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Summary 

Element assembly techniques have been applied to developed methods to model a) airflows 
driven by wind pressures, buoyant forces, and· HVAC systems and b) heat transfer due to 
conduction, convection, advection, and radiation in complex multi-zone building systems. These 
methods, the Airflow Network Analysis Method and the Discrete Thermal Analysis Method, allow 
an integrated consideration of the building envelope, construction, and HVAC system interaction in 
each area of analysis, are computationally non-demanding, and can be employed to model building 
systems of arbitrary complexity. This paper will consider the integration of these methods to solve 
the coupled airflow and thermal analysis problem in macroscopic (i.e., whole-building, multi
zone) building system simulation. The theoretical bases of these related methods will be reviewed 
and a framework for integrating these methods to solve the coupled airflow and thermal analysis 
problem in building system simulation will be presented. A general approach for solving the 
resulting coupled system of equations, based on Newton-Raphson techniques, and special cases 
derived from this approach will be outlined. 



1 

COUPLED AIRFLOW AND THERMAL ANALYSIS FOR BUILDING SYSTEM 
SIMULATION BY ELEMENT ASSEMBLY TECHNIQUES 

James Axley 
Massachusetts Institute of Technology 

Cambridge, Massachusetts, U.S.A. 

Richard Grot 
National Institute of Standards and Technology 

Gaithersburg, Maryland, U.S.A. 

Introduction 

Building energy performance and indoor air quality of buildings are both intimately linked to 
infiltration, exfiltration, and interzonal airflows in building systems. There is, therefore a clear 
need for mathematical models to predict these airflows for the design of new buildings, for 
redesign modifications and diagnosis of existing buildings, for research in building thermal and air 
quality behavior, and to improve our understanding of airflow in buildings in general. Presently, 
mathematical models exist, that may be used for whole-building, steady-state airflow analysis, that 
account for airflow driven by wind pressures, building mechanical systems, and buoyant forces. 
These macroscopic models (i.e., as distinguished from microscopic models used to study the 
details of airflows in rooms (10)) have been applied to modeling quasi-steady state changes in 
airflows due to changes in these driving forces (19), but modeling unsteady conditions, especially 
those due to the coupled interaction between heat transfer and airflow, remains a challenge. 

A large variety of macroscopic models for multi-zone, unsteady heat transfer in buildings have 
been developed, yet few researchers have attempted to integrate these models with existing 
macroscopic airflow models to directly address the coupled airflow/thermal problem. Two 
exceptions, however, deserve special note. Walton (22) integrated a simple network airflow 
analysis technique with the conduction transfer function approach to multi-zone building thermal 
analysis to solve the coupled airflow/thermal problem and later Clarke (11) described a similar 
airflow analysis technique and briefly outlined a computational solution strategy for the coupled 
problem that has been implemented as part of the ESP building thermal simulation program (1 ). 
The strategies employed by these authors are similar to two special cases of the approach that will 
be presented in this paper and will be discussed subsequently. Suffice it to say, these approaches 
do not explicitly account for the nonlinear dependency of the flow and thermal problems and, as a 
result, must be considered somewhat less general than the approach presented herein. 

Element assembly techniques have been applied to develop methods to model airflows and 
heat transfer in multi-zone building systems. These methods, the Airflow Network Analysis 
Method and the Discrete Thermal Analysis Method, allow an integrated consideration of the 
building envelope, construction, and HV AC system interaction in each area of analysis, are 
computationally non-demanding, and can be employed to model building systems of arbitrary 
complexity. This paper will present an approach to modeling the coupled airflow/thermal problem, 
based on the integration of these methods, that explicitly accounts for the full nonlinearity of 
coupled problem Although an emphasis will be placed on the macroscopic modeling of whole 
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building systems the approach may also be applied to the macroscopic modeling of building 
subsystems and provides a framework for the integration of microscopic modeling techniques, 
based on the finite element method, with macroscopic techniques (2). The approach presented has 
grown out of an informal and formal collaboration between the authors and George Walton at 
NIST and is the basis of a program, DTFAM (Qiscrete ]Jlermal-flow Analysis Method), presently 
being developed at NIST by the second author of this paper, Grot. 

