## CONVECTIVE HEAT LOSSES FROM SEGMENTS OF THE HUMAN BODY

Xiao-Ling Wang

Department of Heating and Ventilation Royal Institute of Technology, Stockholm

## Introduction

The convective heat transfer between every segment of the human body and its environment is an important subject and there have been a number of investigations in this area, see Rapp (1973), Chang (1988), Homma (1988) and Nishi (1970). It is also important that human beings feel comfortable under the environmental conditions in which they live and work. Thermal comfort is connected with the heat losses from segments of the human body.

Because heads and arms are often bare when people stay indoors (sometimes even when they are outside), it is helpful to separate the segments into two parts. These are (i) the head and arms and (ii) the rest of the segments of the human body.

Previous investigations have shown that the comfort air velocities can not be too high. This

veen free and forced convective heat transfer snoud be considered.

A series of experiments has been carried out to obtain the convective heat transfer coefficient in different air velocities, and with varing temperature differences between the segments and their environment. A new type of interpolation equation has been used for the segment of human body.

## Experiment and results

A nude full-scale manikin was used to measure the convective heat transfer coefficients for different segments. It was divided into seven segments, i.e. head, trunk, arms, hands, thighs, legs and feet. During the measurement, the manikin was placed in the wind tunnel. The measurements taken were

- o the surface temperature of manikin
- o the ambient air temperature
- o the surrounding temperature
- o the air velocities for every segment
- o the total heat production for every segment.

For more detailes on the measurement techniques, see Wang (1990a), (1990b). The experimental results are given in Tables 1 to 4.

Table 1. Air velocity, m/s, temperature difference, °C, and convective heat transfer coefficients for trunk, W/m<sup>2</sup>.°C.

| v = 0.6  | $\Delta \theta_{S-a}$                                | 3,8         | 5,1         | 6,7          | 8,4         | 6,6         | 9,4          |
|----------|------------------------------------------------------|-------------|-------------|--------------|-------------|-------------|--------------|
| ( m/s )  | $\alpha_{c}$                                         | 13,5        | 13,4        | 13,5         | 13,8        | 13,8        | 14,4         |
| v =0,57  | $rac{\Delta	heta_{	extit{S-}a}}{lpha_{	extit{C}}}$  | 6,8<br>13,1 | 8,3<br>13,3 | 10,0<br>13,5 | 9,2<br>13,3 |             |              |
| v =0,26  | $rac{\Delta	heta_{	extit{S}-a}}{lpha_{	extit{C}}}$  | 12,6<br>8,6 | 8,8<br>9,1  | 3,9<br>7,7   | 10,2<br>9,0 | 11,4<br>8,8 | 12,5<br>8,8  |
| v = 0.38 | $     \Delta\theta_{s-a} $ $     \alpha_c $          | 11,6<br>9,5 | 7,1<br>8,6  | 7,7<br>9,3   | 8,6<br>9,5  | 9,3<br>10,0 | 10,3<br>10,0 |
| v =0,09  | $rac{\Delta 	heta_{	extit{S-}a}}{lpha_{	extit{C}}}$ | 8,8<br>5,7  | 10,9<br>6,4 | 12,6<br>6,9  | 14,1<br>6,8 | 15,6<br>6,8 |              |
| v =0,63  | $rac{\Delta 	heta_{	extit{S-}a}}{lpha_{	extit{C}}}$ | 5,0<br>5,2  | 4,8<br>9,6  | 5,7<br>12,0  | 7,1<br>12,7 | 8,8<br>12,3 | 11,0<br>12,4 |

Table 2. Air velocity, m/s, temperature difference, °C, and convective heat transfer coefficients for thighs,  $W/m^2$ .°C.

| v = 0.57     | AA                     | 5,3  | 6,7  | 5,6  | 7,6  |      |      | _ |
|--------------|------------------------|------|------|------|------|------|------|---|
|              | 5 50                   | -    | -    |      |      |      |      |   |
| ( m/s )      | $\alpha_{\mathcal{C}}$ | 21,8 | 22,1 | 22,4 | 22,2 |      |      |   |
| v = 0.60     | $\Delta \theta_{S-a}$  | 4,2  | 5,5  | 6,6  | 8,3  | 4,8  | 7,6  |   |
|              | $\alpha_{c}$           | 21,0 | 20,1 | 20,0 | 21,0 | 21,0 | 20,9 |   |
| v = 0.22     | $\Delta \theta_{S-a}$  | 10,6 | 4,6  | 7,6  | 8,8  | 9,8  | 11,0 |   |
| •            | $\alpha_c$             | 13,7 | 12,8 | 13,9 | 13,8 | 13,6 | 13,9 |   |
| v =0,26      | $\Delta \theta_{S-a}$  | 9,9  | 6,4  | 7,2  | 8,0  | 8,8  |      |   |
|              | $\alpha_c$             | 15,2 | 14,6 | 14,6 | 15,2 | 14,8 |      | * |
| $\nu = 0.08$ | $\Delta \theta_{S-a}$  | 3,8  | 5,4  | 6,9  | 9,3  | 12,3 | 13,5 |   |
|              | $\alpha_c$             | 10,0 | 9,7  | 10,8 | 10,3 | 10,9 | 11,0 |   |
| v = 0.40     | $\Delta \theta_{S-a}$  | 4,9  | 6,3  | 7,9  | 9,6  |      |      |   |
|              | $\alpha_{c}$           | 17,2 | 18,2 | 17,7 | 18,0 |      |      |   |
|              |                        |      |      |      |      |      |      |   |

