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= Z?on;;z:ir ;:;;Zw;ft:e Iﬁobéeln: of makmg'numerllcal predictions of turbulent flow. It advocates that computatio-
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g : o turbu ence. quantities, the t.urbulence kinetic energy k and its dissipation rate e, are calcul
sport equations solved simultaneously with those governing the mean flow behaviour. The w,idth of z:;‘l;ed
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Nomenclature

Van Driest’s constant

Curtet number defined by (3.1 — 1)

Coefficients in approximated turbulent transport equations
Specific heat at constant pressure

Diffusion coefficient for quantity ¢

Rate of diffusive transport of Reynolds stress

Constant in near-wall description of velocity profile (= 9)
Functiona!l defined by (2.2 — 6) ‘
Turbulence kinetic energy u,u,/2

Length of energy containing eddies

Fluctuating component.of static pressure

Heat flux

Radius

Reynolds rumber in pipe flow based on bulk velocity and pipe diameter
Rate of redistribution of Reynolds stress through pressure fluctuation;
Turbulent Reynolds number k%/ve

Temperature

Fluctuating component of velocity in direction x,

Mean co nponent of velocity in direction x. l
Streamvvise velccity non-dimensionalized b'v T./p
Mean streamwise velocity on axis I
Change in mean velocity across shear flow
, *Vorticity’ fluctuations squared
X, Cartesian space coordinate -
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' Radial width of mixing region
y Coordinate normal to wall

Greek Symbols
Rate of dissipation of turbulence energy

von Karman’s constant appearing in 2.1-11)
Molecular viscosity

Turbulent viscosity

Kinematic viscosity

A generalized dependent variable

Density

Effective turbulent Prandtl number

Effective turbulent Prandtl number for transport of ¢
Molecular Prandtl number

Shear stress

Subscripts . ‘ o
ijk ? Subscripts denoting Cartesian coordinate directions

i Inner surface

Quter surface
Value at a node adjacent to the wall

Wall value

0
P
w

Superscript . . |
+ g : Denotes quartity non-dimensionalized by means ofv,7,,and p

1. Introduction

1.1. The Problem

. . . AP,
. Turbulent tlows, which are of great practical importance, are tgxgz-cclllmens%onal andeltlxr;ldevgslcned
’ i differential equations of fluid dynamics are W
dent. Computer methods of solving the O '
even for thI;ee-dimensional time-dependent flows. Then ‘_Nhy isit tihat there he;relzl no czzn;a)u;ied o
models of turbulent flow which do full justice to the fluid dynamics and which can p
ractical problems? _ , ‘ of?
p The cmiwer is that the necessary computer storage e>.(ceeds by many orders of magtthfldtie’tur_
- TI-enflv available, to say nothing of the computer time, fqr %mporta.mt Fonotlt}len 50 h(-;le How
° ]L e pli enomenor; take place in eddies of the order of a millimeter in size, while the wi 4t' 5
.“ Lﬂ?; rg;;y extend over meters or kilometers. A grid fine enough to allow accurate (liescrlfpnngcs
i i i i actical number 0 ‘
=fore rc immense and totally impractica
¢ 4 turbulent flow would therefore require an : mp i e
i - computati f turbulent flows is pressing; to meet 11, _
Yet the practical need for computation o : : . prsemimedl i PP
i i ifferential equations, and associate
: "2 h ween invented. These consist of sets of di tial e . ilge
primlins sy onstants, the rolutions of which. in conjunction with those of the Navier

i i and ¢ n
oo e Lehaviour of real turbulent fluids.

ykes equations, closely sim nlute the
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A good turbulence model has extensive universality, and is not too complex to develop or use.
Universality implies that a single set of empirical constants or functions, inserted into the gqua-
tions, provides close simulation of a large variety of types of flow. Complexity is measured by the
number of differential equations which the model contains, and the number of the empirical con-
stants and functions which are required to complete them; increase in the first complicates the
task of using the model, increase in the second that of developing it.

Satisfactory calculation procedures and computers aré now available for solving differential
equations, on the scale of the mean motion, for quite large numbers (e.g. 20) of simultanec us
equations. The main obstacles to model development are therefore the difficulty of selecting
which set of differential equations is most capable of providing universality, and the difficulty of
then providing, from experimental knowledge, the required constants and functions.

1.2. Purpose of the present paper

In the present paper, the authors describe recent work on the development of a particular tur-
bulence model, that in which two differential equations are solved, the dependent variables of
which are the turbulence energy k and the dissipation rate of turbulence energy €. Emphasis is
given to aspects of the model having importance for flows adjacent to solid walls.

This is of course not the only available turbulence model. Others have been reviewed in recent
works by the authors [1, 2] and others (Harlow [3] and Mellor and Herring [4]).

