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The p · h aper reviews t e problem of making numerical predictions of tu 
nal economy, range of applicability and phys1"cal e 1· b rbulent flow. It advoc.atei that compu tatio-
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y 

y 

Radial width of mixing region 
Coordinate normal to wall 

Greek Symbols · 
Rate of dissipation of turbulence energy 

: von Karman's constant appearing in (2 .1 - 11) 

Molecular viscosity 
Turbulent viscosity 

µ 

Kinematic viscosity 
A generalized dependent variable 

Density 
Effective turbulent Prandtl number 
Effective turbulent Prandtl number for transport of</> 

Molecular Prandtl number 

T Shear stress 

Subscripts 
i j k 

0 

p 
w 

Subscripts denoting Cartesian coordinate directions 

Inner surface 
Outer surface 
Value at a node adjacent to the wall 

Wall value 

Superscript · f and p 
+ Denotes qua:-tity non-dimensionalized by means o v, Tw, . 

1. Introduction 

1.1. The Problem 

. . , 1 · orta.nce are three-dimensional and time-depen-
. Turbultmt flows, which are of.grea t pr~cfft1-..a lt~alp . ti"on' s of fluid dynamics are well advanced 

th d f solving the di eren 1 eq ua · 
dent. Computer me ? s 0 

. s Then why is it that there are no computer · 
even for three-dimensional ti~he-<~epfeuln~~n~~~~o· the fluid dynamics and which can be applied to 
models of turbulent flow wh1c <JO JUS 

practical · probl~ms? " r stora e exceeds by many ord~rs of magnitude what . 
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A good turbulence model has extensive universality, and is not too complex to develop or use. 
Universality implies that a single set of empirical constants or functions, inserted into the equa
tions, provides close simulation of a large variety of types of flow. Complexity is measured by the 
number of differential equations which the model contains, and the number of the empirical con
stants and functions which are required to complete them; increase in the first complicates the 
task of using the model, increase in the second that of developing it. 

1 
Satisfactory calculation procedures and computers are now available for solving differential 

equations, on the scale of the mean motion, for quite large numbers (e.g. 20) of simultanec JS 

equations. The main obstacles to model development are therefore the difficulty of selecting 
which set of differential equations is most capable of providing universality, and the difficulty of 
then providing, from experimental knowledge, the required constants and functions. 

1.2. Purpose of the present paper 

In the present paper, the authors describe recent work on the development of a particular tur
bulence model, that in which two differential equations are solved, the dependent variables of 
which are the turbulence energy k and the dissipation rate of turbulence energy€. Emphasis is 
given to aspects of the model having importance for flows adjacent to solid walls. 

This is of course not the only available turbulence model. Others have been reviewed in recent 
vnrks by the authors [ 1, 2] and others (Harlow [ 3] and Mellor and Herring [ 4]). 

Among such models are:-
Prandtl 's [5] mixing-length model; the one-differential-equation models of Prandtl [6], Bradshaw, 
Ferriss and Atwell [7] and Nee and Kovasznay [8]; the two-differential-equation models of 
Kolmogorov [9], Harlow and Nakayama [ 10], Spalding [ 11], and Jones and Launder [ 12]; and 
the more complex models of Chou [ 13], Rotta [ 14], Davidov [ 15], Kolovandin and Vatl1tin [ 16], 
Hanjalic [ 17] and Hanjalic and Launder [ 18]. 

Recently, a conference was devoted to comparison of the predictions of various models, with 
each other and with experiment, for certain turbulent-flow phenomena remote from walls. The 
k- €model was there shown, by Launder, Morse, Rodi and Spalding [ 19], to be surpassed only 
by admittedly more complex "Reynolds-stress" models, which are· still not completely developed. 
It therefore seems appropriate to present a more detailed description of the k - € model than has 
been available hitherto, and to review recent predictions which have been made with its aid . 

The paper will concentrate attention on the differential equations and auxiliary relations which 
define the model, and on their solutions. The solution procedures will not be described here, 
because they are standard ones, published by Patankar and Spalding [20] and Gosman, Pun, 
Runchal, Spalding and Wolfshtein [21]. 

Th:' dnswer is that the neces:.ary compute tg t. e for i'mportant cor..>tituen ts of the. tur-
. th" g of the compu er 1m , . n· . 

is currently available, to say no _m . f h d of a mi"llimeter in size while the whole ow 2. The k - € model 
t k l· ce m eddies o t e or er ' . · 

1.1lence phenomenon a e pa ·1 't A grid fine enough to allow accurate description 
Jmain may extend over mders or k1 on:t: ers. immense and totally impractical number of nodes. 
[a turbulent flow would therefore ru!mre fant bulent flows is pressing· to meet it, "turbulence 

h . t., l 1eed f"or computation o ur . . d " I e- . 
Yett e prac 1ca .1 • . . t f ts of d~fferential equations, and associate ~ g 

odels'' have lieen mvented -. These c~1~~is o ;~hich m conjunction with those of the Nav1 r- . 
lie equations and constants, the ~·o 1.l ions? . 1 t fl ·a 
)kes equations, close ly sirr:•._1!ate '.;1,, bt.:hav1our of real turbu en m s ... 

