Numerical simulation of room-airflow with inclined outlet

A. Yosikawa
K. Yamaguchi
A. Kondo
Osaka Univ. Japan

Numerical Simulation of Room-Airflov vith Inclined Outlet

A. Yosikava, K. Yamaguchi, and A. Kondo
Osaka Univ.Japan

SUMMARY

We describe the calculation methods of seven finite different schemes : (1) CDS, (2) UDS, (3) Power-Low, (4) SUDS, (5) SUWDS, (6) QUICK and (7) Pseudo-Spectral. And we calculated the transport of a nondimensional scalar value with them. assuming a uniform velocity field. We found from the calculation results that (1) when the flow is inclined to the coordinates, UDS and Power-Low have poor accuracy because of the numerical diffusion but SUDS, QUICK and Pseudo-Spectral are well coincided with the exact solution, and (2) when the cell Pecret number is large, QUICK and Pseudo-Spectral occur the oscillation, and (3)for the three dimensional case, SUDS, QUICK and Pseudo-Spectral are roughly coincided with the exact solution.

We calculated the actual room airflow and the temperature distribution using $k-\varepsilon$ model with Power-Low and SUDS. The calculation results indicate that SUDS restrains the numrical diffusin relatively than Power-Low. But we can' t compare the calculations with the measurements as this atrium is now under the construction.

Nunerical Sinulation of Roon-Airflov vith Inclined Outlet

A. Yosikava. K. Yamaguchi, and A. Kondo
Osaka Univ.Japan

1. Introduction

The finite difference schemes are of ten used to solve the complex problems including fluid flow, heat and mass transport. However it is very difficult to apply them to the room airflow with reasonable accuracy and cost.

As well known, Upstream Differencing Scheme (UDS) is very stable for the numerical calculation but poor in accurate because it generates the numerical diffusion. On the other hand, Central Differencing Scheme (CDS) is relatively accurate but not stable.

Many investigators have developed the finite difference schemes to improve the above problems. Several new schemes were proposed by S.V.Patanker, G. D. Raithby, B. P. Leonard, P.J. Roache and so on.

In this paper, we consider seven different schemes as follows
(1) CDS
(2) UDS
(3) Power-Low Scheme (Power-Low) (1)
(4) Skew Upstream Differencing Scheme (SUDS) ${ }^{(2)}$
(5) Skew Upstream Weighted Differencing Scheme (SUWDS)(2)
(6) Quadratic Upstream Interpolation for Convective Kinematic (QUICK) ${ }^{(3)}$
(7) The Pseudo-Spectral Scheme (Pseudo-Spectral)(4)

Power-Low was developed by S. V. Patanker. For the large cell Peclet number , this scheme improves the Hybrid scheme. ${ }^{(1)}$

SUDS and SUWDS for the two-dimensional problems were developed by G. D. Raithby. These schemes improve UDS for the case where the flow is inclined to the coordinates. SUDS is the method used for the case that the convection dominates more than the diffusion. SUWDS is the method used for the case that the convection as well as the diffusion dominate in the region.

QUICK was developed by B. P. Leonard. This scheme improves instability of CDS.

Pseudo-Spectral was developed by H. Wengle. This scheme uses Fourier transform for the spatial derivative and the forwards difference for the temporal term.

At first, we argue the calculation methods of seven finite difference schemes and apply these methods to a simple problem. And we describe the difference and characteristics of these schemes.

Next, we calculate the actual room airflow and the temperature distribution using $k-\varepsilon$ model with Power-Low and SUDS. Then we describe the difference and characteristics between Power-Low and SUDS.

2. The comparison of the finite difference schemes

$2-1$. The problen to be tested

We calculate the transport of ϕ, assuming a uniform velocity field. Here ϕ is a nondimensional scalar value. The calculation are carried out in three case shown in the figurel,2 and 3, where each velocity has the different

PIG1 The condition for the case(a)

FIG2 The condition for the case(b)

FIG3 The condition for the case(c)
angle one another.
In the case (a) shown in the figure 1 , the velocity is parallel to x axis everywhere in the region. At the center on the left boundary, $\phi=0.5$. Avobe this center, the boundary value $\phi=1$ and below $\phi=0$. On the right boundary, a value of ϕ is calculated by the linear extrapolation.

In the case (b) shown in the figure2, the direction of the velocity makes the angle of $\pi / 4$ to x axis, where $u=v=1 / \sqrt{2}\left(V=\sqrt{ } u^{2}+v^{2}=1\right)$. On the left boundary, $\phi=1$ and on the down, $\phi=0$. On the left down corner, ϕ $=0.5$. On the right and upper boundary, ϕ is calculated by the linear extrapolation.

In the case(a) and (b), the conservative equation for ϕ is written by

$$
\begin{equation*}
\frac{\partial \phi}{\partial \mathrm{t}}=-\mathrm{u} \frac{\partial \phi}{\partial \mathrm{x}}-\mathrm{v} \frac{\partial \phi}{\partial \mathrm{y}}+\Gamma\left(\frac{\partial^{2} \phi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \phi}{\partial \mathrm{y}^{2}}\right) \tag{1}
\end{equation*}
$$

where there is no source terms.
In the case(c) shown in the figure3, the velocity vector in the case(b) is additionally inclined α in z direction, where $\tan \alpha=1 / \sqrt{2}$, and $u=v$ $=\mathrm{w}=1 / \sqrt{3}\left(\mathrm{~V}=\sqrt{ } \mathrm{u}^{2}+\mathrm{v}^{2}+\mathrm{w}^{2}=1\right)$. On the boundary $\mathrm{B}, \phi=0$. On the boundary W and S, where the solid lines go across, $\phi=0$ below these lines and $\phi=0$ above and $\phi=0.5$ on these lines. On the boundary E,S and T. a value of ϕ is calculated by the linear extrapolation. In this case the conservative equation for ϕ is written by

$$
\begin{equation*}
\frac{\partial \phi}{\partial \mathrm{t}}=-\mathrm{u} \frac{\partial \phi}{\partial \mathrm{x}}-\mathrm{v} \frac{\partial \phi}{\partial \mathrm{y}}-\mathrm{w} \frac{\partial \phi}{\partial z}+\Gamma\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right) \tag{2}
\end{equation*}
$$

2-2 The calculation ethod for Eq(1)

(1)CDS, UDS and Pover-Lov ${ }^{(1)}$

We consider the control volume shown in the figure4. We integrate Eq(1) and the continuity equation over the control volume and arrange these equations. Then we can obtain the two-dimensional discretization equations as

$$
\phi_{\rho} a_{p}=\phi_{\mathrm{E}} \mathrm{a}_{\mathrm{E}}+\phi_{w} \mathrm{a}_{\mathrm{w}}+\phi_{\mathrm{N}} \mathrm{a}_{\mathrm{N}}+\phi_{\mathrm{s}} \mathrm{a}_{\mathrm{s}}
$$

$$
\begin{equation*}
+\frac{\Delta \mathrm{x} \Delta \mathrm{y}}{\Delta \mathrm{t}} \phi \mathrm{p}^{n} \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{a}_{\mathrm{E}}=\mathrm{D}_{\mathrm{o}} \mathrm{~A}\left(\left|\mathrm{P}_{\mathrm{e}}\right|\right)+\mathrm{max}\left(-\mathrm{F}_{\mathrm{e}}, 0\right) \\
& a_{w}=D_{w} A\left(\left|P_{w}\right|\right)+m a x \quad\left(F_{w}, 0\right) \\
& a_{N}=D_{n} A\left(\left|P_{n}\right|\right)+m a x\left(-F_{n}, 0\right) \\
& a_{s}=D_{s} A\left(\left|P_{s}\right|\right)+m a x\left(F_{s}, 0\right) \\
& a_{p}=a_{E}+a_{w}+a_{N}+a_{s}+\frac{\Delta x \Delta y}{\Delta t} \tag{4}\\
& \mathrm{~F}_{w}=\mathrm{u}_{w} \Delta \mathrm{y}_{\mathrm{w}} \quad \mathrm{D}_{w}=\frac{\Gamma_{w} \Delta \mathrm{y}}{\delta \mathrm{X}_{\mathrm{i}}} \quad \mathrm{P}_{w}=\frac{\mathrm{F}_{w}}{\mathrm{D}_{w}}
\end{align*}
$$