Among such models are :-

Prandtl’s [5] mixing-length model; the one-differential-equation models of Prandtl [6], Bradshaw,
Ferriss and Atwell [7] and Nee and Kovasznay [8]; the two-differential-equation models of
Kolmogorov [9], Harlow and Nakayama [10], Spalding [11], and Jones and Launder [12]; and
the more complex models of Chou [13], Rotta [14], Davidov [15], Kolovandin and Vatutin [16],
Hanjali¢ [17] and Hanjali¢ and Launder [18].

Recently, a conference was devoted to comparison of the predictions of various models, with
each other and with experiment, for certain turbulent-flow phenomena remote from walls. The
k ~ € model was there shown, by Launder, Morse, Rodi and Spalding [19], to be surpassed only
by admittedly more complex ‘“Reynolds-stress” models, which are: still not completely developed.
It therefore seems appropriate to present a more detailed description of the k ~ € model than has
been available hitherto, and to review recent predictions which have been made with its aid.

The paper will concentrate attention on the differential equations and auxiliary relations which
define the model, and on their solutions. The solution procedures will not be described here,
because they are standard ones, published by Patankar and Spalding [20] and Gosman, Pun,
Runchal, Spalding and Wolfshtein [21].

2. The k ~ € model
2.1. The reason for its choice

The authors and their colleagues have had experience with three different kinds of two-equation
turbulence model: k ~ kI, k ~ W, and k ~ €. Here k stands for the turbulence energy:
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k=iu; (2.1-1)

— 2 Wiy s

[ is a length representing the macroscale of turbulence, which we may define in terms of %, €, and

‘a constant Cp through: '
2.1-2)

I=Cpk*?/e;

W is a quantity having the dimensions of (time)~2, which has been in.terpreted (Spalding [22'];
Saffmann [23]) as representing the time-average square of the vorticity \fluctuatwns and which

can also be defined in terms of k, €, and Cp through:

W=€*(Cph k) ; (2.1-3)

and € is defined by:

_,0u 0y (2.1-4)

v—
0X, 0X,

i inematic viscosity of the fluid.

WhI?;;:r;Sdtellsirlzbing the k ~ k! rrsllodel and its application to a large r}umber of t'urbulent ﬂowIs\I, -
both with and without the presence of solid walls, are those gf Rodi and Spaldi.ng [24] ,zaznd27 g
and Spalding [25,26]. The £k ~ W model has been described in papers by Spalding [11, ,23]
and Gibson and Spalding [28]; a similar model was proposed independently by Saffmann [ }
A form of k ~ € model was first proposed by Harlow and Nakayama [10], and has appeared also
in the papers of Jones and Launder [12,29] and Launder et al. [19].

The definitions (2.1—-2) and (2.1—3) above imply:

dil .2 ok g€ (2.1-5)
kKl 2k e’

2.1-6
dW=_2d_kk+29£, Q.1 )

With the aid of these equations, it is easily possible to turn a pair of equations for k and k! say,h
into a pair of equations for k and W, or another pair for k and €. Therefore, one'mlght regard the
various two-equation models as differing merely in mathematical form, and not in content. De-

i i i k ~ € model, as follows.
spite this, there are cogent reasons for preferring the. yasf 3 '
° First, in the absence of superior knowledge, all third-order correlations which appear in the

transport equations must be represented by way of gradients of the dependent variable of the
relevant equation. Thus, for example,

9 [u,(”/“f +£)}
ox; L' 2 ' p

B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows 273

is represented by:

0 ak]
ax; [Dk 0x;

where D, is an effective diffusion coefficient for the turbulence energy k. Now it is not possible
to transform an expression such as

] ok
sy (0 5]

into a similar expression involving € as dependent variable, without introducing gradients of &
into the equation. Thus, if physical realism demands that the only second-order differential
coefficient in the &/ equation should be that involving &/ itself, there must be rwo such coeffi-
cients in the equation for e; and vice versa.

Secondly, there is no knowledge, at present, of whether the transport of k/, W or € is the more
correctly represented by a single second-order term; and one reason for this lack of knowledge is
that, in the free turbulent flows (jets, wakes, etc.) that have been most widely studied, the length
scale is found to be nearly uniform across the flow. As further manipulation of (2.1 —5) and
(2.1-6) easily reveals, if d/ is nearly zero, there follows:

dkl  dk

Kl Kk (2.1-7)

dw  dk

Wk (2.1-8)
3 dk

d‘ee'“id? (2.1-9)

so that error-free transformation of one model into another is nearly possible.

