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SUllMARY 

We describe the calculation methods of seven finite different schemes 
: (l)CDS, (2)UDS, (3)Power-Low, (4)SUDS, (5)SUWDS, (6)QUICK and (7)Pseudo-Spectral. 
And we calculated the transport of a nondimensional scalar value with them, 
assuming a uniform velocity field. We found from· the calculation results that 
(!)when the flow is inclined to the coordinates, UDS and Power-Low have poor 
accuracy because of the numerical diffusion but SUDS, QUICK and Pseudo-Spectral 
are well coincided with the exact solution , and (2)when the cell Pecret number 
is large, QUICK and Pseudo-Spectral occur the oscillation, and (3)for the 
three dimensional case, SUDS, QUICK and Pseudo-Spectral are roughly coincided 
with the exact solution. 

We calculated the actual room airflow and the temperature distribution 
using k-e model with Power-Low and SUDS. The calculation results indicate 
that SUDS restrains the numrical diffusin relatively than Power-Low. But we 
can't compare the calculations with the measurements as this atrium is now 
under the construction. 
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1. Introduction 

The finite difference schemes are often used to solve the complex 
problems including fluid flow, heat and mass transport. However it is very 
difficult to apply them to the room airflow with reasonable accuracy and cost. 

As well known, Upstream Differencing Scheme (UDS) is very stable for the 
numerical calculation but poor in accurate because it generates the 
numerical diffusion. On the other hand, Central Differencing Scheme (CDS) 
is relatively accurate but not stable. 

Many investigators have developed the finite difference schemes to 
improve the above problems. Several new schemes were proposed by S.V. Patanker, 
G.D. Raith by, B. P. Leonard, P. J. Roache and so on. 

In this paper, we consider seven different schemes as follows 
(l)CDS 
(2)UDS 
( 3) Power-Low Scheme (Power-Low)< 1 > 

(4)Skew Upstream Differencing Scheme (SUDS) <2 > 

(5)Skew Upstream Weighted Differencing Scheme (SUWDS) <2 > 

(6)Quadratic Upstream Interpolation for Convective Kinematic (QUICK) <3 > 

(7)The Pseudo-Spectral Scheme (Pseudo-Spectra1)< 4 > 

Power-Low was developed by S. V. Patanker. For the large cell Peclet number 
, this scheme imp roves the Hybrid scheme. < t> 

SUDS and SUWDS for the two-dimensional problems were developed by G.D. 
Raithby. These schemes improve UDS for the case where the flow is inclined to 
the coordinates. SUDS is the method used for the case that the convection 
dominates more than the diffusion. SUWDS is the method used for the case that 
the convection as well as the diffusion dominate in the region. 

QUICK was developed by B.P.Leonard. This scheme improves instability of 
CDS. 

Pseudo-Spectral was developed by H.Wengle.This scheme uses Fourier 
transform for the spatial derivative and the forwards difference for the 
temporal term. 

At first, we argue the calculation methods of seven finite difference 
schemes and apply these methods to a simple problem. And we describe the 
difference and characteristics of these schemes. 

Next, we calculate the actual room airflow and the temperature 
distribution using k - e model with Power-Low and SUDS. Then we describe 
the difference and characteristics between Power-Low and SUDS. 

2. The co•parison of the finite difference sche•es 

2-1. The proble• to be tested 

We calculate the transport of ¢, assuming a uniform velocity field. Here 
¢ is a nondimensional scalar value. The calculation are carried out in three 
case shown in the figurel,2 and 3, where each velocity has the different 



- 2-

- ~=· / 

V=l 
/ 

/ 
/ 

y y / 
/ 

/ 
V = l' 

/ 
/ 

" / 

z 

T 
-lo 

I N / 

i1
. ,," 
I s ,,"" 

.J.. ,," 

E 

-~=O 
I 

/ V=l I,,,," 
.j:_ -------- -----

x 

PIGl The condition 
for the case(a) 

angle one another. 

x. 
FIG2 The condition 

for the case(b) 

,.. ... jr tJ 

x 

FIG3 The condition 
for the case(c) 

In the case(a) shown in the figurel. the velocity is parallel to x axis 
everywhere in the region. At the center on the left boundary, ¢ = 0. 5. Avobe 
this center, the boundary value ¢ = 1 and below ¢ = 0. On the right 
boundary, a value of ¢ is calculated by the linear extrapolation . 

