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A Multi-Chamber Ventilation Model with 
Random Parameters 

G. L. REUSING* 
G. M. BRAGG* 

A generalized multi-chamber ve111ilatio11 model is developed for air contaminant prediction problems 
where the parameters of the system, such as airflow rates, are described by Gaussian probability 
distributions. A numerical sol111io11 , utilizing s1od1as1ic differential equations (SD E's), is provided 
to facilitat e its application. The model is used to calculate contaminant co11centratio11 histories 
described by means and standard deviations. It is also used to slr(Jw lhe se11sitivi1y of conce111ratio11s 
to the variat/011 of such parameters as in.filtration flows and co111ami11a111 source ra1es. Sample 
applications of the model are provided. 

NOMENCLATURE 

B covariance parameter matrix 
COY(.) covariance operator 

C; concentration of contaminant in cell i 
E expectation operator 
F drift or mean coefficient matrix 
G diffusion coefficient matrix 
K, time invariant coefficient i 

ODE ordinary differential equation 
Qc, contaminant production in cell i 
Q,j airflow from cell i to cell) 

SOE stochastic differential equation 
T matrix transpose operator 
tr matrix trace operator 
V, volume of cell i 

VAR(.) variance operator 
<5 Dirac delta function 
~ matrix of Gaussian white noise random variables 

<I> Ito formula variable 

INTRODUCTION 

IN THE analysis and design of ventilation systems. there 
are inherent variabilities in such parameters as air 
contaminant production and ventilation airflows which 
need to be included in any realistic model of air con
taminant concentrations. For example, consider a ven
tilated room where smoking is permitted. The production 
of cigarette smoke will be highly variable, due to depen
dence on the number of smokers in the room. Addition
ally, the amount of fresh air supplied to the room will be 
uncertain. This will depend on such factors as doors and 
windows being opened or closed, and the operation of 
the mechanical ventilation system. A further source of 
uncertainty is variable weather patterns which affect 
infiltration/exfiltration flows. 

A method of dealing with these uncertainties in a ven
tilation system model is to use stochastic differential 
equations (SDE's) [1-3]. SDE's are the stochastic ana
logue of ordinary differential equations (ODE's), allow-
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ing initial conditions and coefficients representing physi
cal parameters in the model to be described by Gaussian 
probability distributions. 

The application ofSDE theory to ventilation problems 
is a recent occurrence, and there are a number of concerns 
related to the application which need to be resolved. 
Except for very simple problems which have analytical 
solutions, the use of SD E's is inhibited by the necessity of 
solving a complicated set of coupled moment equations. 
Numerical formulation and solution of the equations 
would facilitate the application of SDE models. Further 
research areas relate to the appropriate modeling of the 
random variation in ventilation parameters, and the 
accuracy of SDE model solutions compared to actual air 
contaminant concentration histories. 

This paper provides a numerical solution to a general
ized SDE model of ventilation, formulated within the 
framework of a multi-chamber model, which treats air 
spaces as ideally mixed cells. The solution is a Gaussian 
stochastic process, with a probability distribution 
described by its first and second order moments. 

The applications of this model are expected to be useful 
in several. areas. The method allows statements to be 
made about the probability of contaminant con
centration levels exceeding a regulatory level. The effect 
on contaminant concentration due both to changes in 
mean values and uncertainty levels of ventilation param
eters can be investigated in sensitivity studies. Further
more, the convenient numerical solution will facilitate 
future experimental investigations of the model. 

A MULTI-CHAMBER SDE MODEL 

When modeling the transport of a passive air con
taminant-in a building, it is common to treat the building 
as a set of inter-connected chambers or mixing cells [4J. 
The instantaneously and uniformly mixed cells are gen
erally taken to represent rooms in a building. 

Uniform mixing within a cell is an idealization which 
has been justified for many practical problems. For ex-
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ample, tracer gas experiments conducted in a research 
house showed that individual rectangular rooms with 
normal ceiling heights (about 2.5 m) could be treated as 
uniformly mixed [5]. Between-room contaminant con
centration differences were shown to be more significant 
than within-room spatial variations. The multi-chamber 
model was also shown to be useful in experiments using 
a five room test house [6]. 