Thirdly however, it is known that, in the region close to a wall where the shear stress 7 is uni-
form, the length scale increases linearly with distance from the wall. Now, in such a region the
differential equation governing the variable k™[I" (adopted for the moment as a generalization of
k, W(=k/I?) and € (= k*2/1)) typically reduces to:

m—1 (3U \2 +1/2
0=;2 [B 2] 1 ¢,y 7 (2L, ok n——
ax, Lo, ox, o \ox, Jn

the convection terms having vanished and 0, introduced now to represent the Prandtl number for
the turbulent transport of k™/I". Further, because the energy is uniform and the length scale / is
Proportional to the distance from the wall X,, this differential equation reduces to an algebraic
Telation between the constants, namely:
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1/2
VGG GG -0 (2.1-11)

n?
g, 2 2

K K

where k is von Karman’s constant, appearing in the “logarithmic law of the wall’’:

U 1; (Exz(T/P)”’] (2.1-12)
K

(/p)" =

In developing (2.1—11), equation (2.1—12) has been substituted into (2.1 —10), as has also the
relation defining the effective turbulent viscosity u,, namely:
u,=C, pk'?] (2.1-13)
tT Yu
where p is the fluid density. . . )
It is now possible to explain the main reason for preferring the k ~ € 1_nodel (for which n =+1)
to the kK ~ W model (for which n =+2) and to the k£ ~ k! model (for which » = —1): when the

G Gy € i i ion (2.1—11), the resulting value of
oper values of C,, C;, C, * and « are inserted into the equation ( ;
gr if—O 8 for the 7c ~ lkl rilodel, 2.9 for the k ~ W model and 1.3 for the k ~ € model; and only

" ’

the latter value is of a magnitude which will fit the experimental data for the spread of the various—

entities at locations far from walls. Because of this, the developer; of the k ~ kl and k ~ W models
have to propose that one or more of the “constants”,. perhaps i 1tse1f,.sho.u1d vary with the norll-
dimensional ratio x,/l; only for the k ~ € model is this adjustment, which is hard to base securely
i tal data, rendered unnecessary.
ong?gzﬁzz,nit may be that some of the “constants” should depend upon x,/l; and perhaps also
the true behaviour of turbulence requires that gradients of more than one turbulen.ce. property
drive diffusional effects. However, until theoretical or experimental evidence of this is forthcom-
ing, it seems better to stand by the simplest formulations.

2.2. Recommended Constants and Functions

At high Reynolds numbers, the transport equation for € may be expressed:

De_1 o [ﬁfﬁ}+C’“’£(BU"+8U")8U"—C2€—2 (22-1)
E_pa—xk o, 30X, P k\ox, ox;/ ox, k

a form which was first developed and used in the Imperial College group by Hanjali¢ [17]. Equa-
tion (2.2—1) together with a similar one for the turbulence energy, k:

Dk
Dt

2 [#t ak]+#t(9Ui+aUk) st S (2.2-2)

1 it
pax, Log ax, ] p \ox,  ax, / ax,

enables the turbulent viscosity u, to be found from equation (2.1—-13) or its equivalent in terms

* The values of C; and C; depend on the choices for mn and n.

-

efforts have failed to devise any single set
that of the plane free shear flows and the plane or axi
mendation has therefore been made by Launder et al. [19] based on the work of Rodi [30]

Here reference is made to U i
flow; Y is the radial width of t
across the width of this region

* For wakes the form of (2.2-4) renders f zero.
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of € (rather than /); thus:

u,=Cﬂpk2/e. (2.2-3)
According to the recommendations of Launder

free turbulent flows, the constants appearing in
given in table 2.1:

et al. [19], made after extensive examination of
equations (2.2—1) —(2.2—3) take the values

Table 2.1
The values of the constants in the k ~ € model
C# Cl Cg O O‘E
0.09 1.44 1.92 1.0 1.3

The above constants have been found a
ferent values from those quoted have hith
but there is reason to suppose th

ppropriate to plane jets and mixing layers. Slightly dif-
erto been adopted in the calculation of flows near walls;
at, for these flows also, the values in table 2.1 would lead to as

satisfactory preditions as obtained with those originally employed.

For axisymmetric jets it is, regrettably, necessary to modify two of the constants; continued

of constants that will predict their behaviour as well as
symmetric wall flows. The following recom-

C, =0.09 — 0.04f

2.2-4)
¢, =192 —0.0667 f (2.2-5)
where
- | Y (aUcl_ 3l )0'2
! (2AU‘ ax, lax, =

.1» the velocity at, and in the direction of, the symmetry axis of the
he mixing region, and AU is the axial-direction velocity difference

This recommendation is especially tailored to fit the experimental data for axisymmetrical jets *

and little universality can trully be claimed for it. (For example, if a thin wire lay along the axis
of the jet, U, would be made zero thereby: yet it seems unlikely that the spread of the jet would

be significantly altered). However, it is the best available at the present time. Rodi [30] has found
that a further modification of the consta

are so weak that the rate of turbulence-e
bation rate. Examples of such flows are wakes at very large distances behind the wake generators
and the decaying flow behind a self-propelled body. In these cases C, assumes higher values than

nts is required in turbulent flows where velocity gradients
Nergy generation is appreciabiy less than the energy-dissi-