Spatial Discretization 

A building system may be considered to be a three-dimensional continuum within which we 
seek to completely describe the temporal, t, and spatial, x,y ,z, variation of the state of the system. 
The state of solid portions of the continuum will be defined. by temperature, T, and the state of the 
air portions of the continuum will be defined by the temperature, pressure, P, and velocity, v, of 
infinitesimal air parcels within these portions of the building system. 

The determination of the spatial and temporal variation of the temperature field will be referred 
to as thermal analysis, and the determination of spatial and temporal variation of the flow field 
will be referred to as/low analysis. An approach to the solution of both analysis problems may 
be based on replacing the continuously defined state variables: 

T(x,y,z,t), P(x,y,z,t), v(x,y,z,t) 

by a finite set of discrete state variables that are meant to approximate, in some sense, the values 
of the continuous variables at discrete points or regions, identified by nodes, in the building 
system. Here, the temperature and pressure fields will be approximated by spatially discrete, but 
temporally continuous, sets of temperature and pressure variables (organized as vectors) while the 
velocity vector field will be replaced by a collection of discrete mass flow rates, w, (i.e., having 
units of mass per time) corresponding to mean mass flow rates through discrete flow paths 
connecting well-mixed zones within the building airflow system: 

{T(t)}, {P(t)}, and {w(t)} 

(Note: Column vector quantities will be expressed by bold-faced variables enclosed in braces, { ) , 
and matrix quantities by bold-face variables enclosed in brackets,.) 

Both the thermal and airflow analysis problems will be formulated using element assembly 
techniques, borrowed from the closely-related fields of structural and finite element analysis (8, 
12), wherein equations approximating the behavior of the macroscopic system as a whole, the 
system equations, are assembled from equations that describe the behavior of discrete elements of 
the system model. An intuitively useful relationship exists between the mathematics of the 
assembly process and the diagrammatic conventions that support it, as suggested by Figure 1. 

The element equations will be defined in terms of subsets of the discrete system state 
variables: 

and will be referred to as the element state variables; vectors of discrete temperature, pressure, and 
mass flow rates associated with a given element "e". Inasmuch as there exists a one-to-one 
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correspondence between each of the element's state variables and the system state variables, we 
may describe this correspondence by Boolean transfonnations of the fonn: 

{T9} = [Be]{T} and {Pe} = [Be]{P} ; e =a, b, c, ... (1) 

where [Be] is a matrix of ones and zeros defined for each element, a, b, c, ... , in the assembly . 
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Discrete State Variables 
{T(t)}, {P(t)} associated with nodes 

{w(t)} associated with discrete flow paths 

Fig. 1. Spatial discretization, element assembly, and the state variables. 

Discrete Thermal Analysis 

Building energy simulation has been approached using a variety of methods including methods 
based upon resistance-capacitance networks, LaPlace transfonn techniques (e.g., conduction 
response function techniques), Fourier transform techniques (e.g., harmonic transmission matrix 
methods), finite difference techniques, etc. The authors have favored an element assembly 
approach, because it is felt that such an approach may serve to unify the various and diverse 
simulation methods presently used within a single theoretical framework and, importantly, because 
it allows the inclusion of the powerful finite element method, and the numerical techniques 
associated with it, within the repertoire of techniques that may be applied to building energy 
simulation. 

In its application to building thermal analysis, the element assembly approach is based on the 
assertion that: building thermal systems may be idealized by assemblages of discrete thermal 
elements chosen to model specific instances or aspects of thermal transport that occur within the 
building system. The program DTAMl, developed to provide a demonstration of the basic 
approach, provides five thermal elements including a simple thermal resistance element and a well
mixed zone or "lumped" capacitance element (i.e., the elements of the RC network analysis 
approach), a fluid flow loop element, and lD and 20 conduction elements based on isoparametric 
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finite element formulations. Equations describing a variety of other elements for radiant and fluid 
transfer have been presented but not yet implemented (3, 5). This approach is outlined below. 

We distinguish flow elements from nonflow elements and describe the behavior of these 
subclasses of elements by equations of the general forms given below: 

{q~etl = Le( {Te} ) - {qe} 

{h~eU = Le( {Te} ) - {he} 

; for nonflow elements 

; for flow elements 

(2) 

(3) 

where {q~81}, {h~etl are vectors of element net-heat and net-enthalpy flow rates, respectively, 
{qe}, {he} are vectors of element-derived heat and enthalpy generation rates and: 

(4) 

L e ( {Te}) is a transformation of {Te} that has the form of a linear transformation, specific to a 
given element type, where [k8

) and [c 8 ) - the element conductance and capacitance matrices 
respectively - are square transformation matrices that may, in general, vary with time (i.e., be 
nonsteady) or temperature (i.e., be nonlinear). 