The occurrence of short-circuiting, the presence of 
stagnant zones, and the existence of multiple airflow 
regions are possible causes if incomplete mixing does 
occur [7]. When incomplete mixing is significant, mixing 
coefficients can be introduced to replace the complete 
mixing assumption within a cell while maintaining the 
simplicity of the mixing cell approach [8]. Division of a 
room into two or more mixing cells is an effective 
approach when required [9]. 

The deterministic model 
A generalized deterministic multi-chamber model is 

represented here by a species conservation equation set 
consisting of N first order, linear, coupled, OD E's: 

K1C1 + K1C2 

,l(_N+2C1 + KN+JC2 

+ . .. KNCN + KN+l 

+ ... KiN+ 1CN + KiN+2 

(1) 

,his model, there are N cells which could, for ex
; represent rooms in a building which are exchang-

1rflows between themselves and the environment. 
;oncentration of a passive air contaminant in each 
;e N cells is identified by the C; terms. The species 
be transferred from one cell to any other cell. This 

;t is accounted for by the K; constant coefficients 
itiplying the concentrations on the right hand side of 
iations (1). These coefficients typically represent inter

j airflows and may also include mixing factors. The 
;t K; term in each equation represents parameters which 
;e not involved in the transport of the species between 
ells, such as the production of the species in a cell or the 
emoval of the species to the environment. 

The stochastic model 
In practice, the K; coefficients representing physical 

parameters in equations (1) have random variations. 
Also, the initial· species concentrations in the cells may 
be uncertain. If the random variations in, the coefficients 
and initial conditions are modeled by Gaussian white 

noise, a set of stochastic differential equations (SDE's) 
results, the solution of which enables a description to 
be made of the probability distribution of the species 
concentration in each cell as a function of time. Like 
Gaussian white noise, the variations in the coefficients 
and initial conditions should approach the property of 
being uncorrelated with time. This is an idealization 
which never occurs in real ventilation systems. However, 
if the time scale of the noise autocorrelation function is 
much smaller than that of the solution process being 
calculated, it is a good approximation. 

In the SDE model developed here, the parameters in 
the ventilation system, such as contaminant production 
rates, airflows, and initial conditions, are modeled by 
time-invariant means and standard deviations. As an 
illustration, consider an underground parking garage 
where carbon monoxide is the air contaminant. The pro
duction of carbon monoxide could be modeled by a con
stant mean and standard deviation on an hourly basis, 
but not over a daily time period when variations in the 
mean (due to weekends etc) would be expected. Further
more, the Gaussian white noise approximation of the 
variability in carbon monoxide production would be 
appropriate as long as the time scale of the variability is 
in the order of seconds or minutes, as would be expected 
if the effect is due to individual cars. 

To obtain the relevant SDE's, the coefficients in equa
tions (1) are decomposed into mean and varying com
ponents as: 

(2) 

The variable components will be modeled by a matrix 
of Gaussian white noise random variables Ce), which has 
the following mean and correlation properties : 

E(e) = 0, 

E(e,e,_,) = Bo(t-s), 

where E denotes expectation, t and s are time locations, 
o is the Dirac delta function, and Bis a covariance param
eter matrix with entries which correspond to covariances 
of the K1 constants. 

B is written as: 

11 .1 

12.1 

l1,2 

12.2 

Yu 
y 2.J 

I1,N'+N 

l N2 +N, I l N2+N.2 l N2 +.V.J • • • l N2 +N.N 2+N > 

where Y;,j = COV(K;Kj) = COV(K/9. 

(3) 

The K; constants can be composed of a sum of any 
number of physical processes, however if there is a pro
duct or quotient of two or more physical processes which 
have random variations, they must be linearized in order 
to make the SDE tractable. For example: given 

K= A•B, 

where 
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then 

A= A+A' and B = .iJ+B', 

K= AB+AB'+BA'+A'B' 

~ AB+AB' +BA'. 

In this case, K is linearized by neglecting the A' B' term. 
This is reasonable since it is generally much smaller than 
the other terms involving the mean values. 

The covariance of the K; terms may then be calculated 
using the rules for linear combinations of independent 
variates. Using the example above; 

COV(K,K) = VAR(K,K) 

= jf2VAR(B')+B2VAR(A') 

= A2VAR(B)+E2VAR(A). 