~·· 

2.J. The reason for its choice 

The authors and their colleagues have had experience with three different kinds of two-equation 
turbulence model: k - kl, k,;., W, and k - €.Herek stands for the tur?ulence energy: 
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(2.1-1) 

l is a length representing the macroscale of turbulence, which we may define in terms of k, €,and 
'a constant CD through : 

l = CD k3f2 I€ ; (2.1-2') 

Wis a quantity having the dimensions of (time)-2
, which has been interpreted (Spalding [22]; 

Saffmann [23]) as representing the time-average square of the vorticity fluctuations and which 
can also be defined in terms of k, E, and CD through: ' 

~ 

I 

1 

I 
l • 

and E is defined by: 

€ = v aui aui 
axk axk 

I 

(2.1-3) I 
(2.1-4) 

where v is the kinematic viscosity of the fluid. 
Papers describing the k - kl model and its application to a large number of turbulent flows, 

both with and without the presence of solid walls, are those of Rodi and Spalding [24], and Ng 
and Spalding [25, 26]. The k- W model has been described in papers by Spalding [11, 22, 27] 
and Gibson and Spalding [ 28]; a similar model was proposed independently by Saff mann [23]. 
A form of k - E model was first proposed by Harlow and Nakayama [ 10], and has appeared also 
in the papers of Jones and Launder [ 12, 29] and Launder et al. [ 19]. 

The definitions (2.1-2) and (2 .1-3) above imply: 

dW = _ 2 dk + 2 dE. 
W k E' 

(2.1-5) 

(2. I-6) 

With the aid of these equations, it is easily possible to turn a pair of equations fork and kl say, 
into a pair of equations fork and W, or another pair fork and€. Therefore, one might regard the 
various two-equation models as differing merely in mathematical form, and not in content. De
spite this, there are cogent reasons for preferring the k - E model, as follows. 

First, in the absence of superior knowledge, all third-order correlations which appear in the 
transport equations must be represented by way of gradients of the dependent variable of the 
relevant equation. Thus, for example, 

I 

is represented by : 

a rD ak J 
ax; L k ox; 
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where Dk is an effective. diffusion coefficient for the turbulence energy k. Now it is not possible 
to transform an expression such as 

~nto a similar ~xpression ~nvolvi~g E as dependent variable, without introducing gradients of k 
mto th~ eq ~ation. Thus, if physical realism dema.nds that the only second-order differential 
c?effi~1ent m the ~I equation should be that involving kl itself, there must be two such coeffi
cients m the equation for E; and vice versa. 

Secondly, there is no knowledge, at present, of whether the transport of kl Wore is the more 
corre~tly represented by a single second-order term; and one reason for this la~k of knowledge is 
that, ~n the free turbulent flows Uets, wakes, etc.) that have been most widely studied, the length 
scale is fou~d to be ne~rly u?iform across the flow. As further manipuiation of (2. J- 5) and 
(2.1-6) easily reveals, if dl is nearly zero, there follows: 

(2.1-7) 

(2.1-8) 

(2.1-9) 

so th~t error-free tra~s~ormation of one model into another is nearly possible. 
Thirdly however, it is known that, in the region close to a wall where the shear stress 7 is uni

f~rm th~ length scale increases Ii.nearly with distance from the wall. Now, in such a region the 
d1fferent1al equation governing the variable km/111 (adopted for the moment as a generalization of 
k, W(=k/12) and E (=k312 /I)) typically reduces to: 

0 =_a_ [µ,, a(km /In)] + c µ km-1 (a ul )2 - c pJC'1+1f2 
OX2 a, ax2 1 

t !" OX2 2 ln+l (2.1-10) 

the convection terms having vanish~d and a, introduced now to represent the Prandtl number for 
the tur~ulent transpo~t of km/1 11

• Further, because the energy is uniform and the length scale f is 
prop?rt10nal to the distance from the wall x 2 , this differential equation reduces to an algebraic 
relation between the constants, namely: 
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2 c c112 
!!.__+ 1 µ 

a1 1<2 

c c112 
2 µ = 0 (2.1-11) 

where K is von Karman 's constant, appearing in the "logarithmic law of the wall'.': 

U1 =l.ln [ Ex2(r/p)112]. 

( 'T/ p )112 K V 
(2.l-12) 

In developing (2.1-11), equation (2.1-12) has been substituted into (2.i-10), as has also the 
relation defining the effective turbulent viscosity µ1 , namely: 

= c pk1121 µt µ (2.1-13) 

where pis the fluid density. . . _ + 
It is now possible to explain the main reason for prefernng the k"" e ~ode~(for ~h1ch n - 1) 

to the k - W model (for which n = + 2) and to the k"" kl mod_el (for which n - -1). ':hen the 
1 f C C C *and Kare inserted into the equat10n (2.1-11), the resulting value of proper va ues o , 1> 2 I d l 

a is -0.8 for the k- kl model, 2.9 for the k- W model and 1.3 for the k"" e mode; an on~ 
the latter value is of a magnitude which will fit the experimental data for the spread of the vcmous----
entities at locations far from walls. Because of this, the developer~ of the k"" kl and ~"" W models . 
have to propose that one or more of the "constants", perhaps at itself'.sho.uld vary with the non
dimensional ratio x2 /l; only for the k"" e model is this adjustment, which is hard to base securely 
on experimental data, rendered unnecessary. 

