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This p~p~r p~esents and ~xperimemaUy ~al_idates a method, based upon tracer gas techniques, for 
detenrumng tnu~rzonal airflows and effecnve volumes in a mulcizone enclosure. Presently used 
tracer ~as techruques have a number of drawbacks including the need for multiple tracers when 
analyz1!1g a mulcizo?e structure. ·Also, tradi~onal techniques cannot be used to independently 
determme volumetnc flow rates and effecuve volumes in the multizone case. The method 
des~ribed in this paper ~lia:1inates some of the problems introduced by multiple tracers and allows 
the independent determmanon of both volumetric flow rates and effective volumes. 

The proposed method ~ses a single tracer gas to disturb the zones. A state-space formulation is 
used to model the mulnzone syste111. The concentration data are used in combination with a least
squares identification algorithm to determine all of !he intenonal airflows and effective volumes. A 
t~ee-:zon~ experimental facility is used to. validate the method. The experimental results show that 
truS techruque may be an effecuve alternanve to presently used multiple tracer melh00s. 

INTRODUCTION 

In this paper, a method is proposed for determining int.erzoual airflows and effective volumes in a 
multizone enclosure. The method is \.lased upon tracer gas techniques and uses inputs of a single 
tracer to disturb each of the zones. A state-space fommlation is used to model the multizone 
system and the concentration data are used in combination witb a least-squares idenrification 
algorithm to determine all of the imerzonal airflows and effective volumes. The method also 
shows promise for identifying mu!tizone model orders and for use in systems with slowly varying 
parameters and cranspon delays . 

MUL TIZONE MODEL 
The following is a model formulation which follows directly from (1). When examining a general 
multizone system, the number of unknown parameters which must be identified becomes quite 
large. For example, in a three-zone system, there are a total of 15 unknown system parameters. 
These include 12 inierzonal airflows-including exchange with the outdoors. There are also 3 
unknow.n effective volumes. This type of modeling makes two very imponantassumptions. The 
first assumption is that the number of well mi:xed zones is known. The second is that the locations 
of each individual zone are known. While there may be cases where physical barriers make zone 
locations obvious, it may prove difficult in many systems to detennine the actual locations of the 
zones. The assumption is also made that the air in each zone is unifonnly mixed. 

For such a multizone system·, conservation of mass for the tracer gas in a single zone, i, can be 
written as 

n n 

Vj(l) C0j(l) = L(l-Oij)Fjj(l)C'j(l) -c';(t)L(l-lijj)Fij(l) + gi(t) 

where 
g;(t) 
V;(t) 
c';(t) 
c'i(t) 
F;j(t) 
Oij 
n 

jsO jcO 

= tracer input into zone i (mass/time) 
= effective volume of zone i 
= tracer concentration in :zone i (mass/volume) 
=time derivative of tracer concentration in :zone i (mass/volume-time) 
=flow from zone i to j (volumo/time) 
= Dirac delta function (Oij = 0 for i;o0j ; Oij = l for i=j) 
= total number of zones 
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The subscript "O" represents outdoor air. If the concentration of tracer in the outdoors is 
considered constant or relatively slowly varying, a change of variables can be made. If this 
approximation is incorporated, the outdoor concentration, c'o, can be eliminated from Equation (1) 
by defining the other concentration terms to be the difference between the actual zone concentration 
and the outdoor value 

Ci= c'i - c'o (2) 

To be completely general, Equation (1) also allows for the possibility that the interzonal airflows 
and effective volumes may vary during the duration of the tracer gas test 

Equation (1) represents n first-order simultaneous differential equations for the multizone system. 
They can be wriuen compactly by introducing s1a1e-space noiation. This form has become the 
standard for presenting the mass conservation equations. For the three-zone case, Equation (1) can 
be rewritten in state-space form as 

(3) 

where 

n n 
Q(t) = L(l-Oij)Fij(t) = L(l-Oij)Fji(t) 

j=O j=O 
(4) 

The first summa.tion in Equation (4) represents the net outflow from zone i to all the other zones 
including the outdoors. The second summation represents the net inflow to zone i from all the 
other zones including the outdoors. In steady-state, net inflow equals net outflow. 

