

AN AMERICAN NATIONAL STANDARD

AIR LEAKAGE PERFORMANCE FOR DETACHED SINGLE-FAMILY RESIDENTIAL BUILDINGS

ERROR ON PAGE 3.

Approved by the ASHRAE Standards Committee June 26, 1988, by the ASHRAE Board of Directors June 30, 1988, and by the American National Standards Institute August 19, 1988.

ASHRAE Standards are updated on a five-year cycle; the date following the Standard number is the year of approval. The latest copies may be purchased from the ASHRAE Publications Sales Department, 1791 Tullie Circle, NE, Atlanta, GA 30329.

© **1988**

ISSN 1041-2336

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS, INC.

1791 Tullie Circle, NE • Atlanta, GA 30329

ASHRAE STANDARDS PROJECT COMMITTEE 119-1988

Max H. Sherman, Chairman Norman A. Buckley Donald G. Colliver Earl A. Ferguson Ross B. Gridley David T. Harrje Charles P. Hedlin Peter A. Keyes Jack D. Verschoor David J. Wilson Grenville K. Yuill

ASHRAE STANDARDS COMMITTEE 1987-88

Byron W. Engen, Chairman Don G. Virgin F. Leslie Brown David R. Conover Ernest C. Dowless Tamami Kusuda Ralph D. Lahmon R. Michael Martin Herbert Phillips Jullan E. Sjordal Harold E. Straub Kevin Y. Telchman William K. Thomas A. Grant Wilson John I. Woodworth George S. Yamamoto David S. Butler, CO Hans O. Spauschus, EXO

SPECIAL NOTE

This National Voluntary Consensus Standard was developed under the auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Consensus is defined as "substantial agreement reached by concerned interests according to the judgment of a duly appointed authority, after a concerted attempt at resolving objections. Consensus implies much more than the concept of a single majority but not necessarily unanimity." This definition is according to the American National Standards Institue (AN-SI) of which ASHRAE is a member.

ASHRAE obtains consensus through participation of its national and international members, associated societies and public review.

ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chairman and Vice-Chairman must be members of ASHRAE; while other members may or may not be members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees.

The Manager of Standards of ASHRAE should be contacted for:

- a. interpretation of the contents of this Standard.
- b. participation in the next review of the Standard.
- c. offering constructive criticism for improving the Standard.
- d. permission to reprint portions of the Standard.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitons of this equipment and by providing other information which may serve to guide the industry. The creation of ASHRAE Standards is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.

DISCLAIMER

ASHRAE uses its best efforts to promulgate standards for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify or assure the safety or performance of any products, components or systems tested, designed, installed or operated in accordance with ASHRAE's standards or that any tests conducted under its standards will be non-hazardous or free from risk.

CONTENTS

SECTION

6 .

PAGE

1. Purpo	se	2
2. Scope		2
3. Definit	tions	2
4. Standa	ard Compliance	2
5. Classi	fication of Air Tightness	3
6. Infiltra	tion degree-days	3
7. Refere	ences	6
Table 1a	Locations table (USA)	5
Table 1b	Locations table (Canada)	5
Table 2	Acceptable leakage class	3
Table 3	Classification of leakage	3
Figure 1	Acceptable leakage classes	4

APPENDICES:

Appendix A	Bibliography .	 	 	 	7
Appendix B		 	 	 	7
Table B.1a	1	 	 	 	9
Table B.1		 	 	 	12
Figure 2.		 	 	 	8

1.0 PURPOSE

1.1 The purpose of this Standard is to establish performance requirements for air leakage of residential buildings to reduce the air infiltration load.

1.2 This Standard provides a method to classify the air tightness of residential buildings.

2.0 SCOPE

2.1 This Standard sets upper limits of leakage area and provides a method of classifying air tightness for detached, single-family residential buildings.

2.2 This Standard does not apply to buildings which are conditioned for human comfort less than 876 hours of the year.

2.3 Although this Standard is intended to reduce energy use associated with air leakage through the envelope of residential buildings, use of this Standard may preclude the use of air infiltration alone to achieve adequate indoor air quality. The reduction of air leakage is separate from the need to provide adequate ventilation, adequate combustion air, and adequate indoor air quality. Consideration of these issues is the responsibility of the user.