In the case(b) shown in the figure2, the direction of the velocity makes 
the angle of n/4 to x axis.where u=v= 1 / v'2(V=v'u 2 +v 2 =1) .On 
the left boundary, ¢ = 1 and on the down, ¢ = 0. On the left down corner, ¢ 
= 0. 5. On the right and upper boundary, ¢ is calculated by the linear 
extrapolation. 

In the case(a) and (b), the conservative equation for¢ is written by 

o<P o<P o<P 0 2¢ 0 2¢ 
-=-u- -v-+r (-:i.x 2 +-:i.y 2 ) ( 1) 
'O t 'O x 0 y v v 

where there is no source terms. 
In the case(c) shown in the figure3, the velocity vector in the case(b) 

is additionally inclined a in z direction, where tana = 1 / v'2. and u = v 
= w = 1 / v' 3 ( V = v' u 2 + v 2 + w 2 = 1 ) . On the boundary B. ¢ = 0 . On the 
boundary W and S. where the solid lines go across, ¢ = 0 below these lines 
and ¢ = 0 above and ¢ = 0 . 5 on these 1 ines. On the boundary E. Sand T. a 
value of ¢ is calculated by the linear extrapolation. In this case the 
conservative equation for ¢ is written by 

'O ¢ 'O ¢ 'O ¢ 'O ¢ 
-- =- u- -v- -w- +r 
'O t 'O x 'O y ~ z 

( 2) 

2-2 The calculation •ethod for Eq(l) 

Q)CDS. UDS and Power-Lowct> 
We consider the control volume shown in the figure4. We integrate Eq(l) 

and the continuity equation over the control volume and arrange these 
equations. Then we can obtain the two-dimensional discretization equations as 
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FIG4 The control volume 
for two dimension 

u 

¢pap=¢EaE+¢waw+¢NaN+¢sas 
/).. x /).. y 

+ </> pn 
/).. t 

where 

a E = De A ( I Pe I ) + m a x ( - Fe, 
a w = D w A ( I P w I ) + m a x ( F w, 
a N = D n A ( I P n I ) + m a x ( - F n, 
a s = D s A ( I P s I ) + m a x ( F s, 

/).. x /).. y 
ap=aE+aw+aN+as+ 

/).. t 

r w/).. y 
Dw = --o xi 

Fw 
Pw = 

Dw 

0 ) 
0 ) 
0 ) 
0 ) 

3) 

( 4) 
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The function A ( I P I ) is expressed for CDS. UDS and Power-Low as fol lows 

A 
A 
A 

<2)SUDS 

( I Pl)=l-0. 5 IPI 
( I Pl)=l 
(IP I ) =max (0, (1-0. 1 I P I 6 ) 

for CDS 
for UDS 
for Power Low 

{ 5) 
( 6) 
{ 7) 

When the velocity V in the vicinity of the western face of the control 
volume is inclined to x axis shown in the figure(, we assume that the <P 
profile for the convective flux is expressed as< 2 > 

,V w ) -x-
Vw 

( 8) 

where n is the normal distance to the flow and x · and y are measured from 
w. The constants C 1 and C 2 are determined from two values of the upstream 
grid point. The one is P or Wand the other is either of four grid points 
NW, SW,N and S. We can select two grid points from the sign of u and v. 
These conditions are written by 

where 

</>=<P1w.j at 
<P=<P1w.mw at 

x. = - s uw 0 xi / 2 
x'=-SuwO'x 1/ 2 

lw=i- (l+Suw) / 2 

y . = 0 
y ' =-SuwOYkw 

m w = j - S vw, k w = j + ( 1 - S vw) / 2 

( 9) 

{10) 

Suw has a magnitude of unity and the sign of u;similarly Svw is unity 
with the sign of v. We can estimate <P for the eastern, the southern and the 
northern face in the same procedure. We assume a linear distribution for the 
diffusive flux. Thus we can obtain the two-dimensional discretization equation 
as 

where 

(Fe-Ke) 
(Fw-Kw) 
(Fn-Kn) 
(Fs-Ks) 

• ( 1 - S ue) / 2 
• ( 1 + S uw) / 2 
• ( 1 - S vn) / 2 
• ( 1 + S vs) / 2 

ti x ti y 
ap= aE+ aw+ aN+ as+ +Kw+Ks-Ke-Kn 

ti t 

tiy OXi 
Kw=Suw·mi n Cl Fw[, -- l Vwl ) 

0 Y kw 2 

@SUIDS 

{11) 

(12) 

SUDS is used in such c case where the convection dominates more than the 
diffusion. On the other hand, SUWDS is used in such a case where both the 
convection and the diffusion dominate in the region. We assume that in the 
vicinity of the western face of the control volume in the figure( the ¢ 
profile for the convective and diffusive fluxes is expressed as< 21 

