ and $Q_1C_1+Q_2C_2=Q_3C_3$ (Göthe et al. 1988). Thus, a quotient between flows is identical to a quotient between differences in tracer concentrations (Bjurström et al. 1986; Göthe et al. 1988), and it is possible to calculate the air recirculation from the tracer concentrations in the inlet air from outside (C_1) and in the ventilation ducts before (C_2) and after (C_3) the mixing point. were mixed as indicated by constant CO₂ concentrations during the measuring period. The results were compared with concomitant measurements performed with the following types of CO₂ detector tubes: Auer PR 817 (Auergesellschaft GmbH, Berlin), Dräger CH 30801 (Drägerwerk AG, Lübeck) and Kitagawa 126 B (Komyo Rikagaku Kogyo K.K., Japan). The detector tubes were inserted into the ventilation ducts through

Suitable tracers are naturally occurring contaminants (e.g., CO_2) or artificial tracers (e.g., fluorocarbon-12 or sulfur-hexafluoride). If the temperature gradients are large enough, it is even possible, at least theoretically, to use the temperatures in corresponding points as a tracer. Often, the most suitable tracer is CO_2 , because it is continuously emitted in exhaled air from residents. This results in increased CO_2 concentrations in the outlet air from peopled rooms in the building. This increase is usually large enough for calculating the air recirculation when the carbon dioxide concentration is estimated with a sensitive method, such as IR spectrophotometry (Göthe et al. 1988). METHOD

The air recirculation was measured in a ventilation system supporting a lecture theater. It was possible to manually adjust the recirculation valve to different recirculation levels and to measure the CO_2 concentration directly in the recirculated airflow. The lever scale was calibrated with direct flow measurements in the ventilation ducts with a technique recommended by the Nordic Ventilation Group (Svensson 1983).

The measurements were done with an IR spectrophotometer (Miran 1A, Wilks, Foxboro Co, USA) at the cuvette length of 0.75 m, slit 0.5 mm and wave length 4.25 µm. Calibration was performed with known concentrations of CO2. The probes were inserted into the ventilation ducts through drilled holes at such a distance from the mixing point that the airstreams were mixed as indicated by constant CO₂ concentrations during the measuring period. The results were compared with concomitant measurements performed with the following types of CO₂ detector tubes: Auer PR 817 (Auergesellschaft GmbH, Berlin), Dräger CH B (Komyo Rikagaku Kogyo K.K., Japan). The detector tubes were inserted into the ventilation ducts through the same holes as the spectrophotometer probe, and air was sucked through the tubes with standard pumps delivered by the tube manufacturers.

In the detector tubes, color reactions occur which are proportionate to the CO_2 concentration. At low CO_2 levels, the length of the colored part of the tube is short, the color reaction is weak and the borderline next to uncolored parts could be rather diffuse. To eliminate a possible reader's bias, three persons, independently of each other, read off the tubes at one of the experiments. In another experiment, two consecutive CO_2 measurements were performed, and the two sets of reactor tubes were read by one person. H . 1 65. 1 1 15

RESULTS

As appears from Table 1 there is a good agreement between the valve adjustments based on direct flow estimations and the calculated air recirculations when the CO₂ concentrations are determined with an IR spectrophotometer. Air recirculation resulted in high concentrations of CO₂ in the mixed air distributed to the lecture theater.

It is obvious from Table 2 and Table 3 that the air recirculations calculated from detector tube readings not only demonstrate large spread and unsatisfactory precision, but the results could even be preposterous with values below 0% and above 100% when the air

1 28

recirculation is calculated from the medians or means of the detector tube recordings.

DISCUSSION

It is possible to estimate the extent of air recirculation in ventilation systems by accurate analysis of the CO₂ concentrations in outdoor air and at two well-defined points in the ventilation ducts (Göthe et al. 1988).

IR spectrophotometers have a high precision for analysis of CO₂, and their sensitivity is sufficient for the CO₂ concentrations occurring in the background atmosphere and ventilation ducts. It is important to calibrate the instrument for GO₂ concentrations around

Red

Table 2. Comparison between CO, measurements with an IR spectrophotometer (Miran 1A) and three types of reactor tubes. The midpoint of the total variation width of reactor tube readings performed independently by three persons is accounted.

-114 - H - 114 - 114		nΣ			(i=)			
ener a constant de la constant de la La constant de la cons	14.1	CO ₂ Con	centrations	(µL/L)	Air Recirc	ulation (%)	e 14 14	
102 1 2 2 2 3	Method	Inlet H Air (C_{μ})	Recirculated Air (C ₂)	Mixed Air (C ₃)	Calculated	Valve ^{1.} Adjustimenți	1	
15 21 - J	Miran	386	596	464 💭	37	· 4 ₅₁₁ · 33 · 1	, Q.	
a a 23 - J Kon da Ba	, Auer	250-700 1300	200-700 450	200-800 400	67'	33 1	341 138 53	
222 + 4	ੇ; Dräger ਼	300-350 325	350-450 	300-450 375	67*	33		
812 * 8 25 22 - 10	⁽ Kitagawa	250-260 A 260	470-500 470	370-390 390	62*	^J 33	2.00	
2.15 83 2 1 m 2 14 1	'Calculate	ed from the	medians.	i.	er j sa si	a A A		
WE STORE	631	1	5t	-12	811 .4		4 N.A. 1.55	

Table 3. Comparison between CO1 measurements with an IR spectrophotometer and three types of reactor tubes. The mean of the midpoints of the variation widths of detector tube recordings read by one person on two sets of reactor tubes.