When equation (2) is substituted into the deterministic 
equations (I), as SOE results, which can be written in 
matrix form as; 

where; 

F= 

G= 

dC 
dt = F(C)+G(C)e, 

er= [C,C2 ... CN], 

er = [K',K'2 · · · K'N'+N), 

K,C, + K2C2 + ... KNCN +KN+ I 

KN+2C1 + KN+3C2 + ... K2NCN +.K.2N+2 

C, ... CNl0 ... 000 ... 0 0 00 

o ... ooc, ... CNIO ... O 0 00 

(4) 

(5) 

(6) 

(7) 

(8) 

C is the concentration matrix, e is the Gaussian white 
noise matrix, F is the drift matrix, G is the diffusion 
matrix, and T represents the matrix transpose operation. 

SOLVING FOR THE MOMENTS OF 
CONCENTRATION 

A solution of the multi-chamber SOE ventilation 
model, represented by equation (4), is dependent upon 
an external interpretation of the resulting integral involv
ing the Gaussian white noise term [IO]. There are two 
interpretations, attributed to Ito and Stratonovich, which 

have gained popular acceptance in the application of 
SOE's to engineering problems [11-13]. 

Solving the SOE (4) using either the Ito or 
Stratonovich interpretations will result in a set of possible 
solutions. In other words, for a given probability w, a 
specific solution C(t) results. Changing the probability 
results in another solution. For the sake of modeling the 
possible outcomes of a physical system, it is usually of 
more interest to know the range of possible solutions. 
SOE solutions of contaminant concentration processes 
in the multi-chamber ventilation model developed here 
will consist of solving for the. first two moments, and 
hence the mean and standard deviations of concentration 
as a function of time. The higher moments about the 
mean concentration will be equal to zero for the linear 
SOE's used in this model. 

The main instrument used to solve for the moments of 
an SOE is Ito's formula [IQ]. The method of solution 
using the Ito formula is summarized here and is expressed 
in a generalized, multi-dimensional form. It states that 
given an SOE (4) (interpreted here as a Slratonovich 
equation since the Ito solution is easily related to the 
Stratonovich solution), there is a real-valued function of 
the solution process defined by <I> = <l>(t, C(t)) which is 
obtained by solving the following differential : 

( 
1 aG) 

d<I> = <l>,dt+<I>~ F+ 2GB ac dt 

where T and tr denote matrix transpose and trace oper
ations, and : 

<l>cc = 

a2<1> 

a<1> 
<I>,= iii" 

a2<1> a2<1> 
- --· ··---aq ac,ac2 ac,acN 

a2<1> a1<1> a2<1> 
···- --ac2ac, aq ac2acN 

ai<I> ai<1> 

acNac, acNac2 

(10) 

(11) 

(12) 

At this point the functional relation of<I> can be chosen. 
To simplify the solution of the first and second moments 
we can set: 

<I> = c: Ci .. . ., q,, a, b, ... , Z E (0, 1, 2). 

This simplifies the Ito formula since <I>,, equation (10), 
equals zero for this case, The moment equations are 
derived by setting all possible combinations of the 

l 
I 
I 
I 
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Fig. l. I-Cell model. 

exponents a, b, . .. , z such that (a+b+, ... , z) =the 
desired moment. 

To solve for the moments, the expectation of the Ito 
formula, equation (9), is taken : 

E[d(c; C~, ... 'q,)J = E[cJ»TF] E[IJ>r ~ GB 8GJ 
dt c + c 2 ac 

+EG1rGBGr11>cc]+E[e1»;Ge1. (13) 

The last term on the RHS of equation (13) is equal to 
ice the expectation of the Gaussian white noise 

i Ce) is equal to zero and the three terms in the 
,sion are statistically independent. Finally, the 
ssion for the expectation of the Ito formula, written 
mmation notation becomes : 

J( c; c~, ... , Gi)J 
dt 

= E[ £ ac~ c~, ... ' Gi (f;+ (GBGc);)] 
; - 1 8C; 2 

E[~ ~ ~ a2c~ q, .. ., Gi 7\ J (14) + 2 .t... .t... ac ac (GBG Ji.} ' 
1- I J- 1 I } 

where f; represents the rows of the drift matrix F as 
defined in equation (7) and: 

(15) 

(16) 

If the Ito interpretation were taken, the (GBGc); terms 
in equation (14) would not be present. 