</J w = C 1 + C 2 ( Y ' U w - X ,V w ) + C 3e1p ( ~ X ' + V w Y ' ) { 13) 
Vw Vw rw rw 

The constants Ct. C2 and C3 are determined from three values of P, W 
and either one of four grid points NW, SW, S and N, which is selected from 
the sign of u and v. These conditions are written by 



</> = </> p at 
</> = </> w at 
</>=</>1w.mw at 
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x'=cS'xi / 2 
x'=-c5'x1/2 
x'=-SuwOXi/2 

y. = 0 
y. = 0 
y'=-SuwcS' Ykw 

(14) 

We can estimate </> for the eastern , the southern and the northern face in 
the same procedure. Then we can obtain the two-dimensional discretization 
equation as 

where 

!ix!iy 
<f>pap=</>EaE+</>waw+</>NaN+</>sas+ <f>p" 

Ii t 

+ (FwBw'-DwBw") </>tw.mw+ (FsBs'-DsBs") cPts.ms (15) 
- (FeBe'-DeBe") cPte,me- (FnBn'-DnBn") </>tn.mn 

a E= De 
aw= D w 
a N= D n 
as= D s 

(1-Ae"-Be") 
(1-Aw") 
(1-An''-Bn'') 
(1-As") 

- Fe 
+ F w 
- F n 

+ F s 

(0.5-Ae'-Be') 
(0.5+Aw') 
(0.5-An'-Bn') 
(0.5+As') 

!ix!iy 
ap= aE+ aw+ aN+ as+---

/i t 

+ (FwBw'-DwBw") + (FsBs'-DsBs") 
- (FeBe'-DeBe") - (FnBn'-DnBn") 

(16) 

Here the variables with the subscript w are defined as follows 

aw=VwOX; 
I v w I o y kw 

P11w=----rw 
p xw ) p 

Aw = ( cosb ( - 1) Aw Aw"=Suw (2sinh (~) - P xw) Aw 
2 2 

p xw p 
Bw = (cosh ( --) - 1) Bw B w" = S uw ( 2 sinh ( ~) - P xw) Bw 

2 2 

- ____ , ___ Jj_w_-; I aw/ 2 I ( 1 _:f- S uw) _ 
Aw= I aw I exp ( - P xw/ 2 ) ( I - exp ( - P 11 w) ) + 2 I f3 w I sinh ( P xw/ 2 ) 

I aw I 
B w = -----·-" ....... --· ----······----·· · -· ··· ·· ··- ... ···-·---·· ·· ... .. .. ·· ·· · ··· 

I aw I eip ( - P xw/ 2) ( 1 - eip ( - P 11w) ) + 2 I f3 w I sinh ( P xw/ 2 ) 

We can define the valuables with the subscript e, s and n similarly . 

@QUICJC< 3 l 

(17) 

NW N NE 

We show the control volume in the f igure5 
for QUICK. The differential equation of Eq(l) 
is written by 

WW 

1--- n---, 
I 
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SS 

FIG5 The control volume 
for QUICK 

<f>pn+t=<f>p"+FX (1.J) -FX (l+l,J) 
+FY (I, J) - FY (I. J+ 1) ( 18) 

where 

FX (1.J) =CONX·</>w-DIFFX· (<f;p-<f>w) 

Ii t 
CONX= u w-o xi 

DIFFX= 
r w /i t 

fix OXi 

1 1 
( CURVN - - CURVT) 

8 3 

(19) 
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Here we assume the central difference for the diffusive term and that the 
convective term in the western face is able to determined from five grid 
points WW.W. P. NW and SW if u is positive and determined from W, P, 
E, N and S if u is negative. The difference equation for the convective 
term is expressed as 

at Uw>O 1 
( CURVN - S CURVT) 

1 
= <P ww- 2 <P w+ <Pp-- ( <P sw- 2 <P w+ <P Nw) 

3 

= CURVX ( I -1. J ) 

atuw<O 1 1 
( CURVN - - CURVT) = </J w - 2 </J p + </J E - - ( </J N - 2 </J p + </J s) 

3 3 
= CURVX (I. J) 

Then FX (I. J) is written by 

1 
FX (I. J) = -CONX ( </J p+ </J w) - DIFFX ( </J p- </J w) 

2 

(20) 

1 
- - [ (COHX- / CONX /) CURVX (I. J) + (CONX+ / CONX /) CURVX ( 1-1. J) ] 

1 6 
(21) 

Similarly we can estimate <P in the southern face and get FY (I. J) . Thus we 
can solve Eq{18). 