The meaning of the element variables employed in these general element expressions may be 
clarified by the diagrammatic representations of hypothetical nonflow and flow elements shown in 
Figure 2. An element (equation) defines the nature of heat transfer between specific nodes in the 
system corresponding to a specific heat transfer process being modeled. Nodal temperature and 
either nodal heat flow rates or enthalpy flow rates are associated with each node with the 
convention assumed that flow into the element is positive. 

nodei Tj 
qe . 

net-J 

~ 
Nonflow Element 

node i 

Fig. 2 Thermal element variables. 

The three simplest element equations follow directly from fundamental considerations: 

The I -Node Well-Mixed Zone or Simvle Capacitance Element: A single-node element, say 
element e associated with node i, that models the (ideal) capacitance of a well-mixed zone 

enclosing a mass of air me having a specific heat capacity of c~. 

{h~et-i} = meC~[1) d{Tr} ; or [ce) = meci[1) 
dt 

(5) 

The 2-Node Simple Resistance Element.· A two-node element, say element e with nodes i and 
j, that models one-dimensional heat transfer through a material having a resistance of Re and an 
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area available for heat transfer of A e: 

(6) 

The 2-No<le Simale Flow Element: A two-node element, say element e with nodes i and j, that 
models heat transfer due to a (practically) instantaneous flow of rate we of air of specific heat 

capacity c~ through a discrete airflow path : 

(7) 

Although a variety of other element equations could be presented, these simple element equations 
will be sufficient to discuss the essential features of the coupled airflow/thermal problem. Even 
with these simple elements building thermal systems of considerable complexity may be modeled. 

Two points should be noted at this time. First, the resistance element, being representative of 
µiose elements that may be used to model conduction in solids, is defined by a symmetric system 
of equations while the simple flow element, as other more complex flow elements, is defined by a 
nonsymmetric system of equations. Second, due to thermally induced buoyancy, the air mass 
flow rate, we, will in general be dependent upon the nodal temperatures, we = we( {Te}), thus, 
the simple flow element equations will be nonlinear. 

Demanding the conservation of thermal energy at each of the system nodes, the element 
equations may be directly assembled to yield the system equations that describe heat transfer in 
the building system as a whole: 

(K]{T} + [~ = {E} 
dt 

where: 

(K] = A [ke] + A [ke] 
e • a, b, ... e • ex, p, ... 

[C] = A [ce] + A (ce] 
e • a, b, ... 8 • ex, p, ... 

{E} = {Q} + A {q8 } + A {he} , 
e • a, b, ... e • ex, p, ... 

a,b, . .. = nonflow element indices 
a.~. .. . = flow element indices 

(8a) 

the system conductance matrix (8b) 

the system capacitance matrix (8c) 

the system excitation vector (8d) 

A, above, is the assembly operator, a generalization of the conventional summation operator, 
l:. It is defined in terms of the Boolean transformation matrices, presented above. The assembly 
of a class of element matrices, [X8 ], or a class of element vectors, {ye}, is defined as: 

and A {ye} = 2, [Be] T {ye} 
e • a, b, .. . e • a, b, ... 

(9) 
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The assembly operation, as represented formally above, is a direct result of demanding 
conservation at each system node and provides a mathematically rigorous definition that is useful 
for theoretical analysis and development. It defines, however, a computationally inefficient 
strategy for assembly, therefore, more direct computational algorithms are used in practice (8, 12). 

To apply this system of equations to the solution of practical problems, prescribed temperature 
conditions and the possibility of z.ero capacitance system nodes must be accounted for. When this 
is done, one is left with a reduced set of equations of the same fonn as Equation 8, hence, we shall 
simply consider operations with this equation and not consider these details here. Consideration of 
temperature boundary conditions and z.ero capacitance nodes become, however, key issues when 
considering computational strategies for implementing this approach. 