P CE M T
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the standard one: Rodi [30] has correlated the required magnitude of C“ as a function of the
average level of u,(dU,/dx,)?/pe across the wake. ' . o .
Although the weak shear flows mentioned above are not without their practical importance, it

needs to be emphasized that the great majority of flows of interest to the mechanical engineer are

ones adjacent to, and often enclosed by, rigid surfaces. The presence of a wgll enforces steep
velocity gradients; consequently the level of turbulence-energy productlop is always large; the
values of the constants given in table 2.1 are therefore nearly always applicable.

2.3. The influence of a nearby wall

The form of the model which has been presented above is valid only for fully turbulent flows.
Close to solid walls, and some other interfaces, there are inevitably regions wbere the local
Reynolds number of turbulence (= k'/?//v, where [/ = k3/%/€) is so small that viscous effects pre-
dominate over turbulent ones. There are two methods of accounting for these regions in numeri-
cal methods for computing turbulent flow: the wall-function-method; and the low-Reynolds-
number-modelling method. We shall now discuss these in turn.

— I-function method
i 3Th?s r?éihy:;ill ifthe one which has been most widely used, and which is indeed.still to be pre-
ferred for many practical purposes. Its merits are two: it economizes computer time and storage;
and its allows the introduction of additional empirical information in special cases, as when the

is rough. '

wa&;ilrfoungctions have been proposed and used by many authors including Spalding [31],
Wolfshtein [32] and Patankar and Spalding [20]. The ones proposed here represent the best
practice of the Imperial College group; but it: must be admitted that further systematic re§e.arf:h
must be conducted before they can be regarded as having been tested adequately. They will first
be described, and then their rationale will be explained.

Fig. 2.1. The near-wall nodes.

Consider the adjacent grid points W and P of a finite-differen'ce grid on which 'the flow is tq be
computed (fig. 2.1). The first feature to make sure of, yvhen using the wall—f:;/r;ctlon method, 1]Sl
that the point P is sufficiently remote from W, whjch lies on the wall, for.(k I[v)p to be mutuhere
greater than unity; so much greater in fact that the viscous effects are entirely overwhelmed
by the turbulen: ones. o

The fluxes of momentum and heat to the wall are then supposed to obey the relations:
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(2.3-1)

Tp=T)CppC K oy [Ey,,(qyz k)Y
K

172 & - 1/4
, 2]+ o 4 (i) (ﬂ—l)(—”) (2.3-2)
q" v i sinm/4 \ k o, Op

Here U, 7,,, F s Lo q.,,and Y p are respectively the time-average velocity of the fluid at point P
along the wall, the shear stress on the wall in the direction of the velocity U,, the time-average

temperatures of the fluid at points P and W respectively, the heat flux to the wall, and the distance
of the point P from the wall.

Other symbols appearing in the equation have the following meanings:
E  afunction of the wall roughness, approximately equal to 9.0 for a smooth wall;

C, the constant-pressure specific heat of the fluid;

0, the effective Prandtl number of the fully turbulent fluid (usually taken as being of the order
of 1);

0, the Prandtl number of the wholly laminar fluid;
A Van Driest’s constant, equal to 26.0 for a smooth wall.

The quantity k,, the value of & for the grid point, is supposed to be known. It should be calcw
lated from the regular balance equation of the finite-difference grid, diffusion of energy to the
wall being set equal to zero (in the absence of better information). When calculating k,, it is of

course necessary to assign a value for the average energy-dissipation rate over the control volume;
this is to be deduced from the assumption that:

Yp 32 12 \1/2

k Ey,C?k,))
J eay=c,* ln[ e J (2.3-3)
0

The rationale of these recommendations comprises the following main points:

(a) The wall functions reproduce identically the full implications of the “logarithmic velocity
profile” when uniform shear stress prevails in the layer WP, and generation and dissipation of
tnergy are in balance there; for then, as is easily shown, 7/p = C‘i”k = constant.

(b) The second term on the right of equation (2.3—2) has its origin in an analysis of experimen-
tal data conducted by Jayatillaka [33]. Further information is to be found in [1].

(c) The appearance of the logarithmic function in (2.3—3) results from the necessity to pre-
Sume € to be proportional to k*/*/y, coupled with a further modelling of the wall function on the
Constant-shear-stress situation.

The extra empirical information which can be inserted by way of wall functions is expressed by
Way of the constants or functions £ and 4. Not only can roughness be accounted for, but also such
Phenomena as pressure gradient and mass transfer through the wall. When the “wall” is slightly
rlL’Xiblev, as is true of the interface between two immiscible liquids, further influences are present

}Vllich can, perhaps, be expressed by way of the formulae. However, there is much research to do
In this branch of turbulence-model theory.