3.0 DEFINITIONS

Acceptable Leakage Class: The leakage classes (as calculated in Section 5) which comply with this Standard (as stated in Section 4).

Air Change Rate: Air flow in volume units per hour divided by the building space volume with idential volume units (normally expressed in air changes per hour: ACH or ACPH). Air change rate at a specific time can be measured using ASTM E741-83. "Test Method for Determining Air Leakage Rate By Tracer Dilution."¹

Air Infiltration: The uncontrolled inward air flow through openings in the building envelope, caused by the pressure effects of wind, or the effect of differences in indoor and outdoor air density, or both (cfm) $[m^3/s]$.

Air Leakage: The flow of air through the building envelope caused by a specified pressure difference; a measure of air tightness (cfm at fixed pressure) [m³/s at fixed pressure].

Air Tightness: A qualitative term describing the integrity of the building envelope relative to air permeation; the resistance of the building envelope to the flow of air.

Average Specific Infiltration: The value of the specific infiltration that is typical for an average climate in the U.S. and Canada (ft/s) [m/s].

Building Envelope: The boundary or barrier separating the building volume from the outside environment.

Building Height: The vertical distance from the lowest grade level to the highest ceiling of building space. In cases where this is uncertain, the vertical distance from the lowest to the highest leakage site within the building envelope shall be used (ft) [m].

Building Space/Building Volume: The volume of a building that exchanges air with outside (ambient) air. For

the purposes of this standard, the building volume is the space which is deliberately conditioned for human comfort (ft^3) [m³].

Fan-Pressurization Test: A means for determining the air leakage of a building, using a fan-induced pressure difference. Either ASTM E779-87² or Canadian General Standards Board Standard CAN/CGSB-149.10-M86³ may be used.

Infiltration Degree Days: A measure of the severity of the climate (defined in Section 6) as it relates to infiltration (°F-day) [°C-day].

Floor Area: The horizontal area within the inside perimeter of the exterior walls of the building space. This definition is in accordance with the ASTM E631-85c⁴ definition of gross floor area which is used in ASTM E779-87 (ft²) [m²].

Leakage Area: The equivalent amount of open area (assuming unit discharge coefficient) that would let pass the same quantity of air as would pass collectively through the building envelope at a reference pressure of 4 Pa (ft²) [m²].

Leakage Class: One of the ten divisions of air tightness (as described in Section 5) based on the normalized leakage.

Normalized Leakage: The dimensionless value calculated from the leakage area, building height, and floor area that describes the relative air tightness of the envelope. (See Section 5.)

Specific Infiltration: The ratio of infiltration to leakage area; a normalized quantity which indicates the intensity of the weather relative to infiltration (ft/s) [m/s].

Ventilation: The process of supplying or removing air by natural or mechanical means to or from any space. Such air may or may not have been conditioned.

4.0 STANDARD COMPLIANCE

Compliance with the Standard may be demonstrated in either of three ways: the locations table; the infiltration degree-day calculation method; or the classification map. The locations table is the primary means of compliance and shall be used for those locations listed in it. The degree-day calculation method shall be used for those locations not listed in the locations table, but for which hourly weather data is available for a typical year. The classification map shall be used in all remaining cases.

Regardless of which of the three methods is used, this section specifies the leakage classes which are acceptable. If the measured leakage class as described in Section 5 is within the acceptable range, the building is deemed to comply with this standard.

4.1 Locations Table

Table 1 contains a number of selected locations and the acceptable leakage classes for each one. Compliance with this Standard is demonstrated if the measured leakage class for the structure in question is acceptable for its location.

4.2 Degree-day Calculation

For those locations not in the locations table, an infiltration degree-day calculation shall be made. Section $\frac{1}{2}$ escribes the method to be used to calculate infiltration degree-days, which are then to be used in the following table to find the acceptable leakage classes:

Infiltration	Acceptable		
[°C-day]	[°F-day]	Classes	
<1250	<2250	A-J	
1250-1768	2250-3182	A-I	
1769-2500	3183-4500	A-H	
2501-3536	4501-6364	A-G	
3536-5000	6365-9000	A-F	
5001-7071	9001-12728	A-E	
7072-10000	12729-18000	A-D	
>10000	>18000	A-C	

TABLE 2. ACCEPTABLE LEAKAGE CLASS

When using this table, all infiltration degree-days should be rounded to the nearest whole number.