The system conductance matrix, [K], being an element assembly sum of e1ement matrices will, 
in general, be nonsymmetric and non1inear (i.e., due to flow element contributions) [K] = 
[K({T})]. It may be shown however, that [K] will be ·a nonsingular M-matrix that may be 
factored by LU decomposition without pivoting when one or more prescribed temperature 
boundary conditions have been imposed (see (6) for an analysis of a similar set of equations). 
This fact may be used to develop efficient computational strategies to solve these equations. 

Steady Airnow Analysis 

Macroscopic approaches to steady airflow anaJysis, based upon idea1izing building airflow 
systems by collections of well-mixed zones linked by discrete airflow paths, have been developed 
by several groups (see (14, 17, 18) for a review of these models). These multi-zone airflow 
network models share a close relationship to water piping network analysis models (16). In these 
models, airflow is, most commonly, described by power-law pressure-flow models, wind 
pressures are modeled via pressure coefficients, and the dynamic pressure variation of the wind 
and buoyant affects are accounted for. The authors (15) and Walton (21) have shown that these 
models can be reformulated on an element assembly basis so that multiple pressure-flow models 
may be considered in a single system model. A variety of flow elements have been introduced that 
may be used to model flow within both the building construction and through the HV AC system. 

The general features of the element assembly approach follow that presented above for thermal 
analysis; the building airflow system is ideaJiz.ed by assemblages of flow elements that model the 
pressure flow characteristics of discrete flow paths in the building/HY AC system. Flow element 
equations are formulated and, for each specific system idealization, element equations are 
assembled to form the system equations. 

Although there is much work to be done to refine existing flow element models and to develop 
additional ones, the basic procedure to do so is in hand. These element equations are based on the 
Bernoulli equation for incompressible flow between an entry, subscript "1," and an exit, subscript 
"2," of a flow path: 

(10) 

where p is the density of air in the flow path (assumed constant), V is the mean or bulk fluid 
velocity, g is the acceleration of gravity, and z is the venical height from an arbitrary datum. 
These and the other element variables used in the expressions below are illustrated in Figure 3. 
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Datum 

Fig. 3 Representative two-node flow element variables. 

The Bernoulli equations are then complemented by one of several pressure-flow models that 
relate the air mass flow rate, we= pAv, with A the cross-sectional area, to the frictional and 
dynamic losses, .1Pross. for the class of flow path being considered. Examples include: 

Power-Law Correlations: used for complete constructions (e.g., walls or window units). 

we= 
(Cp 112) ('8Pr.:J1. n I ~Pr ••• transition I turbulent flow 

(11) 
generally not available creeping/ laminar flow 

where C and n are correlation constants (typically 0.5 :s: n :S: 1.0). 

Orifice EQuations : used for openings from cracks to doorways (9). 

; transition I turbulent flow 

we= (12) 

creeping/ laminar flow 

where Cd is a coefficient correlated with the geometry of the flow path and the flow Reynolds 
number, Ao and A are cross-sectional areas of the orifice and the flow path, respectively, Do is 
the diameter of the orifice, and k is a constant. 

Duct Equations : for modeling flow in HV AC system ductwork (9). 

transition I turbulent flow 

we= (13) 

; creeping /laminar flow 

where Cr is a coefficient correlated with the geometry of the flow path and the flow Reynolds 
number, CL is a constant, A and Dare the cross-sectional area and (hydraulic) diameter of the 

duct flow path and µ is the viscosity of the air in the flow path. 
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To emphasize the nonlinearity of the transitional-to-turbulent flow expressions and the linearity 
of the creeping-to-laminar flow expressions, these representative correlations have been written in 
the form of linear relations, between mass flow rate and pressure loss as: 

we = f { Cn }{ C2r} 8Pross ; ~T = 1~pr0sJ 1- n ; transition I turbulent flow 

\ ( C1 d 8Pfoss ; creeping I laminar flow 
(14) 

The leading coefficients, C1 T and C1 L. are more or less independent of pressure loss, depending 
primarily upon the specific geometry of the flow path and secondarily on flow intensity, while the 
coefficient C2r isolates the primary source of nonlinearity (n = Ifl or lfl :5 n < LO). In addition to 
these relations, crack correlations (7, 13), expressions for flow through large openings (20, 21, 
23), and fan pressure-flow models (4, 21) have been formulated. 