The function $A(|P|)$ is expressed for CDS, UDS and Power-Low as follows
$\mathrm{A}(|\mathrm{P}|)=1-0.5|\mathrm{P}|$
for CDS
(5)
$A(|P|)=1 \quad$ for UDS
$A(|P|)=m a x\left(0, \quad\left(1-0.1|P|{ }^{5}\right)\right.$ for Pover Lov
(6)
(7)

(2) SUDS

When the velocity V in the vicinity of the western face of the control volume is inclined to x axis shown in the figure 4 , we assume that the ϕ profile for the convective flux is expressed as ${ }^{(2)}$

$$
\begin{equation*}
\phi_{w}=C_{1}+C_{2} n=C_{1}+C_{2}\left(y \cdot \frac{u_{w}}{V_{w}}-x \frac{V_{w}}{V_{w}}\right) \tag{8}
\end{equation*}
$$

where n is the normal distance to the flow and x^{\prime} and y^{\prime} are measured from w. The constants C_{1} and C_{2} are determined from $t w o$ values of the upstream grid point. The one is P or W and the other is either of four grid points $N W, S W, N$ and S. We can select two grid points from the sign of u and v. These conditions are written by

$$
\begin{array}{llll}
\phi=\phi \mathrm{lw} \cdot \mathrm{j} & \text { at } & \mathrm{x}^{\prime}=-\mathrm{Suw} \delta \mathrm{xi}_{\mathrm{i}} / 2 & \mathrm{y}^{\prime}=0 \\
\phi=\phi \mathrm{IW} \mathrm{\cdot mw} & \text { at } & \mathrm{x}^{\prime}=-\mathrm{Suw} \delta \mathrm{x}_{\mathrm{i}} / 2 & \mathrm{y}^{\prime}=-\mathrm{Suw} \delta \mathrm{ykw} \tag{9}
\end{array}
$$

where

$$
\begin{align*}
& 1 \mathrm{w}=\mathbf{i}-\left(1+\mathrm{S}_{\mathrm{uw}}\right) / 2 \\
& \mathrm{mw}=\mathrm{j}-\mathrm{S}_{\mathrm{vw}, \quad \mathrm{k} w}=\mathbf{j}+\left(1-\mathrm{S}_{v w}\right) / 2 \tag{10}
\end{align*}
$$

Suw has a magnitude of unity and the sign of u; similarly $S_{\text {vw }}$ is unity with the sign of v. We can estimate ϕ for the eastern, the southern and the northern face in the same procedure. We assume a linear distribution for the diffusive flux. Thus we can obtain the two-dimensional discretization equation as

$$
\begin{align*}
\phi_{\mathrm{pa}}= & \phi_{\mathrm{E} \mathrm{a}_{\mathrm{E}}+\phi_{\mathrm{w}} \mathrm{a}_{w}+\phi_{\mathrm{N}} \mathrm{a}_{\mathrm{N}}+\phi_{\mathrm{s}} \mathrm{a}_{\mathrm{s}}+\frac{\Delta \mathrm{x} \Delta \mathrm{y}}{\Delta \mathrm{t}} \phi_{\mathrm{p}}{ }^{n}} \\
& +\mathrm{K}_{\mathrm{w}} \phi_{\mathrm{lw}, \mathrm{mw}}+\mathrm{K}_{\mathrm{s}} \phi_{\mathrm{ls}, \mathrm{~ms}}-\mathrm{K}_{\theta} \phi_{\mathrm{l} \theta, \mathrm{me}}-\mathrm{K}_{\mathrm{n}} \phi_{\mathrm{In}, \mathrm{mn}} \tag{11}
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{a}_{\mathrm{E}}=\mathrm{D}_{0}-\left(\mathrm{F}_{0}-\mathrm{K}_{0}\right) \cdot\left(1-\mathrm{S}_{\mathrm{u}_{0}}\right) / 2 \\
& \mathrm{a}_{\mathrm{w}}=\mathrm{D}_{\mathrm{w}}+\left(\mathrm{F}_{\mathrm{w}}-\mathrm{K}_{\mathrm{w}}\right) \cdot\left(1+\mathrm{S}_{\mathrm{uw}}\right) / 2 \\
& a_{N}=D_{n}-\left(F_{n}-K_{n}\right) \cdot\left(1-S_{v n}\right) / 2 \\
& \mathrm{a}_{\mathrm{s}}=\mathrm{D}_{\mathrm{s}}+\left(\mathrm{F}_{\mathrm{s}}-\mathrm{K}_{\mathrm{s}}\right) \cdot\left(1+\mathrm{S}_{\mathrm{vs}}\right) / 2 \\
& a_{p}=a_{E}+a_{W}+a_{N}+a_{s}+\frac{\Delta X^{\prime} y}{\Delta t}+K_{W}+K_{s}-K_{e}-K_{n} \tag{12}\\
& K_{w}=S_{u w} \cdot \mathrm{~min}_{\mathrm{i}}\left(\left|\mathrm{~F}_{w}\right|, \frac{\Delta \mathrm{y}}{\delta \mathrm{y}_{\mathrm{k}}}\left|\mathrm{v}_{\mathrm{w}}\right| \frac{\delta \mathrm{X}_{\mathrm{i}}}{2}\right)
\end{align*}
$$

(3)SUWDS

SUDS is used in such a case where the convection dominates more than the diffusion. On the other haria, SUWDS is used in such a case where both the convection and the diffusion dominate in the region. We assume that in the vicinity of the western face of the control volume in the figure 4 the ϕ profile for the convective and diffusive fluxes is expressed as ${ }^{(2)}$

$$
\begin{equation*}
\phi_{w}=C_{1}+C_{2}\left(y^{\prime} \frac{u_{w}}{V_{w}}-x \frac{V_{w}}{V_{w}}\right)+C_{3} \exp \left(\frac{u_{w}}{\Gamma_{w}} x^{\prime}+\frac{V_{w}}{\Gamma_{w}} y^{\prime}\right) \tag{13}
\end{equation*}
$$

The constants C_{1}, C_{2} and C_{3} are determined from three values of P, W and either one of four grid points $N W, S W, S$ and N, which is selected from the sign of u and v. These conditions are written by

$$
\begin{array}{llll}
\phi=\phi \mathrm{p} & \text { at } & \mathrm{x}^{\prime}=\delta \mathrm{x} \cdot / 2 & \mathrm{y}^{\prime}=0 \\
\phi=\phi \mathrm{W} & \text { at } & \mathrm{x}^{\prime}=-\delta \mathrm{x}_{\mathrm{i}} / 2 & \mathrm{y}^{\prime}=0 \tag{14}\\
\phi=\mathrm{l}_{\mathrm{IW}, \mathrm{mw}} & \text { at } & \mathrm{x}^{\prime}=-\mathrm{S}_{\mathrm{uw}} \delta \mathrm{x}_{\mathrm{i}} / 2 & \mathrm{y}^{\prime}=-\mathrm{S}_{\mathrm{uw}} \delta \mathrm{y} \mathrm{kw}
\end{array}
$$