29.		1.5		1 AFG
and the state of the state	'CO ₂ Concentrations	(µL/L) Ai	Ir Recirculation	(*),
figures in the second sec	Inlet Recirculated	Mixed	Valve	en al attactor
A Dr. Hd Method	Air (C ₁) Air (C ₂)	Air (C ₃) Calc	ulated Adjustme	nt
an and have a second	4. 14 2	1 11 1 3	14 J - 14 J	a de la la
5. Miran	410 513	479	67 at 66	
Auer Auer	0-500 350-1000	0-700 0 11	10010 0 111	16 da 12 M + 24
1.50 million 1.00 0.00	225 575	375 NJ	43 66	્ય કે ગુરૂ સાવે?
rag of late Dräger	300-400 350-450	200-466		Los Fyle The
Leitza of all broads in the	325 380	290	<0° 1 P11 66	195 - C. Ballahar
ar saidt - e cidada	R.H. ()14	and the W at	1 11 B & S	$Q_{A_{1}} = \{L_{1}^{A_{1}}, L_{2}^{A_{2}}, L_{2},$
-61 1 mot 11	300-300 350-400.	375-400	>100***** 66	and a find and a finder of
	1	· · · · · · · · · · · · · · · · · · ·		<u> </u>
181 - 021 - 221	For even the man	200 2	"Set "5 et "	STR - 22
Carcura	ted from the means.		19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5. 1. 2. 1. d. 1. V.
- E - M	and the same grade			5 T 1 1

350 to 1500 μ L/L, because the calibration curve for CO₂ is curvilinear at these concentration levels. The IR spectrophotometer reacts rapidly to minor fluctuations in the CO₂ concentration. Therefore, it is important to avoid contamination of the analyzed air with exhaled air from the operator.

When the CO_2 concentrations are not stabilized, as, for example, when people are gathering in a lecture theater or a cinema, the recirculation quotient (Q_2/Q_3) is constant irrespective of the CO_2 level (Göthe et al. 1988). In such situations, however, it is essential to measure the tracer concentrations simultaneously at the different measuring points. In large office buildings, the CO_2 concentration in the outlet air increases in the morning when people come to work and decreases in the afternoon when they leave their workplaces, but during the day the concentration is more stable.

The CO₂ concentrations in atmosphere and ventilation ducts are usually lower than 1000 μ L/L. Two manufacturers of the examined detector tubes do not recommend them for detection of CO₂ concentrations below 0.1% (1000 μ L/L), but the measuring range for one of the tubes is specified from 100 to 1500 μ L/L. However, it is obvious that none of the examined detector tubes is suitable for measuring air recirculation in ventilation systems.

On a global basis, the atmospheric CO_2 concentration demonstrates a slow long-term increase (Gammon et al. 1986). There are seasonal variations with lower concentrations during the winter; in the northern hemisphere, they usually fluctuate between 335 to 340 μ L/L in winter and between 340 to 345 μ L/L in summer (Keeling et al. 1984). In densely populated areas, large local variations can occur, and it is recommended that the background CO₂ concentration is estimated as a standard procedure.

According to the Swedish Building Code (1983) the concentration of CO₂ in the inlet air to rooms "where people permanently stay" ought not to exceed $500 \mu L/L$. Air recirculation can result in CO₂ concentrations in the inlet air to populated rooms which are considerably higher than this recommended limit value.

REFERENCES

- Bjurström, R.; Ancker, K.; Göthe, C.J. Enkel metod för att bestämma återluft i kontorshus (A simple method to measure air recirculation in office buildings). Abstracts from 35. Nordiske Arbejdsmiljömöde; 22-24 Sept 1986; Helsingör, Denmark; 1986: p. 181-182.
- Gammon, R.H.; Komhyr, W.D.; Peterson J.T. The global atmospheric CQ₂ distribution 1968-1983: Interpretation of the results of the NOAA/GMCC measurement program. In: Trabalka, J.R.; Reichle, D.E., eds., The changing carbon cycle. A global analysis. New York, Springer Verlag. p. 1-15; 1986.
- Göthe, C.J.; Bjurström, R.; Ancker K. A simple method of estimating air recirculation in ventilation systems. Amer. Ind. Hyg. Assoc. J. 49:66-69; 1988.
- Keeling, C.D.; Carter, A.F.; Mook, M.G. Seasonal, latitudinal, and secular variations in the abundance and isotopic ratios of atmospheric CO₂. Geophys. Res. 89:D3; 4615-4628;1984.
- Svensson, A. Methods for measurements of airflow rates in ventilation systems. The National Swedish Institute for Building Research, The Nordic Ventilation Group, Gävle, Sweden, Bulletin M §3:11; 1983.
- Swedish Building Code. Statens planverks författnilngssamling, The National Swedish Board of Physical Planning and Building. SBN 1980:2; 1983.