Finally, the entry and exit pressures, P1 and P2, are related to the element state pressure 
variables, assuming hydrostatic conditions exist in each zone (e.g., with reference to Fig. 3: 

P1 = Pr+ PiQ(Zi - 2") ). The resulting element equations will have the general form: 

(15) 

where {w~81} is the vector of air mass flow rates (representing the mass flow rates from each of the 
element's nodes into the element,) [a8 ] is the element pressure-flow coefficient matrix, {wg} is a 
vector of zero-8P air mass flow rate terms (e.g., the free-delivery mass flow rate for fans), and 

{P~} is a vector of buoyancy-induced pressure terms dependent on air densities associated with 
element nodes. For a two-node flow element: 

k = 2 for flow from i to j 
k = 1 for flow from j to i 

(16) 

For a two-node flow element, say element e connecting nodes i and j, based on the simplified 
pressure-flow model defined by Equation 14, the element pressure flow matrix would be: 

{Cn}( 
1 

) 
= ae[ 1 -1] . ae = KPr - Pf)+ (P~i - P~jl1-n 

-1 1 , {C1L} 

; transitional I turbulent flow 

; creeping I laminar flow 
(17) 

For transitional-to-turbulent flow the element pressure flow matrix will, in general, be nonlinear, 
[a8 ] = [a8 ({P8

}, {P~})], while for creeping-to-laminar flow it should be expected to be linear. 

Demanding the conservation of mass flow at each of the system nodes, element equations 
corresponding to a specific system idealization may be assembled to form system equations that 
govern the behavior of the system as a whole: 

I {W} = [A]{P} + {W9} + {W0 } I (18) 
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where 

[A] = A [ae] ; {W8} = A [ae]{P~} ; {Wo} = A {wg} 
e-a, b, ... e •a, b, ... e. a, b, ... 

{ W} is a vector of the direct generation rates of air mass at each of the systems nodes. It is 
reasonably assumed to be a zero vector for the usual cases of building thermal or indoor air quality 
analysis. For building fire analysis, on the other hand, this vector will be non-zero. 

The airflow equations, Equation 18, may be solved by a variety of methods (i.e., to determine 
the system pressure vector, {P}) although variants of the Newton-Raphson method appear to be 
most effective (21). The Newton-Raphson method is an iterative scheme based upon Taylor's 
expansion of Equation 18 written in residual form: 

{R({P})} = [A]{P} + {We} + {W0 } - {W} = {O} (19) 

that leads to the following iterative algorithm: 

(20a) 

(20b) 

With an initial estimate of the system pressure vector, {P}k, one forms and solves Equation 

20a to obtain {~P} k, which is then substituted into Equation 20b to obtain a better estimate of the 

system pressure vector, { P} k + 1. This process is repeated until the system pressure estimates 
converge. Element flow rates can then be determined from the element equations using the 
solution for the system pressure vector. The solution of Equation 20a will require the specification 
of one nodal pressure, typically the outside air node pressure, or, for those cases where the system 
is composed of uncoupled groups of zones, a single node pressure must be specified for each 
group. 

The square matrix on the left-hand side of Equation 20a is known as the system Jacobian. It 
follows from Equation 18 that the Jacobian may be directly assembled from the element 

expressions for the partial derivatives a{w~e1}/(){Pe} as: 

[
a{R({P})} I l = A [a{we }/(){Pe} I k] + [a{W} I l 

a{P} {P}k e. a, b, ... net {P} (){P} {P}k 
(21) 

(The last term on the right-hand side may be ignored when {W} is the zero vector.) For the 
simplified flow resistance elements presented above (i.e., Equations 14 and 17) the element 
Jacobian, d{W~et}/(){P8}, has a particularly simple form: 

[ ] 

(((( 
JJ e}n w(e fl fl ))) [ 1 -1 ] ; tran..'iitional I turbulent flow 

a{w~et} - P1 - Pi + PBi - PBj -1 1 

(){Pe} - C1 L [ 1 -1 J ; creeping I laminar flow 
-1 1 

(22) 

It is important to note that the transitional-to-turbulent flow expressions lead to practically 
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unbounded terms for near-zero flows (i.e., when ((Pr - Pf)+ (P~i - P~i)) == 0). These will, when 
assembled, lead to practically unbounded terms in the system Jacobian and, as a result, slow the 
convergence of the solution procedure or, in extreme cases, lead to nonconvergence. By 
employing the physically consistent creeping-to-laminar expressions for low-flow conditions, this 
type of convergence problem will be avoided (4, 21). For flow through building constructions 
described by power-law correlations that may not apply to creeping-to-laminar flow regimes one 
may reasonably assume orifice behavior at low flow conditions to achieve this end. 