4.3 Classification Map

For those cities not listed in the locations table and for which typical hourly weather data is not available, the classification map may be used to determine acceptable leakage classes. The classification map, Fig. 1, is a map of the United States and Canada indicating the zones of acceptable leakage classes.

5.0 CLASSIFICATION OF AIR TIGHTNESS

This section uses the concept of normalized leakage to classify air tightness. Measured data (leakage area, floor area, exponent, building height) is used to calculate the normalized leakage which then determines the leakage class.

5.1 Leakage Area Calculation

Leakage Area can be calculated from using either of the two procedures described below:

5.1.1 ASTM Procedure

To calculate the leakage area from the ASTM E779-87² standard, the leakage area for pressurization and depressurization (using a 4 Pa reference pressure) should be averaged as follows:

$$L = \frac{L_{press} + L_{depress}}{2} \tag{1}$$

where

- L = the leakage area for use in this standard (ft²) [m²]
- L_{press} = the leakage area from pressurization (ft²) [m²]
- $L_{depress}$ = is the leakage area from depressurization (ft²) [m²]

5.1.2 CGSB Procedure

To calculate the leakage area for use in this standard from CAN/SGSB-149.10-M86³ some modifications to the test procedure must be made: 1) all vents and intentional openings must be in the same configuration as specified in the ASTM standard (i.e. HVAC dampers and registers should

ANSI/ASHRAE STANDARD 119-1988

be in the normal operating position; fireplace and other dampers should be closed unless they are required for test operation); 2) height and floor area must be reported consistently with the definitions of this standard (i.e. ASH-RAE Standard 119); and 3) the leakage area as calculated from the CGSB procedure must be converted using the following expression:

$$L = 0.61(0.4)^{n-0.5} L_{cgsb}$$
 (2)

where

- L = the leakage area for use in this standard (ft²) [m²]
- n = the exponent measured from the CGSB standard
- L_{cgst} = is the CGSB leakage area as modified above (ft²) [m²]

5.2 Normalized Leakage

Normalized leakage is to be calculated from the leakage information as follows:

$$L_n = 1000 \frac{L}{A} \left(\frac{H}{H_o}\right)^{0.3} \tag{3}$$

where

 $L_n =$ the normalized leakage

 H_o = the height of a single story (8 ft) [2.5m]

H = the height of the building (ft) [m]

L = the leakage area of the space (ft²) [m²]

A = the floor area of the space (ft²) [m²]

5.3 Leakage Class

The Leakage Class is determined using the following table:

TABLE 3: CLASSIFICATION	error	
Normalized Leakage Range	Leakage Class	Should
$L_n < 1.10$	Α	he 10.
$0.10 \le L_n < 0.14$	В	er - v.
$0.14 \le L_n < 0.20$	С	
$0.20 \le L_n^{''} < 0.28$	D	
$0.28 \le L_n < 0.40$	E	
$0.40 \le L_n < 0.57$	F	
$0.57 \le L_n < 0.80$	G	
$0.80 \le L_n^{''} < 1.13$	Н	
$1.13 \le L_n < 1.60$	I	
$1.60 < L_n$	J	_

6.0 INFILTRATION DEGREE-DAYS

Infiltration degree-days are a measure of the severity of the climate as it affects infiltration loads in much the same way that heating degree-days are a measure of the severity of the heating season as it affects conduction through the building envelope.

The method of calculating infiltration degree-days requires the following hourly data for a typical year: outdoor dry-bulb temperature, and humidity. The total infiltration degree-days is the sum of the heating and cooling infiltration degree-days:

$$IDD = IDD_h + IDD_c \tag{4}$$

where:

ACCEPTABLE LEAKAGE CLASSES

(5)	T/	TABLE 1a: LOCATIONS TABLE (USA)							
	STATE	СПУ	ACCEPT- ABLE CLASSES	CITY	ACCEPT- ABLE CLASSES				
(ALABAMA	Birmingham Montgomery	A-H A-H	Mobile	A-H				
	ALASKA	Annette	A-F	Bethel	A-C				
		Big Delta Gulkana Juneau	A-C A-D A-E	Fairbanks Homer King Salmon	A-D A-E A-D				
		McGrath Yakutat	A-D A-E	Nome	A-C				
	ARKANSAS	Forth Smith	A-G	Little Rock	A-G				
	ARIZONA	Phoenix	A-H	Tucson	A-I				
		Winslow	A-G	Yuma	A-H				
	CALIFURNIA	Bakersfield Los Angeles	A-I A-J	Fresno Mount Shasta	A-I A-G				
		Oakland San Diego	A-I A-J	Red Bluff San Francisco	A-H A-H				
	COLORADO	Santa Maria	<u>A-I</u>						
		Colorado Springs Grand Junction	A-F A-G	Denver Pueblo	A-F A-G				
	CONNECTICU	/T Hartford	A-F						
	DELAWARE	Wilmington	A-F						
	FLORIDA	Applachicola	AG	Doutona	A 4				
		Jacksonville	A-G	Miami	A-G				
		Татра	A-G	W. Palm Beach	A-H A-G				
	GEORGIA	Aumsta	A-G	Atlanta	4-0				
2.4		Macon	A-H	Savannah	A-H				
	HAWAII	Hilo Lihue	A-J A-H	Honolulu	A-H				
	IDAHO	Boise	A-F	Lewiston	A-G				
	ILLINOIS	Chicago	A-F	Moline	A-F				
	INDIANA	Evansville	A-J	Fort Wayne	A-F				
		Indianapolis	A-F	South Bend	A-F				
	IOWA	Des Moines	A-E	Sioux City	A-E				
	KANSAS	Dodge City	A-E	Goodland	A-E				
	KENTUCKY	Topeka	<u>A-r</u>	Louisville	A-F				
	LOUISIANA	Baton Rouge	A-G	Lake Charles	A-G				
	MAINE	New Orleans	A-G	Shreveport	A-G				
		Caribou	A-E	Portland	A-F				
(MARYLAND	Baltimore	A-F						
	MASSACHUSE	ETTS Boston	A-F						

TABLE 1a (Contd.): LOCATIONS TABLE (USA)						
STATE	СІТУ	ACCEPT- ABLE	СІТҮ	ACCEPT- ABLE		
		CLASSES		CLASSES		
MICHIGAN	Alpena	A-F	Detroit	A-F		
	Flint	A-F	Grand Rapids	A-F		
	Sault Ste. Marie	A-E				
MINNESOTA						
	Duluth	A-E	International Falls	A-D		
	Minneapolis	A-E	Rochester	A-E		
MISSISSIPPI						
	Jackson	A-G	Meridian	A-H		
MISSOURI						
	Columbia	A-F	Kansas City	A-F		
	Springheid	A-F	St. Louis	А-Г		
MONTANA	Dillings	AE	Classon	AE		
	Great Falls	A-E	Helena	A-E A-F		
	Miles City	A-E	Missoula	A-F		
NEBRASKA						
	Grand Island	A-E	North Platte	A-E		
	Omaha	A-F	Scottsbluff	A-E		
NEVADA						
	Elko	A-F	Ely	A-E		
	Las Vegas	A-H	Reno	A-G		
_	winnemucca	A-F		_		
NEW HAMPS	HIRE					
	Concord	A-F				
NEW JERSEY						
	Newark	A-F				
NEW MEXICO)					
	Albuquerque	A-G	Clayton	A-F		
	Roswell	A-U				
NEW YORK	Albanu	AE	Duffele	AE		
	New York	A-F	Rochester	A-E A-E		
	Syracuse	A-E				
NORTH CARO	LINA		- · · · · · · · · · · · · · · · · · · ·			
	Asheville	A-G	Cape Hatteras	A-G		
	Charlotte	A-G	Greensboro	A-G		
	Raleigh	A-G				
NORTH DAKC	TA		-			
	Bismarck	A-E	Fargo	A-D		
оніо	A1		Charles 1			
	Akron	A-F	Cincinnati	A-F		
	Davton	A-F	Toledo	A-F		
	Youngstown	A-F	2.45000000000000000000000000000000000000			
OKLAHOMA			2			
	Oklahoma City	A-F	Tulsa	A-F		
OREGON						
	Astoria	A-G	Medford	A-G		
	Portland	A-G	Salem	A-G		
PENNSYLVAN	IIA					
	Allentown	A-F	Avoca	A-F		
	Erie Philadalahia	A-F	Harrisburg	A-F		
	Finiadelphia	A-F	i ittsouigii	M-L		
RHODE ISLA	ND Providence	AE				
	Fiovidence	A-r				
SOUTH CARC	Charleston		Columbia	10		
	Charleston	A-U	Columbia	A-U		
SOUTH DAKC	DIA Huror	AE	Papid City	AF		
	Sioux Falls	A-E	Rapid City	A-E		
TENNESSEE						
LENNESSEE	Chattanooga	A-G	Knoxville	A-G		
	Memphis	A-G	Nashville	A-G		