Ito vs Stratonovich solutions 
A discussion of the advantages and disadvantages of 

using either the Ito or Stratonovich interpretations as 
models of physical systems can be found in [14}. Here it 
is shown that for most practical ventilation problems, the 
difference between the Ito and Stratonovich solutions is 
insignificant. A one-cell problem illustrates this. 

A single ventilated chamber shown in Fig. 1 has an 
inlet flow (Q1 m 3 h- 1

), an exhaust flow (QE m3 h- 1
), a 

contaminant production term (Qc m 3 h- 1
), a volume (V 

m 3), and an inlet flow contaminant concentration ( C1 m 3 

m- 3(air)). The deterministic contaminant mass balance 
is expressed as : 

dC =· _ QE C+ (C1Q1 +Qc) 
dt v v 

= K,C+K2• (17) 

Here the volume of air in the cell is considered to be 
equal to the volume of the cell. This causes errors of less 
than 1 % for air contaminant concentrations up to 1O000 
ppm [15]. 

Uncertainty in Qi. QE, and Qc is introduced by model
ing them as having mean and random components as : 

(18) 

While Q;, QE, and QE will in practice be correlated to 
some degree through the mass balance, the present model 
does not take this into account. 

When these substitutions are made and the random 
components are modeled as Gaussian white noise, an 
SOE results: 

dC=_QEC+(C1Q1+Qc)_QEC (C,Q;+Q~) 
dt v v v + v 

(19) 

The first and second order moments of the SOE will 
be solved for both the Stratonovich and Ito interpret
ations in order to compare the two. After specifying 
the inlet flow concentration of contaminant and initial 
conditions to be zero, the first moment Stratonovich 
solution is obtained as : 

where: 

(21) 

Note that VAR(QE) is the variance parameter of a 
Gaussian white noise process representing the random 
variations of the exhaust flow rate. It has the same 
numerical value as the variance of the exhaust flow rate, 
but has units ofm 6 h- 1

• 

The difference between the Ito and Stratonovich first 
moment solutions for this one cell problem is due to the 
two VAR(K1)/2 terms in equation (20). If these terms 
are neglected, the Ito mean solution is obtained, which 
is identical to the deterministic solution of equation (17). 

The second moment Stratonovich solution is : 

2 -2 
C'2 = . . K1 

(
- ·VAR(K1)) ( - 3 ) K i+ 

2 
-K,....,2VAR(K1) 

[ [
- VAR(K 1)] J x exp K1+ 

2 
t-exp[2K1+2VAR(K1)]t 

VAR(K2)-
2K~ 

(
K VAR(K1)) 

1+ 2 
+~~~~~~~~~~~ 

_2K1 +2VAR(K1) 

· x [exp [2K1 +2VAR(K1)]t-l], (22) 

(' 

r 

l 
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where : 

V AR(K ) = CrV AR(Q1) + V AR(Qc) 
2 vi 

The second moment Ito solution is : 

~ - 2Ki c - - -(K1)(-K1 -VAR(K 1) 

x [exp [K1]t-exp (2K2 + VAR(K 1)]t] 

2.Ki 
VAR(K2)--

(23) 

K, -
+ -2K-=--

1 
+_ V_A_R-(K- ,) [exp [2K 1 + VAR(K 1)]t-l]. (24) 

The differences between the Ito and Stratonovich 
second moment solutions are again due to additional 
VAR(K1) terms. To investigate the effect of these terms 
on the Ito and Stratonovich solutions for a typical ven
tilation problem, the single cell is considered to represent 
a room having four air changes per hour (Q11Ef V = 4 
h- 1

). A source is producing contaminant (Qc) at a rate 
equal to 2% of the inlet or exhaust flows (Q 11E). The 
standard deviations of Q1, Qc, and QE are assumed to be 
equal to one tenth of their mean values on an hourly 
basis. While Q1 must equal QE in a I-cell-model, it is not 
necessary that V AR(Q1) equal V AR(QE) in a particular 
case. Under these circumstances, the Stratonovich mean 
and second moment solutions are only 2% greater than 
the corresponding Ito solutions, a negligible difference. 
Numerical solutions of multi-cell ventilation problems 
developed later, also indicate that the Ito and 
Stratonovich solutions are not significantly different. 