Coupled Airflow-Thermal Analysis 

The thermal equations, Equations 8, may be used to determine the thermal response of a 
building system to an arbitrary thermal excitation. If, however, a given building thermal 
idealization includes flow elements it will be necessary to complement these equations with 
equations to determine the airflows in the building system as they vary with time. If it can be 
assumed that the airflows in the discrete flow paths considered are not changing rapidly and remain 
practically isothermal with density constant (i.e., the assumptions underlying the Bernoulli 
equations used to formulate the flow element equations remain valid) then one may reasonably use 
the steady airflow equations, Equation 18, for this determination. Recognizing, however, that the 
Bernoulli conditions may be satisfied in the discrete flow paths yet bulk density within each well
mixed zone may vary with time, it becomes necessary to account for the rate of change of mass due 
to these density variations by adding an accumulation term, [V]d{p}/dt. to Equation 18 as: 

[A]{P} + [V]d{p} = {W} - {We} - {Wo} 
dt 

(23) 

where [V] is a diagonal matrix of zone volumes, assumed constant, and {p} is a vector of zone 
densities. Assuming ideal gas behavior in each zone i, Pi = P/RTi (R is the gas constant and T 
is the absolute temperature of the air in the zone) this accumulation term may be expanded to yield: 

[A]{P} + [Mp]d{P} + [Mr]d{T} = {W} 
dt dt 

(24) 

where [Mp] is a diagonal matrix with terms MP-i,i = V/RTi , [Mr] is a diagonal matrix with terms 

Mr-i,i = ViPdRTi2., and {Wl = {W} - {We} - {Wo}. 

We may then combine these quasi-dynamic air flow equations with the dynamic thermal 
equations, Equations 8, to describe the coupled analysis problem: 

(

d{P}} -
[ 

[A] [O] ] { {P} } + [[Mp] [Mr]] dt = ( {W} \ 
[O] [K] {T} [O] [C] d{T} {E} I 

dt 

(25) 

Considering realistic numerical values for these and the other terms of Equation 25, however, it 
appears that the contribution of the pressure-related accumulation terms, [Mp]d{P}/dt. will be 
negligible and the contribution of the temperature-related accumulation terms, [Mr]d{T}/dt. are 
likely to be small in comparison to the uncertainties in the air mass flow rates terms [A]{P}, thus 
we shall ignore these contributions and describe the coupled problem with the following equations: 
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'd{P} 1 -
[O] ] dt _ J {W} \ 
[C] d{T} - \ {E} j 

I dt J 

(26) 

It will be appropriate, however, to evaluate these contributions in future numerical experiments to 
better determine their imponance and, thus evaluate the validity of this simplification. 

Depending on the nature of the thermal excitation and the nature of the building system being 
studied, a variety of solution options for the coupled equations, Equation 26, may be considered. 
These include a) steady linear and nonlinear analysis, b) steady linear harmonic analysis, and c) 
dynamic linear and nonlinear analysis. 

Under steady excitation the derivative terms vanish thus the .steady problem is defined as: 

[ 
[A] [O] ]{ {P} } = J {W} \ 
[O] [K] {T} \ {E} j 

(27) 

As written, these equations appear to be uncoupled but, in fact, for the (usual) nonlinear case these 
equations are implicitly coupled through the dependency of both block diagonal matrices on both 
temperature and pressure through the flow element equations (i.e., [A] = [A({P}, {T})] and 
[K] = [K({P}, {T})] ). These steady coupled flow equations may be solved using the Newton
Raphson approach discussed above for steady flow analysis alone. 