<IDPseudo-Spectral 

where 

The differential equation of Eq{l) is written by 

¢Pn+t=¢pn+~t [-uQX (l,J) -vQY (I,J) + 
r (GX (I,J) +GY (I,J))] 

QX (I,J) = ('C¢) p 
'C x 

'C <P 
Q y ( I • J ) = (-) P 

'C y 

First, we consider the case where the boundary is periodic. As this 

(22) 

(23) 

condition allows us to use Fourier sine transform, <P ( x. y) in x direction 
can be expressed as 

N k n n 
¢ (x,y) =L <Px (k) sin (24) 

k • lil L x 

where L x= N ~ x = 1 and N is the number of meshes. Then the first and the 
second derivatives of Eq{24) are expressed as follows 

'C<P N kn A knn 
-- = L (-- ¢ x ( k ) ) cos--
'C x k=lil L x L x 

(25) 

-02¢ N kn A knn 
-- = L ( - (-) 2 ¢ x ( k) ) sin--
'O x 2 kz'11 Lx Lx 

(26) 

As ¢ ( x, y) is given at discrete grid points, 

x= (I-1) ~x . 1=1,2,3.·····.N+l 

¢ ( k) is obtain by inverse Fourier transform of Eq{24) as 

¢ x ( k) 
2 k n x 

L ¢ ( x. y ) sin---
N L x 

2 N+t kn (l-1) 
= - L ¢ ( I , y) sin - ----

N I=t N 
(27) 
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Thus we can get Q X ( I , J ) and G X ( I , J ) in Eq (24) as 

N+t k Tl k Tl ( I - 1 ) 
Q X ( I , J ) = }: ( - </> x ( k ) ) cos ( 2 8) 

I =1 L x N 
N+t k 7r: k 7r: ( I - 1 ) 

GX(I,J) = }:( - (-) 2 </>x(k))sin (29) 
1st L x N 

Similarly we express </> ( x, y) in the y direction using Fourier sine 
transform and get Q Y (I, J) and G Y (I, J) . Then we can sol eve Eq(22). 

Second, we consider the case where the boundary i sn' t periodic. Here we 
use the method of ·Reduction to periodicity' proposed by Roachec 5 >. Fol lowing 
this method, the function </> ( x, y) is decomposed into sum of two functions 
as 

</> (x,y) =f (x,y) +g (x) (30) 

where</> (x, y) is such a function as 0 at x= 0 and 1, and g (x) is 
the N ·th degree polynomial. Here we take N as 3. Then g ( x) is expressed 
as 

Four coefficients a"'- a 3 are determined from the periodic conditions of 
the derivatives of f (x, y) as 

r<n> (1,y) -fen> (O,y) =O (n=0,1,2) :f (O,y) =0(32) 

Eq(32) for n = 0 gives as 

f (O,y) =</> (O,y) -g (0) =</> (O,y) -ae=O 
</> (O,y) =ae 

Then we can get a"'· Next, we define D n as 

Dn=</><nl (l,y) -</>Cnl (O,y) 

Eq(34) is arrenged using Eq(32) as 

Dn=g<nl (1) -gCnJ (0) 

For n = 0 , 1 and 2 , we get as 

at n = 0 
at n = 1 
at n = 2 

g (1) - g (0) =a1+a2+a3=De 
g<t> (1) - g<t> (0) =2 a2+3 a3 =D1 
g< 2> (1) - g< 2> (0) =6 aa =D2 

Then we obtain the coefficients at- a 3 as follows 

(33) 

(34) 

(35) 

( 3 6) 

1 3 1 
a1=De-a2-aa a2=-D1--aa aa=-D2 (37) 

2 2 6 

The derivatives of </> (x, y) are approximated here by the second-order one 
sided finite difference. 
As f (x, y) is a periodicity function, it can be solved from the described 
above method . Then we can obtain </>, Q X and G X for Eq(22) as follows 

</> (x,y) f (x,y) +ae+a1x+a2x 2+aax 3 

QX (x,y) =t< 1> (x,y) +a1+2a2x+3a3x 2 (38) 
GX (x,y) =r< 2 > (x,y) +2a2+6a3x 

If we take the same procedure in y direction, we can obtain Q Y and G Y. 
Thus we can solve Eq(23). 
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2-3 The calculation •ethods for Bq(2) 