Of course, it may be that some of the "constant~" should depend upon x 2 /l; and perhaps also 
the true behaviour of turbulence requires that gradients of more th~n ~ne turbulen_c~ property 
drive diffusional effects. However, until theoretical or experimental evidence of this is forthcom
ing, it seems better to stand by the simplest formulations. 

2.2. Recommended Constants and Functions 

At high Reynolds numbers, the transport equation fore may be expressed : 

;e 1 a [µr ae] C1µr!___(au;+auk)au;_c£ 
Dt =-p axk ae axk + P k axk ax; axk 2 k 

(2.2-1) 

a form which was first developed and used in the Imperial College group by Hanjalic [ 17]. Equa
tion (2.2-1) together with a similar one for the turbulence energy, k: 

Dk_ 1 a [µr ~J+µr('ilU;+ auk) au; _e 
Dt --;; axk ak axk p axk ax; axk 

(2.2--2) 

enables the turbulent viscosity µ1 to be found from equation (2.1-13) or its equivalent in terms 

* The values of C 1 and C2 depend on the choices form and n. 
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of e (rather than/); thus: 

(2.2-3) 

According to the recommendations of Launder et al. [ 19], made after extensive examination of 
free turbulent flows, the constants appearing in equations (2.2-1 )-(2.2-3) take the values 
given in table 2 .1 : 

Table 2;1 
1 The values of the constants in the k - e model 
J 

Cµ C1 C2 Uk Ue 

0.09 1.44 1.92 1.0 1.3 

The above constants have been found appropriate to plane jets and mixing layers. Slightly dif
ferent values from those quoted have hitherto been adopted in the calculation of flows near walls; 
but there is reason to suppose that, for these flows also, the values in table 2.1 would lead to as 
satisfactory preditions as obtained with those originally employed. 

For axisymmetric jets it is, regrettably, necessary to modify two of the constants; continued 
efforts have failed to devise any single set of constants that will predict their behaviour as well as 
tLat of the plane free shear flows and the plane or axisymmetric wall flows. The following recom
mendation has therefore been made by Launder et al. [ 19] based on the work of Rodi [ 30]. 

cµ = o.o9 - o.o4 f 
c 2 = 1.92 - o.0667 f 

where 

f= /_x__.(aUc1 -/ auc, /)/ 0
•
2 

2!:::.U ax1 ax
1 

(2.2-4) 

(2.2-5) 

(2.2-6) 

Here reference is made to Uct• the velocity at, and in the direction of, the symmetry axis of the 
flow; Y is the radial width of the mixing region, and t:::.U is the axial-direction velocity difference 
across the width of this region. 

This recommendation is especially tailored to fit the experimental data for axisymmetrical jets* 
and little universality can trully be claimed for it. (For example, if a thin wire lay along the axis 
of the jet, l1c1 would be made zero thereby; yet it seems unlikely that the spread of the jet would 
be significantly altered). However, it is the best available at the present time. Rodi [30] has found 
that a further modification of the constants is required in turbulent flows where velocity gradients 
are so weak that the rate of turbulence-energy generation is appreciabiy less than the energy-dissi
pation rate. Examples of such flows are wakes at very large distances behind the wake generators 
and the decaying flow behind a self-propelled body. In these cases Cµ assumes higher values than 

•For wakes the form of (2.2-4) rendersfzero. 
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the standard one: Rodi [30] has correlated the required magnitude of Cµ as a function of the 
average level ofµ/ a UJax k)

2 I pe across the wake. . . . . . 
Although the weak shear flows mentioned above are not without their practical. import.ance, it 

needs to be emphasized that the great majority of flows of interest to the mechanical engineer are 
ones adj a cent to, and often enclosed by, rigid surfaces. The presence of_ a w~ll enforces steep 
velocity gradients; consequently the level of turbulence-energy product10~ is always large; the 
values of the constants given in table 2.1 are therefore nearly always applrcable. 

2.3. The influence of a nearby wall 

The form of the model which has been presented above is valid only for fully turbulent flows. 
Close to solid walls, and some other interfaces, there are inevitably regions where the local 
Reynolds number of turbulence(= k 112 l/v, where l = k 3 12 /e) is so small that visco~s ef~ects pre- . 
dominate over turbulent ones. There are two methods of accounting for these reg10ns m numeri
cal methods for computing turbulent flow: the wall-function-method; and the low-Reynolds
number-modelling method. We shall now discuss these in turn. 

2.3-1. The wall-function method . 
This method is the one which has been most widely used, and which is indeed still to be pre

ferred for many practical purposes. Its merits a.re two: it economizes computer time and storage; 
and its allows the introduction of additional empirical information in special cases, as when the 
wall is rough. . . 

Wall functions have been proposed and used by many authors including Spaldrng [31], 
Wolfshtein [32] and Patankar and Spalding [20]. The ones proposed here represent t.he best 
practice of the Imperial College group; but it must be admitted that further systematic re~ear~h 
must be conducted before they can be regarded as having been tested adequately. They will first 
be described, and then their rationale will be explained. 