We can estimate ϕ for the eastern, the southern and the northern face in the same procedure. Then we can obtain the two-dimensional discretization equation as

$$
\begin{align*}
& \phi \mathrm{pap}=\phi_{\mathrm{Ea}} \mathrm{E}+\phi_{\mathrm{w}} \mathrm{a}_{W}+\phi_{\mathrm{Na}} \mathrm{~N}+\phi_{\mathrm{s}} \mathrm{a}_{\mathrm{s}}+\frac{\Delta \mathrm{x} \Delta \mathrm{y}}{\Delta \mathrm{t}} \phi_{\mathrm{p}}{ }^{n} \\
& +\left(\mathrm{F}_{w} \mathrm{~B}_{w^{\prime}}-\mathrm{D}_{w} \mathrm{~B}_{w^{\prime}}{ }^{\prime}\right) \phi \phi_{1 w, m w}+\left(\mathrm{F}_{\mathrm{s}} \mathrm{~B}_{\mathrm{s}}{ }^{\prime}-\mathrm{D}_{\mathrm{s}} \mathrm{~B}_{\mathrm{s}}{ }^{\prime \prime} \text {) } \phi_{1 \mathrm{~s}, \mathrm{~ms}}\right. \tag{15}\\
& -\left(F_{e} B_{e}^{\prime}-D_{e} B_{e}{ }^{\prime \prime}\right) \phi_{1 \theta, m e}-\left(F_{n} B_{n}^{\prime}-D_{n} B_{n}^{\prime \prime}\right) \phi_{1 n, m n}
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{a}_{\mathrm{w}}=\mathrm{D}_{\mathrm{w}}\left(1-\mathrm{A}_{w^{\prime}}{ }^{\prime}\right) \quad+\mathrm{F}_{\mathrm{w}}\left(0.5+\mathrm{A}_{w^{\prime}}\right) \\
& a_{N}=D_{n}\left(1-A_{n}{ }^{\prime}{ }^{\prime}-B_{n}{ }^{\prime}{ }^{\prime}\right)-F_{n}\left(0.5-A_{n}{ }^{\prime}-B_{n}{ }^{\prime}\right) \\
& a_{s}=D_{s}\left(1-A_{s}{ }^{\prime \prime}\right) \quad+F_{s}\left(0.5+A_{s}{ }^{\prime}\right) \tag{16}\\
& a_{p}=a_{E}+a_{w}+a_{N}+a_{s}+\frac{\Delta x \Delta y}{\Delta t} \\
& +\left(\mathrm{F}_{w} \mathrm{~B}_{w^{\prime}}-\mathrm{D}_{w} \mathrm{~B}_{w^{\prime}}{ }^{\prime}\right)+\left(\mathrm{F}_{\mathrm{s}} \mathrm{~B}_{s^{\prime}}-\mathrm{D}_{\mathrm{s}} \mathrm{~B}_{\mathrm{s}^{\prime}}{ }^{\prime}\right) \\
& -\left(F_{e} B_{\theta}{ }^{\prime}-D_{\theta} B_{\theta^{\prime}}{ }^{\prime}\right)-\left(F_{n} B_{n}^{\prime}-D_{n} B_{n}{ }^{\prime}\right)
\end{align*}
$$

Here the variables with the subscript w are defined as follows

$$
\begin{align*}
& \alpha_{W}=v_{W} \delta x_{i} \quad P_{x W}=\frac{\left|u_{W}\right| \delta x_{i}}{\Gamma_{W}} \quad \beta_{W}=u_{W} \delta y_{k W} \quad P_{y W}=\frac{\left|\mathrm{v}_{W}\right| \delta y_{k W}}{\Gamma_{W}} \\
& A_{W}{ }^{\prime}=\left(\cosh \left(\frac{P_{X W}}{2}\right)-1\right) A_{W} \quad A_{W}{ }^{\prime \prime}=S_{U W}\left(2 \sinh \left(\frac{P_{X W}}{2}\right)-P_{X W}\right) A_{W} \\
& B_{w}{ }^{\prime}=\left(\cosh \left(\frac{P_{\times w}}{2}\right)-1\right) B_{w} \quad B_{w}{ }^{\prime}=S_{u w}\left(2 \sinh \left(\frac{P_{\times w}}{2}\right)-P_{\times w}\right) B_{w} \tag{17}\\
& \mathrm{~A}_{W}=\frac{\beta_{W}-\left|\alpha_{W} / 2\right|\left(1+\mathrm{S}_{U_{W}}\right)}{\left|\alpha_{W}\right| \exp \left(-\mathrm{P}_{\mathrm{xW}} / 2\right)\left(1-\exp \left(-\mathrm{P}_{y_{W}}\right)\right)+2\left|\beta_{W}\right| \sinh \left(\mathrm{P}_{\times W} / 2\right)} \\
& B_{W}=\frac{\left|\alpha_{W}\right|}{\left|\alpha_{W}\right| \exp \left(-P_{x W} / 2\right)\left(1-\exp \left(-P_{y W}\right)\right)+2\left|\beta_{W}\right| \sinh \left(P_{X W} / 2\right)}
\end{align*}
$$

We can define the valuables with the subscript e, s and n similarly.

(4)QUICK ${ }^{(3)}$

PIG5 The control volume for QUICK

We show the control volume in the figure 5 for QUICK. The differential equation of $\mathrm{Eq}(1)$ is written by
$\phi P^{n+1}=\phi P^{n}+F X(I, J)-F X(I+1, J)$

$$
\begin{equation*}
+F Y(I, J)-F Y(I, J+1) \tag{18}
\end{equation*}
$$

where

$$
\text { FX }(\mathrm{I}, \mathrm{~J})=\operatorname{CONX} \cdot \phi_{w}-\mathrm{DIPFX} \cdot\left(\phi_{\mathrm{P}}-\phi_{w}\right)
$$

$$
\begin{equation*}
\operatorname{CONX}=\mathrm{u}_{\delta}^{\omega} \frac{\Delta \mathrm{t}}{\mathrm{x}_{\mathrm{i}}} \quad \operatorname{DIFFX}=\frac{\Gamma \mathrm{w}}{\Delta \mathrm{x}} \frac{\Delta \mathrm{t}}{\delta \mathrm{x}} \mathrm{i} \tag{19}
\end{equation*}
$$

$$
\phi_{w}=\frac{1}{2}\left(\phi_{p}+\phi_{W}\right)-\frac{1}{8}\left(\operatorname{CURVN}-\frac{1}{3} \operatorname{CURVT}\right)
$$