The full dynamic problem defined by Equation 26 (i.e., after accounting for temperature and 
pressure-prescribed boundary conditions) may be solved numerically using one of several finite 
difference schemes. A general semi-implicit method has been employed by the authors for the 
solution of the linear thermal problem (5) and is presently under investigation for solution of the 
nonlinear coupled airflow/thermal problem. This methcxl employs the difference approximation: 

{ 
{ P }n+1 } = 
{T}n+1 { 

{P}n} + (1 _ a)ot { {dP/dt}n } + aot{{dP/dt}n+1} 
{T}n {dT/dt}n {dT/dt}n+1 

(28) 

where 0 ~ a ~ 1, the time domain has been divided into discrete steps, tn+ 1 = tn + ot, and an 
abbreviated notation has been intrcxluced: { P }n = { P(t0 )} and { dP/dt}n = (d{P}/dt)~0 • (Note 

that; a= 0 corresponds to the Forward Difference Scheme; a= 1/2 the Crank-Nicholson scheme; 
a= 2f3 the Galerkin scheme; and a= 1 the Backward Difference Scheme.) 

Substituting Equation 28 into Equation 26 leads to the following time-stepping algorithm: 

[ 
(A]n+1 }OJ ]{ {P}n+1 } = J {~}n+1 \ 

[O] [K]n+1 {T}n+1 \ {E}n+1 / 
(29a) 

where: 

[K] = [aot[K] + [C]] = the dynamic conductance matrix (29b) 

....... 

{E}n+1 = aot{E}n+1 + (1- a)ot{E}n + [C]{T}n - (1- a)ot[K]{T}n (29c) 
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This algorithm is self-staning (i.e., given initial conditions the right-hand side of Equation 29a is 
...... 

determined) and is implicitly nonlinear due to the dependency of both [A] and [K] (or [K] ) on 
{ P} and {T}. In those cases when this nonlinear dependency can be ignored the algorithm will be 
unconditionally stable for ex.:::: 1/2 (12). 

With a given initial system state vector specified, ( {P}o {T}o }T, Equation 29 may be solved to 
determine the system state vector vector at the next time step, ( {P}1 {Th }T. Repeating this 
process, in a step-wise manner, provides an approximate solution for the response of the building 
system, ( {P(t)} {T(t)} }T, to an arbitrary system excitation, { {W(t)} {E(t)} r System air 
flows and heat transfer quantities may, at any time step, be directly determined from this response 
using the appropriate element equations. 

The matrix of flow coefficients, [A]n+1• will, in general, be dependent on the system pressure 
vector and the system temperature vector: [A]n+1 = [A(({P}n+1 I {T}n+1 }T)]. The dependency on 
the system pressure vector was discussed above. The dependency on the system temperature 
vector results from the dependency of the flow coefficients on air density which, in tum is 
dependent on nodal temperatures. 

...... 
The dynamic system conductance matrix, [K]n+1 • will also be dependent on the system 

pressure and temperature vectors when the thermal system includes flow elements. Thermal flow 
elements depend on the flow through the elements which, in tum, will be dependent on nodal 

pressures and temperatures, as above: [K]n+1 = [K({{P}n+1 I {T}n+1 }T}]. 

One may approximate a solution to Equation 29 using the Newton-Raphson method discussed 
above for isothermal steady flow analysis. Expanding and rewriting Equation 29 in residual form: 

{
R ({ {P}n+1 })} = ( [~]n+1 {P}n+1 - {~n+1 \ 

{T}n+1 [K]n+1 {T}n+1 - {E}n+1 / 

the Newton-Raphson method may be directly represented by the following iterative algorithm: 

• For time step tn+ 1 

• Step 1: Set initial estimate equal to solution from previous time step; 

• Step 2: Nonlinear Iteration 
• Initialize iteration counter; k = 0 
•Until convergence is realized repeat Steps 2.1, 2.2, and 2.3: 
• Step 2.1: Increment iteration counter; k ~ k + 1 

Form the coupled system Jacobian: 

[J]~+1 -

()R ({ {P}n+1 }) 
{T}n+1 

a{ {P}n+1 } 
{T}n+1 {P}~+1 

{T}~.1 

(30) 
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• Step 2.2: Solve (using Gauss Elimination or variant): 

[J]~+1l{&P}~!H = _/R(I {P}~+1 \)\ 
\{&T}~!1 I \ \ {T}~+1 11 

•Step 2.3: Update 

I {P}~1 \ = ( {P}~+1 \ + ({&P}~!1 \ 
\ {T}~!1 I {T}~+1 I {& T}~!1 I 

• Step 3: Report solution for time step as; 

• Continue to next time step. 