/ 

Fig. 2.1. The near-wall nodes. 

Consider the adjacent grid points Wand P of a finite-difference grid on which the flow is t~ be 
computed (fig. 2.1 ). The first feature to make sure of, when using the wall-function method, is 
that the point Pis sufficiently remote from W, which lies on the wall, for (k 112 l/v)p to be much 
greater than unity; so much greater in fact that the viscous effects are entirely overwhelmed there· 
by the turbulen~ ones. 

The fluxes of momentum and heat to the wall are then supposed to obey the relations: 
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C114 k 112 = 1_ zn Ey µ P 
UP [ (c1 12k )112] 

( r/ P )w µ P I<. P v (2 .3-1) 

Here UP, rw, TP, Tw, q:, and Yp are respectively the time-average velocity of the fluid at point P 
I along the wall, the shear stress on the wall in the direction of the velocity UP, the time-average 

1 
temperatures of the fluid at points P and W respectively, the heat flux to the wall, and the distance 
of the point P from the wall. 

Other symbols appearing in the equation have the following meanings: 

E a function of the wall roughness, approximately equal to 9.0 for a smooth wall; 

CP the constant-pressure specific heat of the fluid; 

ah the effective Prandtl number of the fully turbulent fluid (usually taken as being of the order 
of l); 

a,,, 1 the Prandtl number of the wholly laminar fluid ; 

A Van Driest's constant , equal to 26.0 for a smootl) wall. 

The quantity kP, the value of k for the grid point, is supposed to be known. It should be calcu
lated from the regular balance equation of the finite-difference grid, diffusion of energy to the 
wall being set equal to zero (in the absence of better information) . When calculating kP, it is of 
course necessary to assign a value for the average energy-dissipation rate over the control volume; 
this is to be deduced from the assumption that: 

Yp k3/2 [Ey (yC112 k )112] J € dy = C _P_ { n p µ p 
µ I<. v 

0 
(2.3 - 3) 

The rationale of these recommendations comprises the following main points : 
(a) The wall functions reproduce identically the full implications of the "logarithmic velocity 

profile" when _µniforrn shear stress prevails in the layer WP, and generation and dissipation of 
energy are in balance there; for then, as is easily shown, r/p = C~1 2 k =constant. 

(b) The second term on the right of equation (2.3-2) has its origin in an analysis of experimen
tal data conducted by J ayatillaka [33]. Further information is to be found in [ 1 ] . 

(c) The appearance of the logarithmic function in (2.3-3) results from the necessity to pre
sume e to be proportional to k312/y, coupled with a further modelling of the wall function on the 
constant-shear-stress situation. 

The extra empirical iuformation whi ch can be inserted by way of wall functions is expressed by 
Way of the constants or fun ctions E and A. Not only can ro ughness be accounted for, but also such 
Phenomena as pressure gradi ent and mass transfer through the wall . When the "wall" is slightly 
nexible , as is true of the interface between two immiscible liquids, further influences are present 
Which c-an , perhaps, be expressed by way of the formulae. However, there is much research to do 
in this branch of turbulence-model theory. 

. . . 
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2.3-2. The low-Reynolds-number modelling method 
Several authors have sought to devise turbulence-model equations which are valid throughout 

the laminar, semi-laminar, and fully turbulent regions. They include Glushko [34] and Wolfshtein 
[32), both of whom worked with one-equation turbulence models .. We here summarize the re
commendations of Jones and Launder [ 12, 29], who extended the k - E model to low-Reynolds
number flows. 

In this version of the modeC k and E are determined from the following pair of equations: 

DE - 1 a [(µr + ) ~] + c ~ µr aui (aui + aui)- C2E2 -2.0 vµ~ ( a1ui )1 
Dt --;; axi aE µ axi 1 k p axi axi ax; k p axiax1 

(2.3-4) 

Dk =l. __i_ [(µr + µ) ak] + µt aui ('aU; + aui)- 2 v (ak112
)

2 
-E. 

Dt p axi ak axi p axi .axi axi axi 
(2.3-5) 

The turbulent viscosity is then obtained from equation (2.2-3). In the above equation CP ak and 
a retain the values assigned to them for high Reynolds numbers, while Cµ and C2 are held to vary 
with turbulence Reynolds number according to the formulae: 

C =C exp[-2.5/(l+Rt/50)], µ µ~ 
(2.3-6) . 

(2.3-7) 

where R 'denotes the turbulence Reynolds number and Cµ~ and C2 ~ are the values assumed by 
C and C in the fully turbulent region, i.e. the values given in table 2.1 *. 

µIt is se~n from (2.3-4) and (2.3-5) that viscosity now exerts influence on the levels of k and E 

in two further ways: firstly laminar diffusive transport becomes of increasing importance as the 
wall is approached and, secondly, extra destruction terms have been included which are of some 
significance in the viscous and transitional regions. One of these terms, 

2 0 vµt ( d2 u, )2 
· p dxidx1 

has been included in the E equation to produce satisfacto-ry variation of k with distance from the 
wall. 