Here we assume the central difference for the diffusive term and that the convective term in the western face is able to determined from five grid points WW,W, P, NW and $S W$ if u is positive and determined from W, P. E, N and S if u is negative. The difference equation for the convective term is expressed as
at $u_{w}>0$ (CURVN $-\frac{1}{3}$ CURVT) $=\phi_{W W}-2 \phi_{W}+\phi_{p}-\frac{1}{3}\left(\phi_{s w}-2 \phi_{W}+\phi_{N W}\right)$

$$
=\text { CURVX }(\mathrm{I}-1, \mathrm{~J})
$$

at $u_{w}<0$ (CURVN $-\frac{1}{3}$ CURVT) $=\phi_{W}-2 \phi_{P}+\phi_{E}-\frac{1}{3}\left(\phi_{N}-2 \phi_{p}+\phi_{s}\right)$

$$
\begin{equation*}
=\text { CURVX }(\mathrm{I}, \mathrm{~J}) \tag{20}
\end{equation*}
$$

Then $F X(I, J)$ is written by

$$
\begin{align*}
& \mathrm{FX}(\mathrm{I}, \mathrm{~J})=\frac{1}{2} \operatorname{CONX}\left(\phi_{\mathrm{p}}+\phi_{W}\right)-\operatorname{DIFFX}\left(\phi_{p}-\phi_{W}\right) \\
& -\frac{1}{16}[(\operatorname{CONX}-|\operatorname{CONX}|) \operatorname{CURVX}(\mathrm{I}, \mathrm{~J})+(\operatorname{CONX}+|\operatorname{CONX}|) \operatorname{CORVX}(\mathrm{I}-1 . \mathrm{J})] \tag{21}
\end{align*}
$$

Similarly we can estimate ϕ in the southern face and get FY (I, J). Thus we can solve Eq(18).

(5) Pseudo-Spectral

The differential equation of $E q(1)$ is written by

$$
\begin{array}{r}
\phi p^{n+1}=\phi p^{n}+\Delta \mathbf{t}[-\mathrm{u} Q \mathrm{Q}(\mathrm{I}, \mathrm{~J})-\mathrm{V} \text { QY }(\mathrm{I}, \mathrm{~J})+ \\
\Gamma(\mathrm{GX}(\mathrm{I}, \mathrm{~J})+\mathrm{GY}(\mathrm{I}, \mathrm{~J}))] \tag{22}
\end{array}
$$

where

$$
\begin{equation*}
Q X(I, J)=\left(\frac{\partial \phi}{\partial x}\right)_{p} \quad Q Y(I, J)=\left(\frac{\partial \phi}{\partial y}\right)_{p} \tag{23}
\end{equation*}
$$

First, we consider the case where the boundary is periodic. As this condition allows us to use Fourier sine transform, ϕ (x, y) in x direction can be expressed as

$$
\begin{equation*}
\phi(x, y)=\sum_{k=0}^{N} \phi_{x}(k) \sin \frac{k n \pi}{L x} \tag{24}
\end{equation*}
$$

where $L_{x}=N \Delta x=1$ and N is the number of meshes. Then the first and the second derivatives of $\mathrm{Eq}(24)$ are expressed as follows

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\sum_{k=0}^{N}\left(\frac{k \pi}{L \times} \hat{L_{x}}(k)\right) \cos \frac{k n \pi}{L_{x}} \tag{25}\\
& \frac{\partial^{2} \phi}{\partial x^{2}}=\sum_{k=0}^{N}\left(-\left(\frac{k \pi}{L_{x}}\right)^{2} \phi \times(k)\right) \sin \frac{k n \pi}{L_{x}} \tag{26}
\end{align*}
$$

As $\phi(x, y)$ is given at discrete grid points,

$$
\mathrm{x}=(\mathrm{I}-1) \Delta \mathrm{x} \quad, \mathrm{I}=1,2,3, \cdots, \mathrm{~N}+1
$$

$\hat{\phi}(k)$ is obtain by inverse Fourier transform of Eq(24) as

$$
\begin{equation*}
\phi \hat{x}(k)=\frac{2}{N} \Sigma \phi(x, y) \sin \frac{k \pi x}{L_{x}}=\frac{2}{N} \sum_{\mathrm{I}=1}^{N+1} \phi(I, y) \sin \frac{k \pi(I-1)}{N} \tag{27}
\end{equation*}
$$

Thus we can get $Q X(I, J)$ and $G X(I, J)$ in $E q(24)$ as
QX $(\mathrm{I}, \mathrm{J})=\sum_{\mathrm{I}=1}^{\mathrm{N}+1}\left(\frac{\mathrm{k} \pi}{\mathrm{L}_{x}} \phi_{x}(\mathrm{k})\right) \cos \frac{\mathrm{k} \pi(\mathrm{I}-1)}{\mathrm{N}}$
$G X(I, J)=\sum_{\mathrm{j}=1}^{\mathrm{N}+1}\left(-\left(\frac{\mathrm{k} \pi}{\mathrm{L}_{x}}\right)^{2}{ }^{2} \hat{\phi_{x}}(\mathrm{k})\right) \sin \frac{\mathrm{k} \pi(\mathrm{I}-1)}{\mathrm{N}}$
Similarly we express $\phi(x, y)$ in the y direction using fourier sine transform and get Q Y (I, J) and GY (I, J). Then we can soleve Eq(22). Second, we consider the case where the boundary isn't periodic. Here we use the method of 'Reduction to periodicity' proposed by Roache ${ }^{(5)}$. Following this method, the function $\phi(x, y)$ is decomposed into sum of two functions as

$$
\begin{equation*}
\phi(x, y)=f(x, y)+g(x) \tag{30}
\end{equation*}
$$

where $\phi(x, y)$ is such a function as 0 at $x=0$ and 1 , and g (x) is the N 'th degree polynomial. Here we take N as 3 . Then $g(x)$ is expressed as

$$
\begin{equation*}
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \tag{31}
\end{equation*}
$$

Four coefficients a \quad a з are determined from the periodic conditions of the derivatives of $f(x, y)$ as

$$
\begin{equation*}
f(n)(1, y)-f(n)(0, y)=0 \quad(n=0,1,2): f(0, y)=0 \tag{32}
\end{equation*}
$$

Eq(32) for $\mathbf{n}=0$ gives as

$$
\begin{align*}
& f(0, y)=\phi(0, y)-g(0)=\phi(0, y)-a 0=0 \\
& \phi(0, y)=a_{0} \tag{33}
\end{align*}
$$

Then we can get ag. Next, we define D_{n} as

$$
\begin{equation*}
D_{n}=\phi^{(n)}(1, y)-\phi^{(n)}(0, y) \tag{34}
\end{equation*}
$$

Eq(34) is arrenged using Eq(32) as

$$
\begin{equation*}
D_{n}=g^{(n)}(1)-g^{(n)}(0) \tag{35}
\end{equation*}
$$

For $\mathrm{n}=0,1$ and 2, we get as

$$
\begin{array}{lllll}
\text { at } & \mathrm{n}=0 & \mathrm{~g}(1) & -\mathrm{g}(0) & =\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}=\mathrm{D}_{0} \\
\text { at } & \mathrm{n}=1 & \mathrm{~g}(1)(1)-\mathrm{g}(1)(0)= & =2 \mathrm{a}_{2}+3 \mathrm{a}_{3}=\mathrm{D}_{1} \tag{36}\\
\text { at } \mathrm{n}=2 & \mathrm{~g}(2)(1)-\mathrm{g}(2)(0)=6 \mathrm{a}_{3} & =\mathrm{D}_{2}
\end{array}
$$

Then we obtain the coefficients $a_{1} \sim a_{3}$ as follows

$$
\begin{equation*}
a_{1}=D_{0}-a_{2}-a_{3} \quad a_{2}=\frac{1}{2} D_{1}-\frac{3}{2} a_{3} \quad a_{3}=\frac{1}{6} D_{2} \tag{37}
\end{equation*}
$$

The derivatives of $\phi(x, y)$ are approximated here by the second-order one sided finite difference.
As $f(x, y)$ is a periodicity function, it can be solved from the described above method. Then we can obtain $\phi, Q X$ and $G X$ for $E q(22)$ as follows

$$
\begin{align*}
& \phi(x, y)=f(x, y)+a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \\
& Q X(x, y)=f(1)(x, y)+a_{1}+2 a_{2} x+3 a_{3} x^{2} \tag{38}\\
& G X(x, y)=f(2)(x, y)+2 a_{2}+6 a_{3} x
\end{align*}
$$

If we take the same procedure in y direction, we can obtain $Q Y$ and $G Y$. Thus we can solve Eq(23).