NUMERICAL SOLUTION OF THE MOMENTS 

In general, the N-cell multi-chamber SDE model 
developed here will require the solution of ((N2 +N)/ 
2+N) coupled ODE's in order to find the first and 
second moments of concentration in each cell. The 
complexity of these equations deters the use of SD E's for 
all but very simple problems, which often have analytical 
solutions. A numerical procedure to formulate and solve 
the governing first and second order moment equations 
would make the application of the model more attractive. 

Through a study of patterns in the coefficients gen
erated in the two moment equations, it is possible to 
generate first and second order moment equations for a 
general N-cell problem [16] . These are solved simul
taneously using a 4'h order Runge-Kutta routine in two 
FORTRAN subroutines. One subroutine, STRAT· 
SOL VE, solves using the Stratonovich interpretation of 
the SDE while the other subroutine, ITOSOL VE, solves 
using the Ito interpretation. Both subroutines calculate 
the mean and standard deviation of concentration in each 
cell at specified time locations. 

It is noted that although the multi-chamber SDE 
model was developed specifically with a ventilation sys
tem in mind, the STRATSOLVE and ITOSOLVE 
subroutines can be used for other engineering problems 
[11 , 12]. In fact, any problem which can be expressed in 
the form of equation (6) (in a deterministic sense) is 
compatible with the programmed solution developed 
here. If the K1 constants and their covariances can be 

-· 

CELL N (VN, Oc,N) 0 1.,. 

ENVIRONMENT 
CELL N+1 

Fig. 2. N-cell ventilation model. 

specified, along with initial conditions, then a solution 
for the first and second order moments can be generated. 

Two mainline programs, STRA VEN and ITOVEN, 
which utilize the STRATSOLVE and ITOSOLVE 
subroutines respectively, were created to solve for the 
Stratonovich and Ito solutions of a specific N-cell ven
tilation model specified in Fig. 2. This model allows for 
airflows, Q1j , ·between all cells (including the environ
ment). As well, each cell has a specified volume, V, and 
contaminant production rate, Qc. The parameters which 
can .have uncertainty in this model include the airflows, 
contaminant production rates, and initial conditions. All 
that is required is the minimum problem specification 
data. Further detail about these programs is available in 
[16]. Also, copies may be obtained from the authors. 

APPLICATIONS 

To illustrate the application of the multi-chamber SDE 
model, a 2-cell problem and a 6-cell problem are 
considered. For comparison, solutions of the following 
problems were found for both the Stratonovich and Ito 
interpretations using the STRA VEN and ITOVEN pro· 
grams. It was found that the two solutions varied by less 
than 1.5% for both examples. 

2-Cell problem 
Figure 3 illustrates the basic 2~cell model and Table I 

provides the relevant input data. For this example, two 
equal sized rooms ( 100 m 3) are represented by the two 
cells. Air of zero contaminant concentration is supplied 
to room l at a rate of 200 m 3 h - 1

, and air is exhausted 
from room 2 at the same rate, creating a net flow of air 
from room 1 to room 2. It is assumed that the two rooms 
are connected by a doorway and that secondary airflows 
cause significant mixing between the rooms. This is repre
sented by equal and opposite flows of 400 m 3 h- 1 between 
the rooms. The only uncertainty in this problem is in the 
initial concentration of a contaminant, such as cigarette 
smoke, in room 1. This is represented by a mean and 

I' 
I 
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CELL 1 (v,. Oc.1) 
03,I 

a,,2 

0
3.2 

CELL 2 (V2 , Oc,2 ) 

ENVIRONMENT 
CELL 3 

Fig. 3. 2-Cell mixing model. 

a,,J 

Table I . Data for 2-cell problem 

Room l Room2 
Parameter (mean) (SD) (mean) (SD) 

V(m 3
) 100 100 

c ,,,,;,1 (ppm) 1000 100 0 0 
Qc.; (m 3 h- 1

) 0 0 0 0 
Qi. I (m3 h- 1

) 400 0 
1.,,Jh- ') 600 0 

h- ') 0 0 200 0 
h- ') 200 0 0 0 

>ly air concentration C 3 (ppm) = 0. 

lard deviation of 1000 and 100 ppm respectively. 
.m 2 is initially a clean room. 
: is of interest to examine the effect of the initial 

;ertainty in the contaminant concentration of room 1. 
1is is illustrated in Figs 4 and 5, which show the mean 

id 95% confidence limits of concentration (mean± two 
tandard deviations) for the two rooms. The con

;entration in room 1 decreases exponentially to zero as 
contaminant is transferred to room 2, where it is 
exhausted. The uncertainty level of contaminant con-

,.--... 