(

TABLE 1a (Contd.): LOCATIONS TABLE (USA)							
STATE	€.€⊒¥	ACCEPT- ABLE CITY CLASSES		ACCEPT- ABLE CLASSES			
TEXAS							
	Abilene	A-F	Amarillo	A-F			
	Austin	A-G	Brownsville	A-F			
	Corpus Christi	A-F	Del Rio	A-G			
	ElPaso	A-H	Forth Worth	A-F			
	Houston	A-G	Lubbock	A-G			
	Midland Odessa	A-G	Port Arthur	A-G			
	San Angelo	A-G	San Antonio	A-G			
	Waco	A-F	Wichita Falls	A-F			
UTAH							
	Salt Lake City	A-F					
VERMONT							
	Burlington	A-E					
VIRGINIA							
	Norfolk	A-G	Richmond	A-G			
	Roanoke	A-G					
WASHINGTO	N						
	Olympia	A-G	Seattle	A-G			
	Spokane	A-F	Yakima	A-G			
WEST VIRGI	VIA						
	Charleston	A-G					
WISCONSIN							
	Green Bay	A-E	La Crosse	A-E			
	Madison	A-E	Milwaukee	A-E			
WYOMING							
	Casper	A-E	Cheyenne	A-E			
	Sheridan	A-F					
DISTRICT OF	COLUMBIA						
2.51.101	Washington	A-G					

TABLE 1b: LOCATIONS TABLE (CANADA)							
PROVINCE	ACCEPT- CITY ABLE CITY CLASSES		СІТУ	ACCEPT- ABLE CLASSES			
ALBERTA							
	Calgary	A-E	Edmonton	A-D			
BRITISH COL	UMBIA						
	Fort St. John	A-D	Prince Rupert	A-F			
	Vancouver	A-G	Victoria	A-G			
	Williams Lake	A-E					
MANITOBA							
	Thompson	A-D	Winnipeg	A-D			
NEW BRUNS	WICK						
	Saint John	A-E					
NEWFOUND	AND						
	St. John's	A-D	Stephenville	A-E			
NORTHWEST	TERRITORIES						
	Frobisher Bay	A-C					
ONTARIO							
	Kapuskasing	A-D	Ottawa	A-E			
	Sault Ste. Marie	A-E	Thunder Bay	A-E			
	Toronto	A-E	Windsor	A-F			
PRINCE EDW	ARD ISLAND						
	Charlottetown	A-E					
OUEBEC							
2	Montreal	A-E	Quebec	A-E			
SASKATCHE	VAN						
	Regina	A-D	Saskatoon	A-D			

 IDD_c = the cooling season infiltration degree-days (°F-day) [°C-day]

Heating (season) infiltration degree-days are compiled for every hour in which the dry-bulb temperature is below the (heating) base temperature:

$$IDD_{h} = \frac{1}{24} \sum_{hours}^{T < T_{bh}} \frac{s}{s_{o}} (T_{bh} - T)$$
(5)

where:

T = the (hourly) dry-bulb temperature (°F) [°C]

 T_{bh} = the (heating) base temperature (°F) [°C]

s = the specific infiltration (ft/min) [m/s]

 $s_o =$ is the typical specific infiltration (ft/min) [m/s]

The specific infiltration is to be calculated using the following equation:

$$s = \sqrt{f_w^2 v^2 + f_s^2 |T_{in} - T|}$$
(6)

- where
 - v = the hourly wind speed measured at 20 ft height (ft/m) [m/s]

 T_{in} = a typical average interior temperature (°F) [°C] f_s , f_w are constant form factors (See below).