R

" -— =
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* 2.3—2. The low-Reynolds-number modelling method

Several authors have sought to devise turbulence-model equations which are valid throughout
the laminar, semi-laminar, and fully turbulent regions. They include Glushko [34] and Wolfshtein
[32], both of whom worked with one-equation turbulence models. We here summarize the re-
commendations of Jones and Launder [12,29], who extended the ¥ ~ € model to low-Reynolds-
number flows.

In this version of the model, k and ¢ are determined from the following pair of equations:

2 ’ 2 2
D12 [(%sy) ai]wlgﬂa_fff(ﬂfzﬁfff)_cz_f_w&(a ) 23-4
kpaxj

o, dx; ox;  dx; k Top 3x;0x,

U. (U, aU; 1722
Dk _1 3 [(i’+#)££]+ifi_'(__'+_f)_2,,(ak ) =
o pox; L\og 0X; p 9x; \ox;  OX; 0x;

1

(2.3-5)

The turbulent viscosity is then obtained from equation (2.2—3). In the above equation C,, Ty and
0. retain the values assigned to them for high Reynolds numbers, while C, and C, are held to vary
with turbulence Reynolds number according to the formulae:

C,=C,_ exp[-2.5/(1+R,/50)],

C,=C,_[1.0-03exp—R?], (2.3-7)
where R,'denotes the turbulence Reynolds number and C,. and C,_ are the values assumed by
C, and C), in the fully turbulent region, i.e. the values given in table 2.1 *.

It is seen from (2.3—4) and (2.3—5) that viscosity now exerts influence on the levels of k and €
in two further ways: firstly laminar diffusive transport becomes of increasing importance as the
wall is approached and, secondly, extra destruction terms have been included which are of some
significance in the viscous and transitional regions. One of these terms,

7 d*U, \?
0 Qi ( : )
p \dx;dx,

has been included in the € equation to produce satisfactory variation of k with distance from the
wall. .

The extra term in the k equation, —2v(a’k”2/a’xj)2, has been introduced for computatlonall 5
rather than physical reasons. Measurements indicate that the level of the turbulence energy diss!-
pation rate is constant in the immediate neighbourhood of a wall (i.e. for x,(7/p)"?/v<5). We

could, in principle, thus apply a zero-gradient boundary condition to the € equation at the surface-

In practice, however, Jones and Launder {12] did not find this a tractable route; with this

* The values of Cy and C, adopted by Sones and Launder [12] (1.55 and 2.0 respectively) differ slightly from those.given in
table 2.1. As mentioned above, however, in wall flows generation and decay rates of turbulence energy are nearly in balance
and then it is mainly the difference between these constants that is influential; and the difference is very nearly the same as f:j"
the standard constants. So predictions obtained with the constants of table 2.1 would differ only slightly from those obtaine
for the same flow using the values given by Jones and Launder.

(2.3-6)

-~

- —
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boundary condition they were unable to devise a compatible set of Reynolds-number functions.
Instead the practice adopted was to assign the quantity € to zero at the wall and to introduce to

the k equation the extra term mentioned above which is exactly equal to the energy dissipation
rate in the neighbourhood of the wall.

2.4. Extension to flows with non-isotropic effective transport coefficients

The form of the k ~ € model presented so far has by implication adopted the notion of a
scalar turbulent viscosity.

—PUU; = L,

2U; aU,
[ (2.4-1)

+—L | —2p6..k.
dx; ax] 3P%

i
This supposition has proved prefectly adequate in two-dimensional flows without swirl, where
only one stress component exerts much influence on the flow development. In flows with swirl,
however, and indeed in three-dimensional flows generally, evidence is accumulating (e.g. Roberts
[35]) to indicate that the measured flow distribution can be predicted in detail only by choosing

a different level of viscosity for each active stress component. None of the workers who has sought
te extend (2.4—1) to include non-isotropic effects has succeeded in devising rules for calculating
tie relevant viscosity components that cover even the limited range of flows in their enquiries.

In this section we mention an extension of the k ~ € model which, though of recent origin and
not yet thoroughly tested, evidently provides a more generally valid formula connecting the stress
and strain fields than the effective viscosity hypothesis above. The approach is described in detail
by Launder [36] and Rodi [30]; applications of the procedure have been reported by Launder
and Ying [37, 38] to the flows in square-sectioned ducts, by Rodi [30] to obtain the normal-
stress profiles in some free-shear flows, and by KooSinLin and Lockwood [39] to the calculation
of flows near rotating cones and discs. The main steps are outlined below.