E 
Q. 
Q_ 

z 
0 

~ 
Q:'. 
1-
z 
w 
() 
z 
0 
() 

0 
0 
<D .............._ Mean Concentration 
~ 95111 Confidence Inte rva l 

0 
0 
('J 

0 
0 
CX) 

0 
0 
'<!' 

2 J 4 5 

TIME (hours) 

Fig. 4. Room I concentration history. 
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0 

'° 
0 
0 
<() 

E 
Q. 0 
Q_ 0 

v 

z 
0 0 
I- 0 
<( I") 

Q:'. 
I-
z 0 w 0 
() N 

z 
0 
() 0 

0 

2 .3 4 5 

TIME (hours) 

Fig. 5. Room 2 concentration history. 

centration in room 1, defined here as the ratio of the 
standard deviation to the mean, retains its initial level of 
10% throughout the process. This is expected since there 
is no uncertainty in any of the other model parameters. 
Room 2 responds as though it were exposed to an initial 
pulse of contaminant. The concentration increases to a 
maximum at about 15 min, and then decreases to zero. 
The ratio of the standard deviation to the mean in room 
2 also remains constant at 10%, because room 1 is the 
only source of contaminant. 

6-Cell problem 
Figure 6 shows the floor plan of a single storey com

munity hall building which is used for general meetings 
and receptions. The building is dilution ventilated in 
order to control the concentration of carbon dioxide, the 
contaminant to be modeled. There are in total, six interior 
rooms or cells, including the main hall area, kitchen, 
entrance, two restrooms, and lounge (numbered one 
through six cells). The environment can be thought of as 
a seventh cell which has a constant concentration of 
carbon dioxide. 

The physical data relevant to the problem is presented 
in Table 2. The number written in brackets after the name 
of each room indicates the average number of people 
expected to occupy the room for a typical gathering. 
These numbers are used as the basis for calculating the 
production of carbon dioxide in each room and the 
required supply of outdoor air, following standard guide
lines [17). These guidelines give relevant data to the prob
lem, including carbon dioxide generation rate per persion 
(0.0178 m 3 h- 1

), outdoor air requirements for each type 
of room (non-smoking assumed), and the environmental 
carbon dioxide concentration (300 ppm). 

The design problem is to determine the expected levels 
of carbon dioxide concentrations in the building. A prob
ability distribution for the concentration of carbon di
oxide in each room is desirable in order to make some 

L 
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ENVIRONMENT <i) 
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Fig. 6. A six room community hall building. 

reasonable statements about the possibility of exceeding 
safe exposure levels. This can be accomplished with the 
multi-chamber SDE model given the mean and standard 
deviations of all flow rates, contaminant production 
rates, and initial conditions. 

There are two main sources of uncertainty in this prob
lem. Neither the number of people attending a gathering 
nor the number of people present in any room is constant. 
Thus, the production of carbon dioxide is variable. Also, 
there is a high degree of uncertainty in airflows through 
doorways since doors may be opened or closed, and the 
flows are affected by temperature and pressure gradients, 
and human activity . 

It is possible to determine air exchange through door
ways based on ventilation flows and temperature and 
pressure gradients [6]. For the purpose of this problem it 
will be assumed that there are no temperature or pressure 
gradients driving inter-room flows, and the flows through 
the doorways will be estimated using typical turbulent 
room air velocities [18]. Using a mean turbulent air vel
ocity of 0.15 m s- 1 to model the diffusion in both direc
tions, door areas of 2 and 4 m2

, and an assumption that 
the doors are open 10% of the time, inter-cell airflows 
are calculated as 108 and 216 m 3 h- 1 for single and 
double doors respectively. The standard deviations of the 
contaminant production rates and doorway flows (except 

those from the lounge to the restrooms) are set at 10% 
of their mean values for illustration purposes; 

The mean and standard deviations of the con
centration of carbon dioxide in each room as functions 
of time are shown in Figs 7 and 8. Using this information, 
statements can be made about the probability of exposure 
to a certain concentration of carbon dioxide in any room. 
For example, the 95% confidence interval for the hall is 
plotted in Fig. 9. This indicates that an exposure to a 
concentration level greater than 1725 ppm has a 2.5% 
chance of occurring for this model. 