2-3 The calculation methods for $\mathrm{Eq}(2)$

We consider the control volume shown in the figure6. Each methods of CDS, UDS, Power-Low and QUICK and Pseudo-Spectral can be extended easily for three dimensional. So we abbreviate these explanation. Here we indicate the methods of SUDS and SUWDS for Eq(2).

(1)SUDS

FIG6 The control volume for three dimension

We consider that for the vicinity of the western face of the control volume shown in the figure6, r axis is the direction of the flow (V_{3}). We rotate $x-y$ $-z$ coordinate around w as x axis is coincident with r axis. Then the rotation y and z axis regard n_{1} and n_{2} axis, and we consider $r-n_{1}-n_{2}$ coordinate in the vicinity of w. We assume the ϕ profile for the convective flux is expressed as

$$
\begin{equation*}
\phi_{w}=C_{1}+C_{2} n_{1}+C_{3} n_{2} \tag{39}
\end{equation*}
$$

Using V_{1} and V_{3}, Eq(39) is rewritten by

$$
\begin{equation*}
\phi_{w}=C_{1}+C_{2}\left(y \cdot \frac{w_{w}}{V_{1 w}} z \cdot \frac{V_{w}}{V_{1}}\right)_{w}+C_{3}\left(x \cdot \frac{V_{1 w}}{V_{3 w}}-y \cdot \frac{V_{w} u_{w}}{V_{1 w} V_{3 w}}-z \cdot \frac{W_{w} u_{w}}{V_{1 w} V_{3} w}\right) \tag{40}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{1 w}=\sqrt{\left(V w^{2}+w_{w}^{2}\right)} \quad V_{3 w}=\sqrt{\left(u_{w}^{2}+V w^{2}+w_{w}^{2}\right)} \tag{41}
\end{equation*}
$$

and x^{\prime}, y^{\prime} and z^{\prime} are measured from w. The constants C_{1}, C_{2} and C_{3} are determined from three values of the upstream of w. The one is P or W and the other one is either of eight grid points B S W, T S W, T NW, B NW, B S , TS, TN and B N from the sign of u, v and w. The last one is either of four grid points $S W, N W, N$ and S, or either of four $T W, B W, B$ and T from the sign of u, v and w and a magnitude of v and w. These conditions are written by

$$
\begin{align*}
& \phi=\phi_{m w} \text { at } \mathrm{x}^{\prime}=-\mathrm{S}_{\mathrm{uw}} \delta \mathrm{x}_{\mathrm{i}} / 2 \mathrm{y}^{\prime}=0 \quad \mathrm{z}^{\prime}=0 \\
& \phi=\phi_{\mathrm{qw}} \text { at } \mathrm{x}^{\prime}=-\mathrm{Suw} \delta \mathrm{x} \mathbf{i} / 2 \mathrm{y}^{\prime}=-\mathrm{Suw} \delta \mathrm{ykw} \mathrm{z}^{\prime}=-\mathrm{S} w \mathrm{w}_{\mathrm{w}} \delta \mathrm{z} \text { lw } \\
& \text { (1) }\left|\frac{W_{w}}{v_{w}}\right| \leqq 1 \tag{42}\\
& \phi=\phi_{\mathrm{rw}} \text { at } \mathrm{x}^{\prime}=-\mathrm{S}_{\mathrm{uw}} \delta \mathrm{x}_{\mathrm{i}} / 2 \mathrm{y}^{\prime}=-\mathrm{S}_{\mathrm{uw}} \delta \mathrm{y}_{\mathrm{kw}} \quad \mathrm{z}^{\prime}=0 \\
& \text { (2) }\left|\frac{W_{w}}{V_{w}}\right|>1 \\
& \phi=\phi_{\mathrm{r} w} \text { at } \mathrm{X}^{\prime}=-\mathrm{S} u \mathrm{w} \delta \mathrm{xi}_{\mathrm{i}} / 2 \mathrm{y}^{\prime}=0 \quad \mathrm{z}^{\prime}=-\mathrm{S}_{\mathrm{ww}} \delta \mathrm{Z} \mathrm{z} \text { Iw }
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{kw}=\mathrm{j}+\left(1-\mathrm{S}_{\mathrm{vw}}\right) / 2 \quad 1 \mathrm{w}=\mathrm{k}+\left(1-\mathrm{S}_{\mathrm{ww}}\right) / 2 \tag{43}
\end{equation*}
$$

Suw has a magnitude of unity and the sign of u; similarly $S_{\text {vw }}$ is unity with the sign of v and $S w w i s$ unity with the sign of w. We can estimate ϕ for the eastern, the southern, the northern, the bottom and the top face in the same procedure. We assume a linear distribution for the diffusive flux. Then we can obtain the three-dimensional discretization equation as

$$
\begin{align*}
& +\left(K_{1 w}-K_{2 w}\right) \phi_{r w}+\left(K_{1 s}-K_{2 s}\right) \phi_{r s}+\left(K_{1 b}-K_{2 b}\right) \phi_{r b} \\
& -\left(K_{1 \theta}-K_{2 \theta}\right) \phi_{r \theta}-\left(K_{1 n}-K_{2 n}\right) \phi_{r n}-\left(K_{1 t}-K_{2 t}\right) \phi_{r t} \\
& +\mathrm{K}_{2 \mathrm{w}} \phi_{\mathrm{q}} \mathrm{w}+\mathrm{K}_{2 \mathrm{~s}} \phi_{\mathrm{q}}+\mathrm{K}_{2 \mathrm{~b}} \phi_{\mathrm{q}} \mathrm{~b}-\mathrm{K}_{2 \theta} \phi_{\mathrm{q} \theta}-\mathrm{K}_{2 \mathrm{n}} \phi_{\mathrm{q}} \mathrm{n}-\mathrm{K}_{2 \mathrm{t}} \phi_{\mathrm{q}} \mathrm{t} \tag{44}
\end{align*}
$$

where
$\mathrm{a}_{\mathrm{E}}=\mathrm{D}_{\ominus}-\left(\mathrm{F}_{\ominus}-\mathrm{K}_{10}\right) \cdot\left(1-\mathrm{S}_{\text {uө })}\right) / 2$
$\mathrm{a}_{\mathrm{w}}=\mathrm{D}_{w}+\left(\mathrm{F}_{w}-\mathrm{K}_{1 \boldsymbol{w}}\right) \cdot\left(1+\mathrm{S}_{\mathrm{u}_{w}}\right) / 2$
$a_{N}=D_{n}-\left(F_{n}-K_{1 n}\right) \cdot\left(1-S_{v n}\right) / 2$
$\mathrm{a}_{\mathrm{s}}=\mathrm{D}_{\mathrm{s}}+\left(\mathrm{F}_{\mathrm{s}}-\mathrm{K}_{1 \mathrm{~s}}\right) \cdot\left(1+\mathrm{S}_{\mathrm{vs}}\right) / 2$
$a_{T}=D_{t}-\left(F_{t}-K_{i t}\right) \cdot\left(1-S_{w t}\right) / 2$
$\mathrm{a}_{\mathrm{B}}=\mathrm{D}_{\mathrm{b}}+\left(\mathrm{F}_{\mathrm{b}}-\mathrm{K}_{\mathrm{ib}}\right) \cdot\left(1+\mathrm{S}_{\mathrm{wb}}\right) / 2$

$$
\begin{equation*}
+K_{1 w}+K_{1 s}+K_{1 b}-K_{1 e}-K_{1 n}-K_{1 t} \tag{45}
\end{equation*}
$$