Table 3. Air velocity, m/s, temperature difference, °C, and convective heat transfer coefficients for legs,  $W/m^2$ .°C,

|              |                              |      |      |      |      |      | and the same of th |
|--------------|------------------------------|------|------|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| v = 0.87     | $\Delta\theta_{S-a}$         | 5,1  | 6,7  | 8,4  | 2,5  | 6,8  | 9,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ( m/s )      | $\alpha_{c}$                 | 16,7 | 17,3 | 17,4 | 16,9 | 17,4 | 17,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| v = 0.85     | $\Delta 	heta_{	extsf{S-}a}$ | 2,7  | 4,9  | 6,4  | 7,9  | 9,6  | 8,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | $\alpha_{c}$                 | 17,4 | 17,6 | 17,3 | 17,4 | 17,8 | 8,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| v =0,26      | $\Delta \theta_{s-a}$        | 12,7 | 5,2  | 6,9  | 9,0  | 3,6  | 10,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | $\alpha_c$                   | 11,1 | 10,6 | 11,2 | 11,3 | 10,9 | 11,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| v =0,34      | $\Delta \theta_{s-a}$        | 11,5 | 6,6  | 7,5  | 8,6  | 9,5  | 10,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | $\alpha_c$                   | 12,2 | 11,6 | 11,9 | 12,0 | 12,2 | 12,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\nu = 0,12$ | $\Delta \theta_{s-a}$        | 4,7  | 6,6  | 9,0  | 11,6 | 10,1 | 15,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | $\alpha_c$                   | 7,5  | 7,4  | 7,4  | 7,5  | 7,7  | 7,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| v = 0,55     | $\Delta \theta_{s-a}$        | 5,8  | 7,4  | 9,1  | 11,2 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | $\alpha_c$                   | 14,4 | 4,8  | 14,5 | 14,7 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                              |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

hence equation (4) becomes

$$\alpha_C^n = (A \cdot \Delta \theta_{S-a}^{m_1})^n + C \tag{6}$$

Introducing

$$Y = \alpha_C^{\ n} \tag{7}$$

$$X = \Delta \theta_{S-a} \,^{m_1 n} \tag{8}$$

$$D = A^n \tag{9}$$

and combining equations (6) to (9) give

$$Y = D \cdot X + C \tag{10}$$

In order to get coefficients C and D, the multiply linear regression analysis is employed. Equation (10) gives

$$f(X) = \sum_{i=1}^{k} (Y_i - D \cdot X_i - C)^2$$
 (11)

where

k is the number of experiments for a certain velocity

 $X_i$ ,  $Y_i$  are the experimental values.

For a certain exponent n, if  $\frac{\partial f}{\partial C} = 0$ , a better correlation equation can be obtained. And the best value of the exponent n is the one which yields the smallest value for the mean square relative errors, see Table 6.

It was shown by Wang (1990b) that a value of 2 for the exponent n gave the best fit for the head and arms. And from Table 6, it appears that the best value of the body is also around 2. Therefore n = 2 was chosed for the further calculations.

For a certain air velocity, we have equation (5)

$$C = (B \cdot v^m_2)^n = \text{Const}$$

The calculated C values are shown in Tables 7 to 10, for n = 2

Table 6. Mean square relative errors for different exponent.

| Body segment |        |        | n      |        |        |
|--------------|--------|--------|--------|--------|--------|
|              | 1      | 1,5    | 2,0    | 2,5    | 3,0    |
| Trunk        | 0,0263 | 0,0205 | 0,0188 | 0,0185 | 0,0187 |
| Thighs       | 0,0186 | 0,0153 | 0,0161 | 0,0172 | 0,0179 |
| Legs         | 0,0133 | 0,0152 | 0,0116 | 0,0118 | 0,0187 |
| Feet         | 0,0335 | 0,0303 | 0,0290 | 0,0284 | 0,0281 |

Table 7. C values for different air velocities for trunk, n = 2.

|                | v, m/s |       |      |      |      |       |  |  |
|----------------|--------|-------|------|------|------|-------|--|--|
|                | 0,60   | 0,57  | 0,26 | 0,38 | 0,09 | 0,63  |  |  |
| $\overline{C}$ | 173,0  | 158,3 | 57,6 | 71,2 | 20,1 | 134,9 |  |  |