Sensitivity analysis 
The multi-chamber SDE model can be used to inves

tigate how changes in the mean or uncertainty levels of 
ventilation parameters affect contaminant concentration 
levels in the cells. The 6-cell hall example is used here to 
illustrate a sensitivity application. The effect on the car
bon dioxide concentration uncertainty level in the lounge 
due to changes in the uncertainty level of the contaminant 
production rate in the hall is considered. In case A, the 
standard deviation of the production of carbon dioxide 
in the hall is one tenth of the mean value as seen in Table 
2. In case B it is changed to one third of the mean value. 
All other mean and standard deviations are as defined 
previously in Table 2. 

Table 2. Data for 6-cell problem 

Hall (75) Kitchen (9) Entrance (6) Restrooms (2) Lounge (15) 
Parameter (mean) (SD) (mean) (SD) (mean) (SD) (mean) (SD) (mean) (SD) 

V(m 3
) 450 108 54 18 72 

Ciniti•I (ppm) 0 0 0 0 0 0 0 0 0 0 
Qc.1 (m

3 h- 1
) 1.340 0.134 0.161 0.0161 0.107 0.0107 0.0536 0.00536 0.2676 0.02676 

Q,.1 (m
3 h- 1

) 945 0 162 0 216 21.6 0 0 729 0 
Q1.1 (m 3 h- 1

) 945 0 162 0 216 21.6 364.5 0 0 0 

Supply (cell 7) air concentration C7 (ppm) = 300. 
Double door flows Q1•1 (m

3 h- 1
): mean= 216. SD= 21.6. 

Single door flows Q,.1 (m
3 h- 1

) : mean= 108 (Q 6.• = Q6.s = 472.5). SD= 10.8. 
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Fig. 7. Mean carbon dioxide concentrations. 

The mean concentration of carbon dioxide in the 
lounge and the 95% confidence intervals for cases A and 
B are shown in Fig. 10. The confidence interval widens 
for case B due to the higher uncertainty of contaminant 
production in the hall. The ratio of the standard deviation 
to the mean concentration of carbon dioxide in the 
lounge increases from 13% to 17%, due to a cor
responding increase of from 10% to 33.3% in the ratio 
of the mean to the standard deviation of contaminant 
production in the hall. This indicates a relatively insen
sitive response of uncertainty in contaminant con-
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Fig. 9. 95% confidence interval of hall carbon dioxide con
centration. 

centration in the lounge to changes in the uncertainty 
level of contaminant production in the hall. 

CONCLUSION 

A generalized N-cell, multi-chamber SDE ventilation 
model with a numerical solution has been developed for 
the Ito and Stratonovich interpretations of the stochastic 
integral. This model provides a mathematical tool which 
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can handle uncertainty when modeling: the concentration 
of an air contaminant in a ventilation system which is 
described by a number of inter-connected, perfectly 
mixed cells. These cells typically represent rooms in a 
building. Initial conditions and ventilation parameters 
may be described by Gaussian probability distributions 
and the resulting concentration histories in each cell are 
described by time dependent means and standard devi
ations. This enables statements to be made about the 
probability of a contaminant concentration exceeding 
some specified level. The effect of changing the mean or 
standard deviation of model parameters can be inves
tigated in sensitivity studies. 

eters. This makes application of SOE theory to ven
tilation problems relatively simple and will facilitate 
ongoing research to determine how wen · the model pre
dicts actual ventilation problems. The general nature of 
the numerical solution also makes it applicable to other 
engineering problems. 

The numerical solution will formulate and solve the 
governing moment equations, given basic model param-

Regarding the characteristics of the SOE model solu
tions, it was shown that the Ito and Stratonovich solu
tions do not differ significantly for ventilation systems. 
With respect to modeling the variability in ventilation 
parameters with Gaussian white noise, this is a reason
able approximation if the time scale of the variability in 
the parameters is much smaller than the time scale over 
which the variation in contaminant concentration is 
being studied. 
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