The variables with the subscript w are defined as
$\mathrm{F}_{\mathrm{W}}=\mathrm{u}_{W} \Delta \mathrm{y} \Delta \mathrm{z} \quad \mathrm{D}_{\mathrm{w}}=\frac{\Gamma_{\mathrm{W}} \Delta \mathrm{y} \Delta \mathrm{z}}{\delta \mathrm{X}_{\mathrm{i}}}$
(1) $\left|\frac{W_{w}}{V_{w}}\right| \leqq 1 \quad K_{1 w}=S_{u w} \cdot m i n\left(\left|F_{w}\right|, \frac{\Delta y_{i \Delta z}}{\delta y_{k w}}\left|v_{w}\right| \frac{\delta x_{i+1}}{2}\right)$

$$
\mathrm{K}_{2 w}=\mathrm{S}_{u w} \cdot \mathrm{~m}_{\mathrm{i}} \mathrm{n}\left(\left|\mathrm{~K}_{1 w}\right| \frac{\Delta \mathrm{y} \Delta \mathrm{Z}}{\delta \mathrm{Z}_{1 w}}\left|\mathrm{w}_{w}\right| \frac{\delta \mathrm{X}_{i+1}}{2}\right)
$$

(2) $\left|\frac{W_{w}}{\mathrm{~V}_{w}}\right|>1 \quad \mathrm{~K}_{1 w}=\mathrm{S}_{u_{w}} \cdot \mathrm{~m}$ i $\mathrm{n}\left(\left|\mathrm{F}_{w}\right|, \frac{\Delta \mathrm{y}_{\mathrm{w}} \Delta \mathrm{z}^{\prime}}{\delta \mathrm{z}_{1 w}}\left|\mathrm{w}_{w}\right| \frac{\delta \mathrm{X}_{\mathrm{i}+1}}{2}\right)$

$$
\begin{equation*}
\mathrm{K}_{2 w}=\mathrm{S}_{u w \cdot m} \mathrm{~m}_{\mathrm{n}}\left(\left|\mathrm{~K}_{1 w}\right| \frac{\Delta \mathrm{y}_{\mathrm{y}} \Delta \mathrm{z}}{\delta \mathrm{y}_{\mathrm{kw}}}\left|\mathrm{~V}_{w}\right| \frac{\delta \mathrm{X}_{\mathrm{i}+1}}{2}\right) \tag{46}
\end{equation*}
$$

We can define the variables with the other subscript by the same procedure.

(2)SUWDS

We assume that ϕ profile for the convective and diffusive fluxes are expressed as

$$
\begin{align*}
\phi_{w}=C_{1} & +C_{2}\left(y^{\prime} \frac{W_{w}}{V_{1 w}} z^{\prime} \cdot \frac{V_{w}}{V_{1}}\right)+C_{3}\left(x^{\prime} \cdot \frac{V_{1 w}}{V_{3 W}} y^{\prime} \cdot \frac{V_{w} u_{w}}{V_{1} V_{3 W}}-z^{\prime} \cdot \frac{W_{w} u_{w}}{V_{1 w} V_{3 W}}\right) \\
& +C_{4} \exp \left(\frac{u_{w}}{\Gamma_{w}} x^{\prime}+\frac{V_{w}}{\Gamma_{w}} y^{\prime}+\frac{w_{w}}{\Gamma_{w}} z^{\prime}\right) \tag{47}
\end{align*}
$$

where the constants C_{1}, C_{2}, C_{3} and C_{4} are determined from P of the upstream of w and three values of the downstream of w. These conditions are written by

$$
\begin{align*}
& \phi=\phi_{\mathrm{P}} \quad \text { at } \mathrm{x}^{\prime}=\delta \mathrm{x}_{\mathrm{i}} / 2 \quad \mathrm{y}^{\prime}=0 \quad \mathrm{z}^{\prime}=0 \\
& \phi=\phi_{w} \quad \text { at } \mathrm{x}^{\prime}=-\delta \mathrm{x}_{\mathrm{i}} / 2 \quad \mathrm{y}^{\prime}=0 \quad \mathrm{z}^{\prime}=0 \\
& \phi=\phi_{\mathrm{qw}} \text { at } \mathrm{x}^{\prime}=-\mathrm{S}_{\mathrm{uw}} \delta \mathrm{x}_{\mathrm{i}} / 2 \mathrm{y}^{\prime}=-\mathrm{S}_{\mathrm{uw}} \delta \mathrm{y}_{\mathrm{kw}} \mathrm{z}^{\prime}=-\mathrm{S}_{\mathrm{ww}} \delta \mathrm{z} \mathrm{z} \| \mathrm{w} \\
& \text { (1) }\left|\frac{\mathrm{W}_{w}}{\mathrm{~V}_{w}}\right| \leqq 1 \\
& \phi=\phi_{\mathrm{rw}} \text { at } \mathrm{x}^{\prime}=-\mathrm{Suw}_{\mathrm{u}} \delta \mathrm{xi}_{\mathrm{i}} / 2 \mathrm{y}^{\prime}=-\mathrm{S}_{\mathrm{uw}} \delta \mathrm{y}_{\mathrm{kw}} \mathrm{z}^{\prime}=0 \tag{48}\\
& \text { (2) }\left|\frac{w_{w}}{v_{w}}\right|>1 \\
& \phi=\phi_{\mathrm{rw}} \text { at } \mathrm{x}^{\prime}=-\mathrm{S}_{\mathrm{uw}} \delta \mathrm{x} \mathrm{i}_{\mathrm{i}} / 2 \mathrm{y}^{\prime}=0 \quad \mathrm{z}^{\prime}=-\mathrm{S}_{\mathrm{ww}} \delta \mathrm{z}_{\mathrm{I}} \mathrm{w}
\end{align*}
$$