The extra term in the k equation, -2v(dk112 /dxi) 2
, has been introduced for computational .. 

rather than physical reasons. Measurements indicate that the level of the turbulence energy dissi~ 
pation rate is constant in the immediate neighbourhood of a wall (i.e. for xi(r/p)112 /v< 5). We 
could, in principle, thus apply a zero-gradient boundary condition to the E equatio~ at t~e surface. 
In practice, however, Jones and Launder [ 12] did not find this a tractable route; with this 

*The values of c1 and c2 adopted by Jones and Launder (12] (1.55 and 2.0 respectively) differ slightly from those.given in ce 
table 2.1. As meni.ioncd abuvc, however, in wall flows generation .a~d decay. rates of turb_ulence en.ergy are nearly m balanas for 
and then it is mainly the difference between these constants that 1s 1nfluential; and the ~ifferencc is. very nearly the same ined 
the standard constants. So predictions obtained with the constants of table 2.1 would differ only slightly from those obta 
for the same flow using the values given by Jones and Launder. 

t 

.. ' 

I 
I 
I 
' 

B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows 279 

boundary condition they were unable to devise a compatible set of Reynolds-number functions. 
Instead the practice adopted was to assign the quantity E to zero at the wall and to introduce to 
the k equation the extra term mentioned above which is exactly equal to the energy dissipation 
rate in the neighbourhood of the wall. 

2.4. Extension to flows with non-isotropic effective transport coefficients 

The form of the k - E model presented so far has by implication adopted the notion of a 
scalar turbulent viscosity. 

(2.4-1) 

This supposition has proved prefectly adequate in two-dimensional flows without swirl, where 
only one stress component exerts much influence on the flow development. In flows with swirl, 
however, and indeed in three-dimensional flows generally, evidence is accumulating (e.g. Roberts 
[35]) to indicate that the measured flow distribution can be predicted in detail only by choosing 
a different level of viscosity for each active stress component. None of the workers who has sought 
ti· extend (2.4-1) to include non-isotropic effects has succeeded in devising rules for calculating 
tI;e relevant viscosity components that cover even the limited range of flows in their enquiries. 

In this section we mention an extension of the k - E model which, though of recent origin and 
not yet thoroughly tested, evidently provides a more generally valid formula connecting the stress 
and strain fields than the effective viscosity hypothesis above. The approach is described in detail 
by Launder (36) and Rodi [30); applications of the procedure have been reported by Launder 
and Ying [37, 38) to the flows in square-sectioned ducts, by Rodi [30] to obtain the normai
stress profiles in some free-shear flows, and by KooSinLin and Lockwood [39] to the calculation 
of flows near rotating cones and discs. The main steps are outlined below. 

The starting point in deriving the relevant stress-strain formulae is the exact equation for the 
transport of Reynolds stress which may be written: 

Duiui [-- aui __ au;] 
--=- u.uk--+u.uk-- +D .. +E .. +R .. Dt I axk I axk IJ IJ .,, (2.4-2) 

where the first group of terms on the right of (2.4-2) represents the generation of the stress com
ponent uiui by the working of this and other stress components against mean velocity gradients 
and where D .. E .. and R .. stand for turbulence correlations whose values are not directly know-

''' If' If 
able but whose effects are, respectively, diffusive, dissipative and redistributive. The current 
practice in approximating these terms is to assume that: 

(i) diffusional transport is proportional to the spatial gradient of the stress component in 
q ucstion; 

(ii) dissipation takes place isotropically in each of the three normal-stres:; components and is 
zero in the shear-stress equations; 

(iii) the redistributive action of pressure fluctuations can be represented by two groups of 
terms, one involving products of Reynolds stress and (E/k); the other containing products of the 

· stresses and mean velocity gradients. 

! . 



280 B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows 

Further details on precise forms of the above approximations are given by Launder, Reece and 
Rodi [40]. What is especially important in the present context is that the approximation of 
neither Eii nor R;i contain gradients of stress omponents. The essence of 'algebraic' stress 
modelling then resides in the recognition that if the termsDu1u;fDt and D 1i are eliminated from 
(2.4-2) the equation is thereby reduced from a differential to an algebraic set of equatio ns 
among the Reynolds stresses, the turbulence energy the energy dissipation rate and mean velocity 
gradients. Thus expressed symbolically: 

(2.4-3) 

Research has not yet revealed the optimum form that the function in (2.4-3) should take. Its ap
pearance will depend on the approximated form of R;i and Eii and on how the convective and 
diffusive transport terms are eliminated from (2.4-2). Launder [36] neglected the latter terms 
entirely while Rodi [30) assumed that convective transport of u1ui was proportional to Dk/Dt 
times uiu1/k, with an equivalent assumption for th diffusion term. In complicated velocity fields 
these terms are rarely the most influential one ; so in practice only small differences result from 
adopting one of the above propo als rather than the other. 