The starting point in deriving the relevant stress-strain formulae is the exact equation for the
transport of Reynolds stress which may be written:
Du,u; —-17/ U,

Dr = [uiuk a—x,f U Uy 8_xk:| +D,.1. te, +R,-,-

(2.4-2)

Wwhere the first group of terms on the right of (2.4—2) represents the generation of the stress com-
ponent u,1; by the working of this and other stress components against mean velocity gradients
and where Dy, €;;, and R;; stand for turbulence correlations whose values are not directly know-
able but whose effects are, respectively, diffusive, dissipative and redistributive. The current
Practice in approximating these terms is to assume that:
(1) diffusional transport is proportional to the spatial gradient of the stress component in

question;

(i) dissipation takes place isotropically in each of the three normal-stress components and is
Zero in the shear-stress equations;

(iii) the redistributive action of pressure fluctuations can be represenied by two groups of
terms, one involving products of Reynolds stress and (e/k); the other containing products of the
Stresses and mean velocity gradients.
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Further details on precise forms of the above approximations are given by Launder, Reece and
Rodi [40]. What is especially important in the present context is that the approximation of
neither €;; nor R;; contain gradients of stress components. The essence of “algebraic™ stress
modelling then resides in the recognition that if the terms Du;u;/Dt and D ; are eliminated from
(2.4-2) the equation is thereby reduced from a differential to an algebraic set of equations
among the Reynolds stresses, the turbulence energy, the energy dissipation rate and mean velocity
gradients. Thus expressed symbolically:

- aUI
u‘-l/lj =f upuq’ k) e’.a—x;; %

(2.4-3)

Research has not yet revealed the optimum form that the function in (2.4—3) should take. Its ap-
pearance will depend on the approximated form of R; and €,; and on how the convective and
diffusive transport terms are eliminated from (2.4—2). Launder [36] neglected the latter terms
entirely while Rodi [30] assumed that convective transport of 5,7] was proportional to Dk/Dt
times zﬂ/k, with an equivalent assumption for the diffusion term. In complicated velocity fields
these terms are rarely the most influential ones; so in practice only small differences result from
adopting one of the above proposals rather than the other.

What is certainly the case is that the algebraic form of (2.4—3) is always more complex than the
isotropic viscosity formula (2.4—1); but, for boundary-layer flows, the additional complexity in-
creases only slightly the cost of computation. The turbulence energy and dissipation rate appear-
ing in (2.4-3) may be found from the pair of differential equations presented in section 2.2; this
is the simpler practice. Alternatively one may use the values ofﬂ;ﬂi obtained from (2.4-3) to re-
place (3 U;/ax; + dU;/dx;) which appears in the generation terms of these equations; this would
be a more consistent practice and probably a more accurate one too.

3. Some Applications of the £ ~ € model
3.1. The plane jet in a moving stream

An example of the predictions generated by the k ~ € modelin a free shear flow is presented
in fig. 3.1 from the work of Launder et al. [19]. It relates to the decay of a plane jet in a moving
stream, the experimental data being those of Bradbury [41]. Predictions are shown for the k ~ €
model and for two simpler treatments; one based on Prandtl’s [5] mixing-length hypothesis and
another similar to his later proposal [6] in which a differential equation was provided for & (but
not for /).

Predictions obtained with the k ~ € model are in satisfactory agreement with experiment
throughout the region of measurement. The simpler models, however, fail to predict correctly the
development of the shear flow much beyond the end of the potential core. Of course, the con-
stants in these models could have been adjusted to give better downstream agreement; but only
by sacrificing the good agreement in the mixing-layer region near the jet exit. The two-equation
level is the simplest at which universality is secured for both jet and mixing layer.
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| Spalding procedure has been used to solve the equati

v dccuracy within 1% (about four times as many as when
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Fig. 3.2. Decay of wall jet on conical surfaces, Sharma (1972).
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Fig. 3.3b. Friction factor in pipe flow at low Re.
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Fully-developed flow in a pipe is considered in fig. 3.3; the low-Reynolds-number end of the
turbulent-flow regime is the region here under consideration. Fig. 3.3a shows the mean velocity
profile across the pipe plotted semi-logarithmically in so-called ‘universal’ coordinates. The straight
line passing diagonally across the figure represents the ‘law of the wall’ formula, equation (2.1—12);
at high Reynolds numbers (Re > 2 X 10*) the measured and predicted profiles coincide with this
line in the fully turbulent region near the wall. It is in such conditions that it is appropriate to
adopt the wall-function formula provided by (2.3—1). The Reynolds number of the experimental
data shown in the figure is only 6000 however; we see that the profile lies well above the high-
Reynolds-number line. The predictions of Jones and Launder [29] reproduce satisfactorily this
departure from the universal behaviour.