After we estimate ϕ for other face similarly, we can obtain the threedimensional discretization equation as

$$
\begin{aligned}
& +\left(\mathrm{F}_{w} \mathrm{~B}_{w^{\prime}}-\mathrm{D}_{w} \mathrm{~B}_{w^{\prime}}{ }^{\prime}\right) \phi_{\mathrm{q}}+\left(\mathrm{F}_{\mathrm{s}} \mathrm{~B}_{g^{\prime}}-\mathrm{D}_{s} \mathrm{~B}_{s^{\prime}}{ }^{\prime}\right) \phi_{\mathrm{q}}+\left(\mathrm{F}_{\mathrm{b}} \mathrm{t}_{\mathrm{b}} \mathrm{~b}^{\prime}-\mathrm{D}_{\mathrm{b}} \mathrm{~B}_{\mathrm{b}}{ }^{\prime}{ }^{\prime}\right) \\
& \phi \text { ab }
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{\mathrm{at}} \text { t }
\end{aligned}
$$

where

$$
\begin{align*}
& \mathrm{a}_{\mathrm{E}}=\mathrm{D}_{\boldsymbol{\theta}}\left(1-\mathrm{A}_{\theta^{\prime}}{ }^{\prime}-\mathrm{C}_{\theta^{\prime}}{ }^{\prime}\right)-\mathrm{F}_{\boldsymbol{\theta}}\left(0.5-\mathrm{A}_{\boldsymbol{\theta}}{ }^{\prime}-\mathrm{C}_{\theta^{\prime}}\right) \\
& \mathrm{a}_{w}=\mathrm{D}_{\mathrm{w}}\left(1-\mathrm{A}_{\mathrm{w}}{ }^{\prime}{ }^{\prime}\right) \quad+\mathrm{F}_{\mathrm{w}}\left(0.5+\mathrm{A}_{\mathrm{w}}{ }^{\prime}\right) \\
& \mathrm{a}_{\mathrm{N}}=\mathrm{D}_{\mathrm{n}}\left(1-\mathrm{A}_{n^{\prime}}{ }^{\prime}-\mathrm{C}_{\mathrm{n}}{ }^{\prime}{ }^{\prime}\right)-\mathrm{F}_{\mathrm{n}}\left(0.5-\mathrm{A}_{\mathrm{n}}{ }^{\prime}-\mathrm{C}_{\mathrm{n}}{ }^{\prime}\right) \\
& \mathrm{a}_{\mathrm{s}}=\mathrm{D}_{\mathrm{s}}\left(1-\mathrm{A}_{\mathrm{s}}{ }^{\prime}{ }^{\prime}\right) \quad+\mathrm{F}_{\mathrm{s}}\left(0.5+\mathrm{A}_{\mathrm{s}}{ }^{\prime}\right) \\
& \mathrm{a}_{\mathrm{T}}=\mathrm{D}_{\mathrm{t}}\left(1-\mathrm{A}_{\mathrm{t}}{ }^{\prime}{ }^{\prime}-\mathrm{C}_{\mathrm{t}}{ }^{\prime}{ }^{\prime}\right)-\mathrm{F}_{\mathrm{t}}\left(0.5-\mathrm{A}_{\mathrm{t}}{ }^{\prime}-\mathrm{C}_{\mathrm{t}}{ }^{\prime}\right) \\
& \mathrm{a}_{\mathrm{B}}=\mathrm{D}_{\mathrm{b}}\left(1-\mathrm{A}_{\mathrm{b}}{ }^{\prime}{ }^{\prime}\right)+\mathrm{F}_{\mathrm{b}}\left(0.5+\mathrm{A}_{\mathrm{b}}{ }^{\prime}\right) \\
& a_{P}=a_{E}+a_{w}+a_{N}+a_{s}+a_{T}+a_{B}+\frac{\Delta x \Delta y \Delta z}{\Delta t} \\
& +\mathrm{F}_{\boldsymbol{w}} \mathrm{C}_{\mathrm{w}}{ }^{\prime}-\mathrm{D}_{\mathrm{w}} \mathrm{C}_{\mathrm{w}}{ }^{\prime}{ }^{\prime}+\mathrm{F}_{\mathrm{s}} \mathrm{C}_{5}{ }^{\prime}-\mathrm{D}_{\mathrm{s}} \mathrm{C}_{5}{ }^{\prime}{ }^{\prime}+\mathrm{F}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}}{ }^{\prime}-\mathrm{D}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}}{ }^{\prime}{ }^{\prime} \\
& -\mathrm{Fe}_{\theta} \mathrm{C}_{\boldsymbol{\theta}}{ }^{\prime}+\mathrm{D}_{\boldsymbol{e}} \mathrm{C}_{\theta^{\prime}}{ }^{\prime}-\mathrm{F}_{\mathrm{n}} \mathrm{C}_{\mathrm{n}}{ }^{\prime}+\mathrm{D}_{\mathrm{n}} \mathrm{C}_{\mathrm{n}}{ }^{\prime}{ }^{\prime}-\mathrm{F}_{\mathrm{t}} \mathrm{C}_{\mathrm{t}}{ }^{\prime}+\mathrm{D}_{\mathrm{t}} \mathrm{C}_{\mathrm{t}}{ }^{\prime} \tag{50}
\end{align*}
$$

The variables for the w face are defined as

$$
\begin{align*}
& P_{x W}=\frac{\left|u_{w}\right| \delta x_{i}}{\Gamma_{w}} \quad P_{y w}=\frac{\left|V_{w}\right| \delta y_{k w}}{\Gamma_{w}} \quad P_{{ }_{w}}=\frac{\left|W_{w}\right| \delta z_{i w}}{\Gamma_{w}} \\
& A_{w^{\prime}}=\left(\cosh \left(\frac{P_{X W}}{2}\right)-1\right) A_{w} \quad A_{w}{ }^{\prime \prime}=S_{u w}\left(2 \sinh \left(\frac{P_{X W}}{2}\right)-P_{x W}\right) A_{w} \\
& \mathrm{~B}_{W^{\prime}}=\left(\cosh \left(\frac{\mathrm{P}_{\mathrm{XW}}}{2}\right)-1\right) \mathrm{B}_{W} \quad \mathrm{~B}_{W^{\prime}}{ }^{\prime}=\mathrm{S}_{\mathrm{uw}}\left(2 \sinh \left(\frac{\mathrm{P}_{\mathrm{XW}}}{2}\right)-\mathrm{P}_{\mathrm{XW}}\right) \mathrm{B}_{W} \tag{51}\\
& C_{w^{\prime}}=\left(\cosh \left(\frac{P_{x w}}{2}\right)-1\right) C_{w} \quad C_{w}{ }^{\prime \prime}=S_{u w}\left(2 \sinh \left(\frac{P_{x W}}{2}\right)-P_{x w}\right) C_{w} \\
& \text { (1) }\left|\frac{W_{u}}{V_{w}}\right| \leqq 1
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{A}_{u}=\frac{\alpha_{u}-\left|\beta_{u} / 2\right|\left(1+\mathrm{S}_{u}\right)}{\mathrm{H}_{u}} \quad \mathrm{~B}_{w}=\frac{\left|\gamma_{u}\right|}{\mathrm{H}_{W}} \quad \mathrm{C}_{u}=\frac{\left|\beta_{W}\right|}{\mathrm{H}_{w}} \\
& \text { (2) }\left|\frac{W_{H}}{V_{H}}\right|>1 \\
& H_{w}=\left|\beta_{w}\right|\left(1-\exp \left(-P_{y w}\right)\right) \exp \left(-P_{x w} / 2\right) \exp \left(-P_{z w}\right) \\
& +\left|\gamma_{w}\right|\left(1-\exp \left(-P_{z w}\right)\right) \exp \left(-P_{x w} / 2\right)+2\left|\alpha_{w}\right| \sinh \left(P_{x w} / 2\right) \\
& \mathrm{A}_{W}=\frac{\alpha_{w}-\left|\gamma_{W} / 2\right|\left(1+\mathrm{S}_{W}\right)}{\mathrm{H}_{W}} \quad \mathrm{~B}_{w}=\frac{\left|\beta_{w}\right|}{\mathrm{H}_{W}} \quad \mathrm{C}_{W}=\frac{\left|\gamma_{w}\right|}{\mathrm{H}_{W}}
\end{aligned}
$$

2-4 The results

We calculated for three cases described in the section 2-1. The number of mashes is 16×16 for the case (a) and case (b), and $16 \times 16 \times 16$ for the case (c). The diffusion coefficient Γ is equal to 0.01 . In addition, we made two calculations for the case (b) ; when the number of meshes is 32×32 and when $\Gamma=0.002$.