We consider the control volume shown in the figure&. Each methods of CDS, 
UDS,Power-Low and QUICK and Pseudo-Spectral can be extended easily for three 
dimensional.So we abbreviate these explanation. Here we indicate the methods 
of SUDS and SUWDS for Eq(2). 
(l)SUDS 

We consider that for the vicinity of 
the western face of the control volume 
shown in the figure&, r axis is the 
direction of the flow (V3) .We rotate x-y 
-z coordinate around was x axis is 
coincident with r axis. Then the rotation 
y and z axis regard n t and n 2 axis, and 
we consider r -n i-n 2 coordinate in the 
vicinity of w. We assume the¢> profile 
for the convective flux is expressed as 

BSW BS SSE 
( 3 9) 

FIG6 The control volume 
for three dimension 

Using V1 and V3, Eq(39) is rewritten by 

( , W w , V w) ( , Vt w , V w U w 
¢w=C1+C2 y --z - +C3 x ---y --

Vtw Vtw V3w V1wV3w 
z ,WwUw ) 

Vt WV 3W 

(40) 

where 

(41) 

and x ·, y · and z · are measured from w. The constants Ct, C 2 and C 3 are 
determined from three values of the upstream of w. The one is P or W and 
the other one is either of eight grid points BS W, TS W, T NW, B NW, BS, 
TS, TN and B N from the sign of u, v and w. The last one is either of 
four grid points SW , NW, N and S ,or either of four TW, BW, B and T 
from the sign of u, v and w and a magnitude of v and w. These conditions 
are written by 

¢=¢mw at x'=-SuwOXi/2 y'=O z'=O 
¢=</Jqw at x SuwOXi/2 y'=-SuwOYkw z'=-SwwO ZJw 

(i) lw w I ~ 1 ( 4 2) 
v w 

¢=</>rw at x'=-Suwox1/2 y'=-SuwOYkw z'=O 

®l~I >1 
Vw 

¢=</>rw at x'=-SuwOXi/2 y'=O z'=-SwwOZJw 

where 

kW= j + ( 1 - S vw) / 2 1 W = k + ( 1 - S ww) / 2 (43) 

S uw has a magnitude of unity and the sign of u ;similarly S vw is unity 
with the sign of v and S ww is unity with the sign of w. We can estimate </> 

for the eastern, the southern, the northern, the bottom and the top face in the 
same procedure. We assume a linear distribution for the diffusive flux. Then 
we can obtain the three-dimensional discretization equation as 

!;. x /j. y /j. z 
</Jpap=¢EaE+¢waw+¢NaN+</>sas+</>ra1+</>eae+ </>P" 

/j. t 
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+ (K1w-K2w) r/>rw+ (K1s-K2s) </>rs+ (Ktb-K2b) r/>rb 
- (K1e-K2e) </>re- (K1n-K2n) r/>rn - (K1t-K2t) </>rt 
+ K 2 w </> q w + K 2 s </> q s + K 2 b </> q b - K 2 e </> q e - K 2 n </> q n - K 2 t </> qt ( 44) 

aE=De- (Fe-Kte) 
aw=Dw+ (Fw-Ktw) 
aN=Dn- (Fn-Ktn) 
as=Ds+ (Fs-Kts) 
ar=Dt- (Ft-Ktt) 
as=Db+ (Fb-Ktb) 

(1-Sue) / 2 
(l+Suw) / 2 
(1-Svn) / 2 
( 1 + S vs) / 2 
(1-Swt) / 2 
(l+Swb) / 2 

l::i x l::i y l::i z 
ap= aE+ aw+ aN+ as+ ar+ aB+----

l:l. t 

+K1w+K1s+K1b-K1e-K1n-Ktt (45) 

The variables with the subscript w are defined as 

Fw=Uwl::iyl:l.z Dw= 
r w l::i y l::i z 

0 xi 

CD I Ww I ~ 1 K1w= S uw·m in C I F w I' 
l::i y l::i z 

v w 0 Y kw 
Vw 

0 x i + t 
) 

2 

C I 
l::i y l::i z 

K2w= S uw•m i n K tw I , 
0 Z lw 

0 x i + t 

2 
) Ww 

®'~' > 1 Ktw=Suw•m i n C I F w I ' 
l::i y l::i z 

Vw 0 z 1 w 

0 x i + t 
) 

2 
I Ww 

'

l::iyl::iz OXi+t 
K2w=Suw•m n (I Ktw ' I Vw I ) 

OY1<w 2 (46) 

We can define the variables with the other subscript by the same procedure. 