Convergence evaluation may be based upon system pressures and temperatures, element mass 
flow rates, or a combination of these. 

From Equation 30 it follows that the coupled system Jacobian matrix, [ J ]~+ 1. consists of the 
following four submatrices: 

~ [A]n+1 {P}n+1 - {W}n+1 ~ [A]n+1 {P}n+1 - {W}n+1 

(P);+1 l a{P}n+1 (P);.1 l iJ{T}n+1 

[J]~+1 = {T}n+1 {T}n+1 
(31) 

a(rR1n+1mn+1 - {E}n+1} a{ri<Jn+1 {T}n+1 - {Eln+1} 
d{P}n+1 (P)~1 l d{T}n+1 {P}~+1 l 

{T}n+1 {T}n+1 

The upper left submatrix is seen to be identical to the steady flow system Jacobian (Equations 
19 & 20a) and may be directly assembled from element contributions as before, Equation 21. The 
upper right submatrix filil also be assembled from element contributions where now the element 
contributions may be approximated as: 

(32) 

Here, by analogy with the Boussinesq assumption, we consider only the temperature dependency 
of the buoyancy terms and ignore the dependency of the flow coefficient terms in [a 0 ] on air 
density and, hence, temperature. Using the definition of {PR}, Equation 16, and the ideal gas law 
Pi = P/RTi we obtain, for two-node flow elements: 

(33) 

where, again Tis the absolute temperature at the respective zone nodes. In a similar manner, the 
other two submatrices may be assembled from the individual thermal element contributions. 
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In some situations the off-diagonal submatrices of the coupled system Jacobian, Equation 31, 
may be small relative to the diagonal submatrices. The upper-right submatri.x, for example, would 
become the zero matrix for a flow idealization consisting of horizontal flow paths connecting zones 
and the lower-left submatrix may prove insignificant if, for example, heat transfer by flow is either 
dominated by forced airflow or insignificant relative to other modes of heat transfer. For either of 
these last two conditions, the lower-right submatrix could, reasonably, be approximated as: 

a{rR1n+1 {T}n+1 - {Eln+1} = lKJn+1 
a{T}n+1 

with the result that the coupled system Jacobian becomes a block diagonal matrix: 

[J ]~+1 = 

d [A]n+1 {P}n+1 - {WJn+1 

d{P}n+1 

[O] 

{P}~+1 
k 

{T}n+1 

[O.] 

(34) 

(31) 

With this simplified Jacobian the solution strategy outlined above becomes an iterative process 
of solving the nonlinear flow problem practically identical to that defined by Equations 20, then 
solving a linearized thermal problem. This process is equivalent to the second of two solution 
options proposed by Walton (22). If small time step increments, M, are employed one may, 
possibly, find that iteration is unnecessary and choose to avoid it altogether. Employing the 
simplified Jacobian in the solution strategy outlined above without iteration is equivalent to the first 
of the two options proposed by Walton and the approach employed by Clarke (11). By explicitly 
considering the nonlinear dependency of the flow and thermal problems the proposed solution 
strategy outlined above (i.e., including the diagonal submatrices) may be considered to provide a 
more general approach to the problem. 

Conclusion 

The theoretical bases of a steady building airflow analysis technique and a dynamic building 
thermal analysis technique have been reviewed and an approach to integrate these methods to solve 
problems of coupled airflow and thermal analysis has been outlined. These techniques and are 
based on an element assembly approach that allows the analyst to consider a practically unlimited 
variety of system idealizations of arbitrary complexity and leads to highly modular computer 
programs facilitating development and future changes. 

The integrated approach may be applied to the solution of both steady state and dynamic 
problems. The steady airflow equations are adapted to formulate a system of equations that 
describe the dynamic airflow analysis problem. These equations are then integrated with the 
dynamic thermal analysis equations to form a system of equations that describe the coupled 
problem. It is argued that key terms of the dynamic airflow equations are likely to be insignificant 
and by ignoring these terms a quasi-dynamic approach is formulated to solve the dynamic coupled 
airflow/thermal analysis problem. Although, this simplification may be justified when airflows are 
not changing rapidly within the building system this assumption must be critically evaluated. 
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