Equation (3) can be represented more compactly in matrix form as 

V(t) c(t) = F(t) c(t) + g(t) 

or multiplying through by V-lfo~ ; 

c(t) = V-l(t)F(t) c(t) + V·l(t)g(t) 
.. ... ,,-.. 

(5) 

(6) .•. 
!. 

Equation (6) is known as the time varying state-space representation of the system of linear 
differential equations described by Equation (1). It is this equation, along with the accumulated 
tracer gas data, whioh is then often used to estimate the parameters V(t) and F(t) for the unknown 
multizone system. : . ,., 

' • I t • • I ... ... . . J 

LEAST-SQUARES IDENTIFICATION PROCEDURE · :. . ' · ., ·~M·J 
Since most data is collected at a finite number of points during the course of a test. a number of 
discrete-time methods have been developed for analyzing the data to extract the necessary 
information. However, before one of these methoC!s can be described (the least-squares algori~) 
it is necessary to transform the continuous-time system model 10 its discrete-time equivalent. 
Details on discretization can be obtained from (2). The discrete-time fozm of Equation (6) is . 

. '. -· . . , . · , I 
c[(k+l)T] =A c(kT) + B g(kT) (J) 

where A and B are defined as 
L '- , 

• I w .., .• ., _,, , 



'S 

' l 

.. • . . 
(8b) ~ 

Equatio~ (7) is valid if the flow matrix, F(t). v
0

dlume ~trix. V(r), . a~d inpul ~e~;or, .g(t), .J.e 
constant during the sampling interval, T. The matrices v-t and Fin Equation (8) are defined as the 

. values of V·l(t) and F(t) on the interVaJ (kT, ~+ 1)1). · · 

To formulate the least-squares estimate of the sys1em parameters it is useful lo firs1 transform the 
disCrc:te-time stale-space equation into 'a multiple-inpuf/multiple-output (MIMO) form. To do this,. 
Equation \1) is rewritten in a slightly different form •• · ·.' ' 
• • .• ,. • ' •V , • ... ( 

(9) 

where the output., c[k], is a vector containing the measured tracer concentrations .in each zone at 
time step k. T:he symbol, e. is used to denote the parameter matrix., ' • ,1 " .·. : ' " ~ 

• 0 = [A B]T :-:,.. . (10) 
• ' -~: ' { ! .··• ·: . _: 

and contains the unknown parameters of interest. The variable, cl>(k-1). is the regression vector 
whose components are comprised of past observations of the inputs and outputs of the system 
(regression variables) 

(11) 

The vector, v(k-1). contains unknown and unmeasurable disturbances to the system (cg. 
measurement noise). · "-

The method of least-squares is described by the criterion function 
N 

S(0) = L, ~(k){ [cT[kJ-«l>T(k-1)0] [c[k]-OT«!>(k-1)]} 
k=l . . 

(12) 

where ~(k) is a sequence which can be used to give varying weight to the data. Equation (12) can 
be readily solved for the optimal value of 0 which minimizes the squared error between the 
predicted and actual traeer gas concentrations. A recursive solution is presented below (5). Using 
this procedure, the new estimate of the parameter matrix, ~(k). is equal to the old estimate, ~(k-1 ), 
plus a gain matrix, L(k), times the error between the predicted and actual values of the output(s). 
The algorithm is thus, 

~(k) ~(k-1) + L(k)[yT[kHT(k-l)~(k-1)] (13a) 

where 

L k _ P(k-l)cl>(k-1) 
( ) - 1/~(k-1) + cpT(k-l)P(k-l)cp(k-1) 

(13b) 

pk = p k-l _ P(k-l)cp(k-l)cpT(k-l)P(k-1) 
( ) ( ) 1/~(k-1) + cpT(k-l)P(k-l)cl>(k-1) 

(13c) 
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EXPERIMENTAL PROCEDURE 
The single gas tracer technique proposed above is meant to be an experimental tool which can be 
used to evaluare the internal dynamics (flows and effective volumes) of a mullizone enclosure. To 
validate rhe identification technique, an experimental facility was constructed. Figure 1 shows a 
schematic of the three-zone test facility developed at the Universiry of Illinois . . The internal 
physical volumes of Z.Ones· I, 2, and 3 are 25..5, 12.5, and 12.5 m3 respectively. 