®SUIDS 
We assume that </> profile for the convective and diffusive fluxes are 

expressed as 

Ww Vw Vtw VwUw 
¢w=C1+C2(y· --z'-) +C3(x'-- - y·---

V1w Vtw V3w V1wV3w 

Uw Vw Ww 
+C4exp(-x'+-y·+-z') (47) 

rw rw rw 

where the constants Ct. C2, C3 and C4 are determined from P of the upstream 
of w and three values of the downstream of w. These conditions are written by 

¢ = ¢ p 

¢ = ¢ w 

</> = </J QW 

CDl~I 
Vw 

at x'=oxi/2 
at x'=-oxi/2 
at x'=-SuwOXi/2 

~ 1 

y'=O z' = O 
y'=O z' = O 
Y ' = - Su w 0 Y kw Z , = - S WW 0 Z I W 

¢=</Jrw at x'=-SuwOXi/2 y'=-SuwOYkw z'=O (48) 

®l~I >1 
v w 

</J=</Jrw at x'=-SuwOXi/2 y'=O Z ' = - S WW 0 Z I W 
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After we estimate ¢ for other face similarly, we can obtain the three
dimensional discretization equation as 

where 

+ [ ( F w (Cw' - Bw') - Dw (Cw"-Bw") J ¢ rw 
+ [ ( F s (Cs' - Bs') - Ds (Cs"-Bs") J ¢rs 
+ [ ( F b (Cb'-Bb') - Db (Cb"-Bb") J ¢ r b 

[ (Fe (Ce' - Be') - De (Ce"-Be") J ¢re 
[ ( F n (Cn' - Bn') - D n (Cn"-Bn") J ¢ r n 
[ ( Ft (Ct'-Bt') - D t (Ct"-Bt") J ¢rt 

a E= De (1-Ae"-Ce") - Fe (0.5-Ae'-Ce') 
aw= D w (1-Aw'') + F w (0.5+Aw') 
a N= D n (1-An''-Cn'') - F n (0 . 5-An'-Cn') 
as= D s (1-As") + F s (0.5+As') 
a r= D t (1-At"-Ct") - Ft (0.5-At'-Ct') 
a B= Db ( 1 - Ab,' ) + F b (0.5+Ab') 

11x/1y/1z 
a p= a E+ aw+ a N+ as+ a r+ a B+ 

11 t 
+ F w Cw' - D w Cw''+ F s Cs' - D s Cs''+ F b C b0 

- Db C b0

• 

- FeCe'+DeCe''-FnCn' +DnCn'' -FtCt'+DtCt'' 

The variables for the w face are defined as 

aw=UwOYkwOZlw 

I u w I ox; 
Pxw=---

fw 

p xw 
Aw = (cosb ( -

2
-) 

p xw 
Bw = (cosb ( -

2
-

p xw 
Cw = ( cosb ( 

2 

Ww 
<D 1-1;:;; 1 

Vw 

) 

) 

I v w I o y kw 
Pyw=----

fw 

- 1) Aw Aw 
.. 

= s uw 

- 1) Bw Bw 
.. 

= s uw 

- 1) Cw Cw 
.. 

= s uw 

rw=WwOX;OYkw 

lwwloz1w 
Pww= ----

fw 

p xw 
(2sinb (-

2
-) - P xw) 

p xw 
- P xw) ( 2 sinb ( -- ) 

~- 2 

p xw 
(2sinb (-

2
-) - P xw) 

Hw= I 7w I (1-exp (-Pzw)) exp (-Pxw/ 2) exp (-Pyw) 

Aw 

Bw 

Cw 

+ I f3 w I ( 1 - exp ( - P yw) ) exp ( - P xw/ 2) + 2 I aw I sinb ( P xw/ 2) 

aw - I fJ... / 2 I ( l + S uw) 
Aw = 

Hw 

Ww 
<IDl-l>l 

Vw 

Cw=~ 
Hw 

Hw= I f3w I (1-exp (-Pyw)) exp (-Pxw/ 2) exp (-Pzw) 
+ I r w I ( 1 - exp ( - P zw) ) exp ( - P xw/ 2 ) + 2 I aw I sinb ( P xw / 2 ) 

aw- I r w/ 2 I ( 1 + S uw) 
Aw= Cw=~ 

Hw 

(49) 

(50) 

( 51) 



-10-

2-( The results 

We calculated for three cases described in the section 2-1. The number 
of mashes is 1 6 x 1 6 for the case (a) and case (b), and 1 6 x 1 6 x 1 6 for 
the case(c).The diffusion coefficient r is equal to 0. 0 1. In addition, we 
made two calculations for the case(b);when the number of meshes is 3 2 x 3 2 
and when r = 0 . 0 0 2 . 