What is certainly the case is that the algebraic form of (2 .4-3) is always more complex than the 
isotropic viscosity formula (2.4-1 ); but, for boundary-layer flows , the additional complexity in
creases only slightly the cost of computation. The turbulence energy and dis ipation rate appear
ing in (2.4-3) may be found from the pair of differential equations presented in section 2.2; this 
is the simpler practice. Alternatively one may use the values of u;ui obtained from (2.4- 3) to re
place µt(a U;/axi +a Ui/axi) which appears in the generation terms of these equations; this would 
be a more consistent practice and probably a more accurate one too. 

3. Some Applications of the k - € model 

3.1. The plane jet in a moving stream 

An example of the predictions generated by the k - E model in a free shear flow is presented 
in fig. 3.1 from the work of Launder et al. [ 19]. It relates to the decay of a plane jet in a moving 
stream, the experimental data being those of Bradbury [ 41 ] . Predictions are shown for the k ~ € 

- model and for two simpler treatments; one based on Prandtl's [5] mixing-length hypothesis and 
another similar to his later proposal [ 6] in which a differential equation was provided fork (but 
not for/). 

Predictions obtained with the k - € model are in satisfactory agreement with experiment 
throughout the region of measurement. The simpler models, however, fail to predict correctly the 
development of the shear flow much beyond the end of the potential core. Of course, the con
stants in these models could have been adjusted to give better downstream agreement; but only 
by sacrificing the good agreement in the mixing-layer region near the jet exit. The two-equation 
level is the simple~t at which universality is secured for both jet and mixing layer. 
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3. 2. Wall jets on cones 
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•Experiments Bradbury(1972) 

Fig. 3.1. Decay of centre line velocity in jet in moving stream. 

In the above example the solution of th . ' 
was accompli hed by means of the Patank:r:~anl~~ oi:1 ·;~~'7 a_nd t~1rbulence transport equation 

C
[o42J hafs ern_Ployed the same method to obtain ~~ed'~~iJn oJ~;1:e~d~~~~~ep~::;~~ead~raeJ.J J~ehtaonvnear 

nes o various apex angles l dd T · . . . · n a i ion to equahons Jr mean momentum turbulence enern 
:,nd J .1s ip~.t1on rate, the con erv~tion e~uation for cheir1: ca1 species was als~ solved to calcuJ·~ie 
d:et 1spers1on of a tracer o~ foreign gas tn th e injectant Hream. Fig. 3.2 shows the variation with 

1
s
1 
a~ce along the cone urface of the maximum veloci. / in th1; wall jet u normalized by tile 

vc ocJty at the exit slot U F b h 11° 0 • 111 
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l " ~· or ot and 0 half-1 one angles. the predicted rate of deca of 
'!'_correspond cl~ e!y with the measured variation . Tl~s behaviour is quite in contrast with rhe 

mixmg-lengtl~ prediction : use ~f the mixing-length distribution required to give corre t prediction 
on a plane u1face leads to a senous undere rimatc of the dimin ution rate of u on th · I 
surfaces . m e comca 

3. 3. Flow in a pipe 

. ,Predictions are _s~own in figs. 3._3 and 3.4 of two furth 'r boundary-layer flows. In these exarn
jl1cs ~h~ wa~l- fun t1ons present_ed m (2.3-1) do not prov,dc> ~lpprnpriate boundary conditions. 
o/~hftntte-_ditference computat10ns have therefore been L': rrieti :-1aht to the surface, with the use 

e low Reynold -number form of the model prescnte' ,·,, ··"1' L' 3_., A · th p k S <Id . , , · ' · ·"·,. ·- -· gain e a tan ·ar-
trPl _1~g ~roce?ure !lets ~een used to solve the equations bLtt the incursion into the viscous and 
a ans1t1onal_ re~1on requires the use of nearly l 00 cross-stre<•m grid points for com utational 
ccuracy w1thm I%. (about four times as many as when the \.I all-function method i~ u~ed) . 
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Fig. 3.2. Decay of wall jet on conical surfaces, Sharma (1972). 

£--~TURBULENT 
PREDICTION 

KUDVA & SESONSKE (1972) 

Fig. 3.3a. Pipe-!. ow velocity profile: Re= 6000. 

Fig. 3.3o. Friction factor in pipe flow at low Re. 
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[

, Fully-developed flow in a pipe is considered in fig. 3.3; the low-Reynolds-number end of the 
turbulent-flow regime is the region here under consideration. Fig. 3 .3a shows the mean velocity 
profile across the pipe plotted semi-logarithmically in so-called 'universal' coordinates. The straight 

1. line passing diagonally across the figure represents the 'law of the wall' formula, equation (2.1-12); 
at high Reynolds numbers (Re> 2X 104

) the measured and predicted profiles coincide with this 
line in the fully turbulent region near the wall. It is in such conditions that it is appropriate to 
adopt the wall-function formula provided by (2.3-1 ). The Reynolds number of the experimental 
data shown in the figure is only 6000 however; we see that the profile lies well above the high
Reynolds-number line. The predictions of Jones and Launder (29] reproduce satisfactorily thi.s 

7 departure from the universal behaviour. 
I Previous predictions of flow in pipes and channels have employed formulae which imply the 
1 

near-wall region to be independent of the Reynolds number of the flow. If these models are tuned 

t 
to give correct predictions for Re> 20,000 the friction factor at low Reynolds numbers is invari
ably predicted too high. The reason is, as seen above, that the space-average value of u+ is larger 

. than it would have been had the prediction been tried to equation (2.3-1); the friction coefficient 
is simply the square of the reciprocal of this average value. Fig. 3.3b shows the low-Re version of 
the k ~ e model to give excellent predictions right down to the Reynolds number at which the 
turbulent flow becomes intermittent (characterized by a level of C

1 
which falls as Re is decreased). 