Cooling (season) infiltration degree days are compiled for every hour in which the dry-bulb temperature is above the (cooling) base temperature *and* the enthalpy is greater than base enthalpy.

$$IDD_{c} = \frac{1}{24C_{p}} \sum_{hours}^{H \circ H_{b}} \frac{s}{s_{o}} (H - H_{b})$$
(7)

where:

 C_p = the heat capacity of air

 T_{bc} = the (cooling) base temperature (°F) [°C]

H = the (hourly) enthalpy (Btu/lb) [J/kg]

 H_b = the base enthalpy (Btu/lb) [kJ/kg]

The following constants are to be used in the above expressions:

 $C_{p} = 0.245 \text{ Btu/lb-°F} (1.024 \text{ kJ/kg-°C})$ $T_{in} = 72 \text{ °F} (22.2 \text{ °C})$ $T_{bh} = 65 \text{ °F} (18.3 \text{ °C})$ $T_{bc} = 78 \text{ °F} (25.6 \text{ °C})$ $H_{b} = 28 \text{ Btu/lb} (65 \text{ kJ/kg})$ $s_{o} = 140 \text{ ft/min} (0.71 \text{ m/s})$ $f_{w} = 0.132 \text{ [dimensionless]}$

 $f_s = 17.6 \text{ ft/min} - {}^{\circ}F^{\frac{1}{2}} (0.120 \text{ m/s} - \text{K}^{\frac{1}{2}})$

7.0 REFERENCES

¹ ASTM E741-83, Standard Test Method for Determining Air Leakage Rate by Tracer Dilution, American Society for Testing and Materials, 1983.

² ASTM E779-87, Standard Test Method for Determining Air Leakage Rate by Fan Pressurization, American Society for Testing and Materials, 1987.

³ CAN/CGSB-149.10-M86, Standard for Determination of Airtightness of Buildings by the Fan Depressurization Method, Canadian General Standards Board, 1986.

⁴ ASTM E631-87, Standard Terminology of Building Constructions, American Society for Testing and Materials, 1987. This Appendix is not part of this Standard but is provided for information purposes only.

APPENDIX A

BIBLIOGRAPHY

1. Exegesis of ASHRAE Standard 119, "Air Leakage Performance for Detached Single-Family Residential Buildings," BTECC/DOE Air Infiltration and Ventilation Symposium Proceedings, Building Thermal Envelope Coordinating Council, 1015 15th Street, NW, Suite 700, Washington, DC 20005, December 1986.

This Appendix is not part of this Standard but is provided for information purposes only.

APPENDIX B

WEATHER DATA

The Locations Table (Table 1) was calculated using weather data from three sources: WYEC, TMY, and 10-year average data. When more than one source of acceptable data existed for a specific location, TMY was used in preference to 10-year average, and WYEC was used in preference to them both. In the preparation of the Locations Table, IDDs and specific infiltration were calculated as intermediate results. Table B1 contains the infiltration degree-days for those sites listed in Table 1. Table B1 also contains the specific infiltration for each location averaged over the hours in which there are non-zero IDDs.

Fig. 1 displayed acceptable leakage classes to be used when specific weather data for locations not in Table 1 is lacking. Fig. 2 has plotted the location of each city (indicating the weather source) and the interpolated lines of IDDs at the class boundaries.

VENTILATION RECOMMENDATIONS

Although ASHRAE Standard 62 is to be considered as the reference for determining the sufficiency of ventilation, this appendix can be used to help *estimate* the contribution of *infiltra-tion* toward meeting ventilation requirements.

For structures in Classes A-C, infiltration will almost never be sufficient to achieve adequate indoor air quality; specific mechanical ventilation will probably be required at all times (in which the windows are closed). For structures in Classes D-F, infiltration may or may not be sufficient depending on circumstances; mechanical ventilation may be required in some cases, but existing intermittent mechanical ventilation (i.e., bathroom/kitchen exhaust fans) may be sufficient. For structures in Classes G-J, infiltration will normally be sufficient to meet ventilation requirements; additional mechanical ventilation will usually not be required. It is important to remember than when infiltration is the key mechanism for supply ventilation, window opening during periods of low driving forces will be necessary for adequate indoor air quality. Even if the average ventilation rate over the season is adequate to supply all ventilation needs, extended periods of low temperature difference may not supply sufficient ventilation. Thus, for all leakage classes and in all climates, there will be times when infiltation is insufficient to meet ventilation requirements, unless natural ventilation (i.e. window openings) or mechanical ventilation is used to augment the infiltration.