For the problems described in the section 2-1, we can get the exact 
solution as 

Vn 
</> = 0 . 5 [ 1 + erf ( y n .r ( ) ) ] 

4 r x n 
(52) 

where erf is error function, x n is parallel to the flow and y n is normal. 
Here, we compare calculation values with the exact solution at the section 
through ( x n, Y n) = ( 0. 5, 0. 5) . 

The results for the case(a) are shown in the figure7. All of the 
calculation values are well coincided with the exact solution. In the case(a), 
note that the calculation value of SUDS is equal to that of UDS. We calculated 
about three different conditions in the case(b). The large number of meshes is 
corresponded to the small cell Peclet number (Pe) and the small r means 
the large P e. We show the results for mesh number 1 6 x 1 6 and r = 0. 0 1 
in the figure8. QUICK and Pseudo-Spectral are well coincided with the exact 
solution, but UDS and Power-Low aren't for the numerical diffusion.SUDS and 
SUWDS is roughly equal to the exact solution. However, there is a little 
different befor and behind at y n= 8 . We show the results for the number of 
meshes 3 2 x 3 2 in the figure9. This figure also show the same tendency as 
figure8. Comparing UDS with Power-Low, the calculation value of the latter is 
improved more than the former and is close to the exact solution. The 
calculation value of SUWDS is worse than that in the figure8. In SUDS the 
calculation value is coincided with the exact solution. We show the result at 
r = 0. 0 0 2 in the figurelO. The calculation value of SUDS is better than 

'.o 

o.e 

o.e , 
D.4 

... 
o.o ,. I , . 
1.0 

o.e 

... 

... 

... 

... 
" " 

1.0 

o.e 

... 

... 

... 
o.o 

II II 

' .. 1.0 

... . .. 

... . .. , ... ... 

... 
~·· ... I • " ... U II ,. 

1.0 I D 

... ... 

... . .. 

... . .. 

... . .. 

... 
" .. . .. 14 11 ,. 

FIG7 The results of the calculation for the case(a) 
conditions:r=0.01; meshes 16X16 
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others. The calculations of QUICK and Pseudo-Spectral occur the oscillation 
because of the large Pe. UDS and Power-Low become worse. We carry out al 1 of 
the calculations at time step /1 t = 0. 0 1. But as we couldn't get the result 
of Pseudo-Spectral at /1 t = 0. 0 1, we set /1 t = 0. 0 0 5 here. We show the 
results for the case(c) in the figurell. UDS and Power-Low are bad, because 
they generate the numerical diffusion. The others are roughly coincided with 

C D S 
1.0 1.0 

... . .. 

... O. li 

... . .. 

... ... 

... . .. 
It " II I II If .. " .. .. ,, .. 

u •• 0 ... ..-----...,,....,--~..,,..... ......... - ... s u w 0 • 
I · • 

,UllOO $•!CIORl 

I 
0 ... ... 

0.1 I ... 
0.1 ... 

0.1 

0.1 

... 

... •/ ... o.z 
0 

0 ... ... 
10 11 .. •• I 10 II .. " " I• •• '. .. 

·~·~ .----=,.,...,,'",....,'""""'"~ PIGS The results of the 
calculation for the case(b) 
: meshes 16 x 16 ... 

• .. Ii .. 

u 0 s .. 1-0 ..-----~----~~--

IZ •• 10 I• 21 " .. 
1"0\Cf.l tOl.f 

conditions: r =O. 01 

1.0 ... 
... . .. 
0.1 Q.6 

... o .• 

... . .. 

... . .. 
l • ~· 

1.0 I·• 

... . .. 
0.1 . .. 
' 0.1 0.4 

o.z ... 
o.o ... 

FIG9 The results of the calculation for the case(b) 
conditions:r=0.01: meshes 32X32 
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the exact solution, except for the underestimation and the overestimation in 
the neighborhood of the region at y n= 8. 

For the summary, SUDS and QUICK and Pseudo-Spectral have good accuracy. 
As Pe is large, SUDS has good accuracy, but QUICK and Pseudo-Spectral 
occur the oscillation. UDS and Power-Low have relatively poor accuracy because 
of their numerical diffusion . 

... 
0 

I .O ------,~'°"O"'Hf~W-l=:-Oll-;--,A-o=<....,...._-Y 

... 

... 

... 

... 