.- 4. The boundary layer on a turbine blade 

The example shown in fig. 3.4 considers the prediction of heat-transfer around the pressure 
surface of a turbine blade. Detailed measurements of heat-transfer coe-ffirlents were obtained by 
Turner [ 43] for three different levels of turbulence energy upstream of the blade. In this example 
the cqmputer solutions were started very near the stagnation point with a laminar initial boundary 
layer. The turbulence present in the free stream is able to exert appreciable effect on the 
boundary-layer development: at the highest level of free-stream turbulence the boundary layer 
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Fig. 3.4. Heat transfer coefficient on pressure surface of gas turbine blade. 
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has nearJy completed the transition to turbulent flow by the end of the blade. At the intermediate 
turbulence level , the high level of acceleration over the forward portion of the blade inhibits any 
trend towards an organized turbulent flow until 40% chord; and , for the lowest level of free
stream turbulence, the boundary layer remains laminar throughout. For all three cases the predic
tions made by Priddin [ 44] are in extremely close agreemen t with experiment. It should be em
phasized that there has been no explicit specification of when transition will begin in this set of 
calculations; indeed it may be said that the low-Reynolds-number form of the k"' e model has its 
own built-in 'transition criterion'. 

3. 5. Film cooling 

In the wall-jet flows considered earlier, th lip of the injection slot was thin and the flow was 
directed smoorl1ly along the wall ; consequently the parabolic form of the· transport equations 
could be employed since there were no regions of flow recirculation present. When film-cooling 
devices are incorporated into combu tion chambers, however, they often possess features akin to 
the wall jets examined theoretically and experimentally by Matthews and Whitelaw [ 45]: the slot 
Up is thick and there is an appreciable st pin the surface causing a region of reversed flow. An 
example of the predictions obtained by these workers is provided in fig. 3.5; the ordinate is the 
adiabatic-wall "effectiveness" and the abscissa is the distance downstream from the injection slot. 

These solutions were obtained by means of the elliptic flow finite-difference procedure of 
Gosman et al. [21]. The use of this numerical solution procedure is common to all the recirculat
ing flow examples presented in this section as is also the employment of the wall-function method 
for treating the flow adjacent to the wall. In this particular example, however, a modification was 
found necessary to the prac tice proposed in sec. 2.3-1. On the downstream face of the step and 
of the lip (but not elsewhere) the level of e given by equation (2.3-3) was reduced by a factor of 
20. The probable cause of the exceptionally low l.evel of dissipation rate there is suggested by 

0 4 

0· 2 

0 

Fig. 3.5a. Wall jet with thick lip and step, character of flow. Fig. 3.5b. Decay of wall jet. 
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~ig. 3.5a. By_ virt.ue of the recirculating zones, downstream turbulent fluid with farge .length scale 
1s caused to 1mprnge on the surfaces in question. Beca use of the very low level of shear stress 
a_long these su~faces, t?e convected fluid is much more influential in determining the local dissipa
tion rate than is the distance from the wall. What is evident from fig. 3 .5b is that with this modi
fication agreement between exp riment and prediction is excellent. We should mention that this 
level of agreement is representative of that obtained for the whole range of flow conditions 
examined by Matthews and Whitelaw, covering large variations in the ratio of injectant: main 
stream velocities and densities. · 

3. 6. Coaxial jets 

As a further example of an elliptic flow, we consider the devlo pment of confined coaxial jets 
depicted in fig. 3.6a; the velocity ratios are large enough for there to be a recirculatino zone 

. . e 
present at some position downstream from the jet exit. Fig. 3 .6b compares some calculated 
properties of the recirculating zone with the experimental data of Barchilon and Curtet ( 46]; the 
predictions have been obtained by Elghobashi (47]. To conform with the experimental data, the 
results are presented in terms of the Craya-Curtet parameter defined as: 

C = Uc 
t-

[(U?- u;)(r;lr0 )
2 +1cu;-u;)1112 (3.1-1) 

where. Ui and U0 are respectively the velocities of the central and annular jets; ri and r
0 

are the 
radii of the jet and the duct; and Uc is defined by: 

(3. l-2) 

It can be seen from fig. 3.6b that the numerical solutions, obtained by means of the procedure of 
Gosman et al. (21 ] , predict quite well the measured position and magnitude of the recirculating 
zone over the whole range of C1 covered by the experiments. 
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Fig. 3.6b. Properties of recircul;ition zone in ducted coaxial 
jets. 
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v: 1·0 

-- Predictions {Nielsen 1972) 
- - - Experiment 

Fig. 3.7. Velocity contours in model auditorium. 