Figure 2 shows the experimental data for a typical three-zone· test The total length of the test was 
arbitrarily chosen to be 3 hours (10800 seconds). The t(acer input to each zone was a single pulse 
injection of 0.0593, 0.0502, and 0.0528 kg applied to Zones 1, 2, and 3 respectively. The 
injected amounts for Z.Ones 2 and 3 were lower than that for Z.One 1 because of their smaller 
physical volumes. The duration of each of the pulse inputs was approximately 9 seconds. The 
concentrations were sampled at 120 second intervals. 

The figure shows that the concentration data is fairly smooth and corresponds very weU (as will be 
shown) to a third-order system model. Since the pulse inputs result in sharp increases in tracer 
concentration, the tracer gas pulses mix within a single sample period. Thus. each of the three 
physical volumes corresponds well to an individual effective volume. Figure 2 also shows that the 
outdoor tracer concentration remained relatively constant for the duration of the test. 

~ Independent flow 
- ndentflow 

~~~~~-~I +- 5 m-------
Figure 1. Three-Z.One Experimental Test Facility 
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Time(s) 

8000 - 10000 

Figure 2. Experimental Tracer Concentration Data for Three-Z.One 

EXPERIMENTAL RESULTS 
The ioterzonal airflows and effective volumes of this three-zone system were identified using the 
method of recursive least-squares. The identified parameters were compared to the actual values 
by introducing the dimensionless parameter ratio, n. The parameter ~do is defined as the ratio • 
between the predicted value o.f a parameter to its actual measured value · 
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n·· _ F~predjc1cd 
IJ - ij llCtua) 

for airflow rates Fij (i~j) and 

n· _vi ort4ic1ed 
i- Yiactual 

(14) 

(15) 

for effective volumes. The actual values of the flows were measured experimentally. The actual 
values of the effective volumes were assumed to be equal to the physical volumes of the zones 
(since well mixed). · 

Fiiures 3 through 5 show the effective volume parameter ratios n1, nz, and '23 as a function of 
time for the data of Figure 2. The figures indicate that all of the effective volumes are identified to 
within 3% of their measured value. The figures also show that the effective volume of zone i is 
identified within a few samples following the input of tracer to that mne. The identified effective 
volume is also relatively insensitive to inputs applied to other zones. 

Figures 6 through 10 shows the airflow parameter ratios ilo1, '221. '232, '2i3, and '223 as a 
function of time for the data of Figure 2. The figures indicate that all of the interzonal airflows arc; 
identified to within 15% of their measured value. In fact, all but one are identified to within 10%. 
As each successive pulse input is applied to the zones, more parameters are identified. However, 
complete identification does not occur until after the third pulse input has been applied to Zone.3. 
Thus, to estimate the values of all the unknown parameters, a pulse input must be applied to each 
of the zones. ~-
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CONCLUSIONS 
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The experimental resullS- show that the recursive least-squares technique is able to correctly 
estimate all of the unknown independently controlled flows to wi~ 15%. It is also able to 
estimate the effective volumes of the zones to within 3%. The recursive technique has the 
advantage of allowing an on-line examination of the identification procedure. This enables the 
investigator to select appropriate times to apply inputs and temri.nate the test. Since, for the test 
shown, the identified parameters vary little following the third pulse input. the recursive procedure 
indicates that the test could have been terminated earlier. Future work is needed to decennine 
optimal test durations and sampling intervals, develop methods to estimate system order, and 
examine cases in wbich non-uniform mixing occurs. : · • , 1 - · • • · - · . ~-.. ~ ._ . . ' • - .. 
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