For the problems described in the section 2 - 1 , we can get the exact solution as

$$
\begin{equation*}
\phi=0.5\left[1+\operatorname{erf}\left(y_{n} \sqrt{ }\left(\frac{V_{n}}{4 \Gamma x_{n}}\right)\right)\right] \tag{52}
\end{equation*}
$$

where erf is error function, x_{n} is parallel to the flow and y_{n} is normal. Here, we compare calculation values with the exact solution at the section through $\left(x_{n}, y_{n}\right)=(0.5,0.5)$.

The results for the case(a) are shown in the figure7. All of the calculation values are well coincided with the exact solution. In the case(a), note that the calculation value of SUDS is equal to that of UDS. We calculated about three different conditions in the case (b). The large number of meshes is corresponded to the small cell Peclet number (P e) and the small Γ means the large P e. We show the results for mesh number 16×16 and $\Gamma=0.01$ in the figure8. QUICK and Pseudo-Spectral are well coincided with the exact solution, but UDS and Power-Low aren't for the numerical diffusion. SUDS and SUWDS is roughly equal to the exact solution. However, there is a little different befor and behind at $y n=8$. We show the results for the number of meshes 32×32 in the figure 9 . This figure also show the same tendency as figure8. Comparing UDS with Power-Low, the calculation value of the latter is improved more than the former and is close to the exact solution. The calculation value of SUWDS is worse than that in the figure8. In SUDS the calculation value is coincided with the exact solution. We show the result at $\Gamma=0.002$ in the figure10. The calculation value of SUDS is better than

PIG7 The results of the calculation for the case(a) conditions: $\Gamma=0.01$; meshes 16×16
others. The calculations of QUICK and Pseudo-Spectral occur the oscillation because of the large P e. UDS and Power-Low become worse. We carry out all of the calculations at time step $\Delta t=0.01$. But as we couldn't get the result of Pseudo-Spectral at $\Delta \mathrm{t}=0.01$, we set $\Delta \mathrm{t}=0.005$ here. We show the results for the case(c) in the figurell. UDS and Power-Low are bad, because they generate the numerical diffusion. The others are roughly coincided with

PIG8 The results of the calculation for the case(b) conditions: $\Gamma=0.01$; meshes 16×16

PIGg The results of the calculation for the case(b) conditions: $\Gamma=0.01$; meshes 32×32
the exact solution, except for the underestimation and the overestimation in the neighborhood of the region at $y_{n}=8$.

For the summary, SUDS and QUICK and Pseudo-Spectral have good accuracy. As P e is large, SUDS has good accuracy, but QUICK and Pseudo-Spectral occur the oscillation. UDS and Power-Low have relatively poor accuracy because of their numerical diffusion.

FIG11 The results of the calculation for the case(c) conditions: $\Gamma=0.01$; meshes 16×16
3. The simulation of atrium airflovith inclined inlet

3-1 The governing equation

We use the three dimensional $k-\varepsilon$ turbulence model for the governing equation. In this calculation Wall Function' based on the logarithmic low of the wall is introduced the wall boundary conditions.

3-2 The calculation conditions

We show the floor of the atrium in the figure12. This figure is only because this atrium is symmetried about AA arty on the downside in the figurel2 atle The wall on the right side and partly other walls are made of concrete and partly on the ceilling are made of glass. other wanstant;33.75 ${ }^{\circ} \mathrm{C}$ for . The temperature on the boundary is assumed to floor. The inlets are located at glass, $26^{\circ} \mathrm{C}$ for concrete and $15^{\circ} \mathrm{C}$ for shown in the figure 13 . They are height 13 m . There are five inlets shownt wind has the speed of inclined 45° to z direction, and the $1 \pi .5^{\circ} \mathrm{C}$. The actual atrium has a $6.29 \mathrm{~m} / \mathrm{s}$ and the temperature of 1 L$) \times 18.5 \mathrm{c}$. The (H). We made only a half magnitude of $19.5 \mathrm{~m}(W) \times 50.4 \mathrm{~m}$ (L) $\times \mathrm{F}$ a non-uniform mesh and set the calculation. In this calculation we
number of meshes $20 \times 30 \times 18$.

FIG12 The floor of the atrium

3-3 The results

We made the calculation of the atrium airflow and the temperature distribution with SUDS and Pow er-Low. The airflow ong (1)-(5) in the figurel2, are shown in the where correspond to the floor and (1)-(5) in figurel6 and 17. The top of these figure14 and 15, and the temper at ure the bottom is with power-how. figures is the results with SUDS and the bothe inlets, the momentums calculated

At the cross sections(3) - (5) including with SUDS diffuse only a little and with Power-Low diffuse rapid 1 y floor. The temperature at the same cross the inlet's wind attains to there is a difference about the temperature ($\mathbf{i} h e r e$ is a cross section(1). Seeing the cross sections (3) in cross section blows horizontally, that with -(5), though the airflow calcul a ed winlet's angle. Accordingly the temperature SUDS blows in the direction \mathbf{E}
calculated with SUDS diffuses less than Power-Low (Fig16). We argue in the section 2 that SUDS is much better than Power Low because it generates little numerical diffusion. Applying to the actual atrium, SUDS show the same tendency.

At the cross section(5), though the airflow with SUDS blows downward in the neighborhood of the inlet, Power-Low doesn't alike. Besides there are a lot of difference between SUDS and Power-Low. Unfortunatery as this atrium is now under the construction, we can't argue in detail which schemes are appropriate. For the future, we' 11 compare the calculation with the measurement.

FIG14 The results of the airflow simulation(top, with SUDS; bottom, with Power-Low : the large arrow indicates the wind speed more than $1 \mathrm{~m} / \mathrm{s}$)

FIG15 The results of the airflow simulation(top, with SUDS; bot tom, with Power-Low; the large arrow indicates the wind speed more than $1 \mathrm{~m} / \mathrm{s}$)

FIG16 The results of the temperature simulation (top, with SUDS; bot tom, with Power-Low)

FIGI7 The results of the temperature simulation (top, with SUDS; bot tom, with Power-Low)

REFERRENCE

(1) S. V. PATANKER : Numerical Heat Transfer and Fluid Flow Hemisphere(1980)
(2) G. D. RAITHBY :Skew Upstream Differencing Sckemes for Problems Involving Fluid Flow, Computer Method Appl. Mech. Engng., 9, 153-164 (1976)
(3) B. P. LEONARD :A Stable and Accurate Convective modelling Procedure Based on Quadratic Upstream Interpolation, Computer Method Appl. Mech. Engng., 19, 59-98 (1979)
(4) H. WENGLE, B.V.D. BOSCH, J. H. SEINFELD : Solution of Atomospheric Diffusion Problems by Pseudo-Spectral and Orthogonal Collocation Methods, Atoms. Env. 12, 1021-1032 (1978)
(5) P.J.ROACHE :A Pesudo-Spectral FFT Technique for Non-periodic Problems, J. Comput. Phys., 27. 204-220 (1978)