3. 7. A cavity flow 

. 
\ 
( 

( 

Fig. 3 .7 shows some predictions obtained recently by Nielsen [ 48] of flow in a rectangular 
sectioned room; fluid enters the room through a narrow slit in the top right hand corner and 
leaves at bottom left. Nielsen's particular interest here concerned the problem of ventilating 
auditoria. To be effective, the ventilating equipment must provide a steady replenishment of air 
but most not induce velocities so high that the audience feels a draft. There is thus a fairly narrow 
tolerance on the permissible air velocities near the auditorium floor. It is seen that the velocity 
contours in this model room are indeed in close agreement with experiment. The result suggests 
that it would now be fruitful to use the method for extensive design explorations with flows of 
this type. The cost of such a study would be but a small fraction of that of constructing and in
strumenting a model auditorium. 

3. 8. Flow along a twisted tape 

Another flow of great industrial importance is that through tubes with twisted-tape inserts. The 
purpose of the tape is to impart a swirling motion to the fluid, thereby increasing the surface 
heat-transfer coefficient. Date [ 49] has obtained numerical predictions of this flow again by em
bodying the k - E model into an adaptation of the procedure of Gosman et al. [21]. An example 
of his predictions is provided by fig. 3.8 which shows the variation of friction factor with 
Reynolds number for a twist ratio (i.e. the number of pipe diameters for the tape to complete one 
revolution) of 3.14. In this case agreement with experiment is not so good as in previous examples . 
Part of the discrepancy may be due to the use of the standard 'equilibrium' wall logarithmic law 
rather than that given by equation (2.3-1 ). Probably, however, the main source of disagreement 
stems from the turbulent viscosity becoming strongly non-isotropic in the complicated strain field 
of this flow. 

3. 9. Flow through square-sectioned ducts 

In the above example the most p!"omising route for improving predictions seems to be by the 
use of the algebraic-stress method discussed briefly in sec. 2.4. Certainly this approach has 
successfully been brought to bear on the problem of flow in ducts of square cross section, where 
the axial velocity U 1 varies over the cross section in both coordinate directions x 2 and x 3 • This 
strain field gives ri&e to a turbulent stress field in the plane of the cross section which in turn 
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Fig. 3.8. Flow in tubes containing twisted tapes. 
Fig. 3.9. Prediction offully-<leveloped flow in square-sectioned 
duct (Tatchell, I 972). 

generates a secondary velocity field in this plane. The predictions of Tatchell [50] shown in 
fig. 3.9 are based on the algebraic stress model and predict very closely the measured secondary 
flow pattern and its effect on the axial velocity contours. In contrast the k - E model employed 
with the standard isotropic viscosity relation, equation (2 .4-1 ), leads to the result that there are 
no motions in the plane of the cross section. 

4. Concluding remarks 

The examples considered in the preceding section convey a representative impression of the 
capabilities of the k - E model. It is the simplest kind of model that permits prediction of both 
near-wall and free-shear-flow phenomena without adjustments to constants or functions; it 
successfully accounts for many low Reynolds-number features of turbulence; and its use has led 
to accurate predictions of flows with recirculation as well as those of the boundary-layer kind. 

Nevertheless the model can still geatly benefit from further improvement and extension. The 
wall functions used at present are based on the notion that the length scale is a universal function 
of distance from the wall. Yet the superior predictions given by the low-Reynolds-numb er version 
of the model rest squarely on the model's ability to account for the way that accelerations or 
surface mass transfer alter the near-wall length scale. Sometimes, as in the wall jets examined by 
Matthews and Whitelaw [ 45], turbulence generated remote from a wall can cause abnormally 
high levels of length scale near a surface. Urgently needed therefore is a set of wall functions con
taining the full Implications of the low-Reynolds-number form of the model. Indeed there remain 
many important research tasks concerned with documenting this near-wall region: effects of steep 
property variation, high Mach numbers, foreign-gas injection, buoyancy and combustion have 
received little attention.in the context of the k - E model. 

An equally important research task is that of replacing the isotropic viscosity formula by more 
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general cxprL·ssions conneding th~ stress anLI strain fields in turbulent flow. As remarked above. 
there have JI ready been :1 fe\v 111;..:e · ·ful ;ipplic:itions of this appro;ich to flows with more than 
one signifi..:~rnt ~1ie,1r-str -;s ro111ponent: in most cases, however. these algebraic-stress formulae 
give rise to \'l.'ry ..:ornpl il'a tL•d non-linea r cqu:11 io ns for the stress cornponi:-n cs a nd. for reci rcubLi n·.: 
tlO\vs. ma~· Si..'riously compli i..:a t l.' till' 1 : 1 ~k Lil' :-o lution . There are thus two areas of re «:arch impliL'l; 
heri:-. First!\' in the field r n1111ll'ri1.·al analysis. new itaation schemes are ne dc-d r prom0re rapid 
co1nerge1H.' I.' for even highly non-linear ~ds or equations. Se1..'0111J. there need to be a sear ·!ling 
set of tests applied to the approxim;.Jteu forms of R;i and E;i appearing in eq uation (_.4- 2) : fo r 
no one w<ints to spend extra money and effort using a more l."bborate procedure unless he crn be 
sure his prt>dictions will possess greater physical realism than those generated by simpler models. 
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