FIGlO The results of the calculation for the case(b) 
conditions:r=0.002, meshes 16X16 

PIGll The results of the calculation for the case(c) 
conditions:r=0.01, meshes 16X16 
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3
· The si•ulation of atriu• airflo• •ith inclined inlet 

3-1 Th e governing equation 

We use the th equation. In th· ree dimensional K-• turbulence •odel for th• governing 
·wall Function!sbcalculation we assume th• BussinesQ appr~xl•ation. and the 
the wall bou d ased on the logarith•I• lo• of the wall is introduced to set 

nary conditions. 

3-2 The calculation conditions 

We show the fl 
because th. . oor of the atrium in the figurelZ. 1hiS figure is onlY half 

is atrium · outlets. 1he w 

1 

1S sym1etried about AA. axis. lt has two column and two 
and partly on ~h~ 

0
•. the right side and partlY on the downside in the figure12 

. 1he tempera! cellling are made of glass . Other' walls are made of concrete 
glass. 2 6 ·c f ure on the boundarY 1s assumed to be constant ; 3 3. 7 5 ·c for 
height 

1 3 

or concrete and 1 5 "C for the floor. 1he inlets are located at 

inclined 4 

5

"! (There_ are five ;n1ets shown ln th• Jigure\3. 1heY are 
6. 2 gm / s 

0 
z direction , and th" i nlel° s wind has the speed of 

magnitude of i"~d the temperature of 1 4 . 5 "C .1h• actual atrlu• has a 
calculation. In · 5 m(W)x 5 o . 4 m (L) x l 8. 5 m(R).We made onlY a half 
number of mesh this calculation we ado Pt a non-uni form mesh and set the 

··-
A es 2 0 x 3 0 x 1 8 

- "'-·· - .. .-
<Ji) 

~ 

' 
. 

I n I c t 

'--
::: 0 I umn 

© 
,_ - · ~ '-

-
' 71 -
'-

' 
0 u .! I e t 

' 
I I "'!-.. 
I 

I 

I I "" 
I 

<D ~ 
F\G13 The inlets of the atrium 

FIG12 The floor of the atr i. um 

3-3 The results 

. ~e made the 1 . . dJStflbution withc~Uculat1on o~ the atrium alfflo• and the temperature 
•here correspond 

1 

DS and Pow .,,,r-Lo•.1h• airflow on the s\X cross sections. f~gurelt and 

15 

° the floor and (j)-@ in the Jigure12. are shown in the 
figures is the ;:•~ the. t emP <"' -r a. t u re in th• fl gur el6 and n. 1h• top of these 

. At the cros su ts. Wl th S 0 D S and th• boll•• is with Power-Low. 
w1 th Power-Low ~-sections@-~ i. ncluding th• inlets. the •omentu•s calculated 

the inlet's wind ~:fuse rapid 1 y • but those with SUDS di !fuse onl Y a lit tie and 
sections also di ff ta ins. to t ~"' -f )oor. The temperature at the sa•• cross 
dJStribution of th use. alike. -Th ere is a difference about the temperature 
-@.though the ai ~ YlClnL ty "1 :n cross section©· See ing the cross sections @ 
SUDS blows in th//

0
• cal cu L a. t ed with Power-\ow blows hori2ontallY. that with !Teet ion c::> f the inlet's angle. Accordingly the temperature 
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calculated with SUDS diffuses less than Power-Low(Fig16). We argue in the 
section 2 that SUDS is much better than Power Low because it generates little 
numerical diffusion. Applying to the actual atrium, SUDS show the same 
tendency. 

At the cross section@. though the airflow with SUDS blows downward in 
the neighborhood of the inlet. Power-Low doesn't alike . Besides there are a. 
lot of difference between SUDS and Power-Low. Unfortunatery as this atrium is 

now under the construction. we c~n· t argue in detail which schemes are 
appropriate . For the future, we 11 compare the calculation with the 
meas ur emen t. 
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FIGU The results of the airflow simulation(top,with SUDS;bottom,with Power-Low: 
the large arrow indicates the wind speed more than lm/s) 
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5 

The esults of the airflow simulation(top,with SUDS;bottom,with Power-Low; 
the ~arge arrow indicates the wind speed more than lm/s) 
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floor 

....__ _11.1--

@ 

FIG16 The results of the temperature simulation 
(top.with SUDS;bottom,with Power-Low) 
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~~ .. 

--~Ill ; ' " ____,,,- \ 

FIG17 The results of the temperature simulation 
(top.with SUDS;bottom,with Power-Low) 
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