Previous predictions of flow in pipes and channels have employed formulae which imply the
near-wall region to be independent of the Reynolds number of the flow. If these models are tuned
to give correct predictions for Re > 20,000 the friction factor at low Reynolds numbers is invari-
ably predicted too high. The reason is, as seen above, that the space-average value of U* is larger
than it would have been had the prediction been tried to equation (2.3—1); the friction coefficient
is simply the square of the reciprocal of this average value. Fig. 3.3b shows the low-Re version of
the k ~ e model to give excellent predictions right down to the Reynolds number at which the
turbulent flow becomes intermittent (characterized by a level of Cf which falls as Re is decreased).

. 4. The boundary layer on a turbine blade

The example shown in fig. 3.4 considers the prediction of heat-transfer around the pressure
surface of a turbine blade. Detailed measurements of heat-transfer coefficients were obtained by
Turner [43] for three different levels of turbulence energy upstream of the blade. In this example
the computer solutions were started very near the stagnation point with a laminar initial boundary
layer. The turbulence present in the free stream is able to exert appreciable effect on the
boundary-layer development: at the highest level of free-stream turbulence the boundary layer

200
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Fig. 3.4. Heat transfer coefficient on pressure surface of gas turbine blade.
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has nearly completed the transition to turbulent flow by the end of the blade. At the intermediate
turbulence level, the high level of acceleration over the forward portion of the blade inhibits any
trend towards an organized turbulent flow until 40% chord; and, for the lowest level of free-
stream turbulence, the boundary layer remains laminar throughout. For all three cases the predic-
tions made by Priddin [44] are in extremely close agreement with experiment. It should be em-
phasized that there has been no explicit specification of when transition will begin in this set of
calculations; indeed it may be said that the low-Reynolds-number form of the k ~ € model has its
own built-in ‘transition criterion’. :

3.5. Film cooling

In the wall4jet flows considered earlier, the lip of the injection slot was thin and the flow was
directed smoothly along the wall; consequently the parabolic form of the transport equations
could be employed since there were no regions of flow recirculation present. When film-ccoling
devices are incorporated into combustion chambers, however, they often possess features akin to
the wall jets examined theoretically and experimentally by Matthews and Whitelaw [45]: the slot
lip is thick and there is an appreciable step in the surface causing a region of reversed flow. An
example of the predictions obtained by these workers is provided in fig. 3.5; the ordinate is the
adiabatic-wall “effectiveness™ and the abscissa is the distance downstream from the injection slot.

These solutions were obtained by means of the elliptic flow finite-difference procedure of
Gosman et al. [21]. The use of this numerical solution procedure is common to all the recirculat-
ing flow examples presented in this section as is also the employment of the wall-function method
for treating the flow adjacent to the wall. In this particular example, however, a modification was
found necessary to the practice proposed in sec. 2.3—1. On the downstream face of the step and
of the lip (but not elsewhere) the level of € given by equation (2.3—3) was reduced by a factor of
20. The probable cause of the exceptionally low level of dissipation rate there is suggested by
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Fig. 3.5a. Wall jet with thick lip and step, character of flow. Fig. 3.5b. Decay of wall jet.
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flg. 3.5a. By virtue of the recirculating zones, downstream turbulent fluid with large leneth scale
is caused to impinge on the surfaces in question. Because of the very low level of 511 it

a‘long these surfaces, the convected fluid is much more influential in determining the local dissipa-
t{on Irate than is the distance from the wall. What is evident from fig. 3.5b is that with this mod?-
fication, agreement between experiment and prediction is excellent. We should mention that this
level of agreement is representative of that obtained for the whole range of flow conditions

examined by Matthews and Whitelaw, covering large variations in the ratio of injectant: main
stream velocities and densities.

2ar stress

3.6. Coaxial jets

As a further example of an elliptic flow, we consider the devlo pment of confined coaxial jets
depicted in fig. 3.6a; the velocity ratios are large enough for there to be a recirculating zone
present at some position downstream from the jet exit. Fig. 3.6b compares some calc;lated
properties of the recirculating zone with the experimental data of Barchilon and Curtet [46
predictions have been obtained by Elghobashi [47]. To conform with the experimental
results are presented in terms of the Craya—Curtet parameter defined as:

C, = L

LU= UB G + AU — Uy

]; the
data, the

(3.1-1)

whgrel U; and U, are respectively the velocities of the central and annular jets; r; and r, are the
radii of the jet and the duct; and U, is defined by: )
U, =(U=U,)(rfr,)* + U, . (3.1-2)

It can be seen from fig. 3.6b that the numerical solutions, obtained by means of the procedure of

Gosman et al. [21], predict quite well the measured position and magnitude of the recirculating
zone over the whole range of C, covered by the experiments.

Predictions (Eighobashi 1972)
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Fig. 3.6b. Properties of recirculation zone in ducted coaxial
jets.

Fig. 3.6a. Character of flow for coaxial ducted jets.
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——— Predictions {Nielsen 1972)
— == Experiment

Fig. 3.7. Velocity contours in model auditorium.
3.7. A cavity flow

Fig. 3.7 shows some predictions obtained recently by Nielsen [48] of flow in a rectangular
sectioned room; fluid enters the room through a narrow slit in the top right hand corner and
leaves at bottom left. Nielsen’s particular interest here concerned the problem of ventilating
auditoria. To be effective, the ventilating equipment must provide a steady replenishment of air
but most not induce velocities so high that the audience feels a draft. There is thus a fairly narrow
tolerance on the permissible air velocities near the auditorium floor. It is seen that the velocity
contours in this model room are indeed in close agreement with experiment. The result suggests
that it would now be fruitful to use the method for extensive design explorations with flows of
this type. The cost of such a study would be but a small fraction of that of constructing and in-
strumenting a model auditorium.

3.8. Flow along a twisted tape ,_

Another flow of great industrial importance is that through tubes with twisted-tape inserts. The
purpose of the tape is to impart a swirling motion to the fluid, thereby increasing the surface
heat-transfer coefficient. Date [49] has obtained numerical predictions of this flow again by em-
bodying the k ~ € model into an adaptation of the procedure of Gosman et al. [21]. An example
of his predictions is provided by fig. 3.8 which shows the variation of friction factor with
Reynolds number for a twist ratio (i.e. the number of pipe diameters for the tape to complete one

revolution) of 3.14. In this case agreement with experiment is not so good as in previous examples.

Part of the discrepancy may be due to the use of the standard ‘equilibrium’ wall logarithmic law
rather than that given by equation (2.3—1). Probably, however, the main source of disagreement
stems from the turbulent viscosity becoming strongly non-isotropic in the complicated strain field
of this flow.

3.9. Flow through square-sectioned ducts

In the above example the most promising route for improving predictions seems to be by the
use of the algebraic-stress method discussed briefly in sec. 2.4. Certainly this approach has
successtully been brought to bear on the problem of flow in ducts of square cross section, where
the axial velocity U, varies over the cross section in both coordinate directions x, and x. This
strain field gives rise to a turbulent stress field in the plane of the cross section which in turn
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Fig. 3.9. Prediction of fully-developed flow in square-sectioned

Fig. 3.8. Flow in tubes containing twisted tapes. duct (Tartchell, 1972).

generates a secondary velocity field in this plane. The predictions of Tatchell [50] shown in

fig. 3.9 are based on the algebraic stress model and predict very closely the measured secondary

flow pattern and its effect on the axial velocity contours. In contrast the k ~ € model employed
with the standard isotropic viscosity relation, equation (2.4—1), leads to the result that there are
no motions in the plane of the cross section.

4. Concluding remarks

The examples considered in the preceding section convey a representative impression of the
capabilities of the k ~ € model. It is the simplest kind of model that permits prediction of both
near-wall and free-shear-flow phenomena without adjustments to constants or functions; it
successfully accounts for many low Reynolds-number features of turbulence; and its use has led
to accurate predictions of flows with recirculation as well as those of the boundary-layer kind.

Nevertheless the model can still geatly benefit from further improvement and extension. The
wall functions used at present are based on the notion that the length scale is a universal function
of distance from the wall. Yet the superior predictions given by the low-Reynolds-number version
of the model rest squarely on the model’s ability to account for the way that accelerations or
surface mass transfer alter the near-wall length scale. Sometimes, as in the wall jets examined by
Matthews and Whitelaw [45], turbulence generated remote from a wall can cause abnormally
high levels of length scale near a surface. Urgently needed therefore is a set of wall functions con-
taining the full implications of the low-Reynolds-number form of the model. Indeed there remain
many important research tasks concerned with documenting this near-wall region: effects of steep
property variation, high Mach numbers, foreign-gas injection, buoyancy and combustion have
received little attention in the context of the & ~ € model.

An equally important research task is that of replacing the isotropic viscosity formula by more




- ——
T o SO

N

s il lBes

s ———— —

288

B.E. Launder. D.B. Spalding, The numerical computaticn of turbulent flows

general expressions connecting the stress and strain fields in turbulent flow. As remarked above,

there have already been a few successtul applications of this approach to tlows with more than
one significant shear-stress component: in most cases, however, these algebraic-stress formulae
give rise to very complicated non-linear equations for the stress components and. for recirculatin:
flows, may scriously complicate the task of solution. There are thus two areas of research implicd
here. Firstly in the field of numerical analysis. new iteration schemes are needed 1o promote rapyi
convergence tor even highly non-linear sets of equations. Second. there needs to be a searching
set of tests applied to the approximated forms of R,; and €, appearing in equation (2.4-2): for
no one wants to spend extra money and effort using a more ¢laborate procedure unless he can be
sure his predictions will possess greater physical realism than those generated by simpler models.
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