ESTIMATION OF AVERAGE AIR CHANGE RATES

This appendix gives a technique for the estimation of air exchange rates from normalized leakage values and climate. These air exchange rates are seasonal average ones based on the average climate; instantaneous values of air exchange may differ quite radically from the averages calculated herein. Several assumptions concerning the structure and the climate have been incorporated into these calculations. The results in this section assume a typical structure that is typically shielded from a typical 4 m/s wind; these factors can easily vary by a factor of two.

The following numerical *rule-of-thumb* may be useful for estimating seasonal average infiltration rates for buildings in which the climate is unknown:

$$ACH \approx L_n$$
 (A1)

If weather data is available and it is possible to construct a specific infiltration averaged over the time period of interest, the mean air change rate due to infiltration alone can be approximated by the following expression:

$$ACH = \frac{s}{s_o} L_n \tag{A2}$$

If more detailed estimates are required, the literature should be consulted for an appropriate infiltration model. **INFILTRATION DEGREE DAY SITES**

ANSI/ASHRAE STANDARD 119-1988

 ∞

	Т	ABLE B.1a: LOCATIO	NS DATA (USA)		
CITY, STAT	INFILTRATION	DEGREE-DAYS	SPECIFIC IN	FILTRATION	DATA
A	IDD ["r-days]	IDD [°C-days]		s [m/s]	SUURCE
Annette, AK	8369	4649	151	0.77	IMY
Beinel, AK	19861	1033	168	0.95	
Big Delta, AK	19263	10/01	100	0.85	
Fairbanks, AK	16609	9227	140	0.71	
Gulkana, AK	15483	8601	14/	0.74	IMY
Homer, AK	10382	5767	132	0.67	IMY
Juneau, AK	10175	5652	147	0.74	TMY
King Salmon, AK	15233	8462	171	0.86	TMY
McGrath, AK	16740	9300	140	0.71	TMY
Nome, AK	18364	10202	172	0.87	TMY
Yakutat, AK	10038	5576	141	0.71	TMY
Birmingham, AL	4468	2482	108	0.55	WYEC
Mobile, AL	4480	2488	128	0.65	TMY
Montgomery, AL	4463	2479	114	0.58	TMY
East Smith AB	6009	2227	107	0.64	TMV
FOR Smith, AK	6023	3376	127	0.64	WVFC
Little Kock, AK	0025	5540	117	0.39	WILC
Phoenix, AZ	3305	1836	100	0.51	WYEC
Tucson, AZ	3093	1718	125	0.64	TMY
Winslow, AZ	5443	3023	136	0.69	TMY
Yuma, AZ	4264	2368	128	0.65	TMY
Bakersfield. CA	2600	1444	110	0.56	TMY
Fresno, CA	3103	1723	110	0.56	TMY
Los Angeles CA	1698	943	117	0.59	WYEC
Mount Shasta CA	5801	3777	128	0.65	TMV
Oakland CA	20/3	1625	120	0.65	TMV
Dad Dluff CA	2745	2109	120	0.05	TMV
Red Bluff, CA	1129	2106	134	0.00	TMY
San Diego, CA	1128	020	1203	0.52	
San Francisco, CA	3092	2051	140	0.74	IMY
Santa Maria, CA	2801	1556	108	0.55	IMY
Colorado Springs, CO	7793	4239	156	0.79	TMY
Denver, CO	6806	3781	135	0.69	WYEC
Grand Junction, CO	6073	3373	133	0.67	TMY
Pueblo, CO	6229	3460	139	0.71	TMY
Hartford CT	7881	4378	143	0.72	TMY
Wilmington DE	6004	2974	145	0.74	TMY
winnington, DE	0804	3024	140	0.74	1 141 1
Apalachicola, FL	4670	2594	104	0.53	TMY
Daytona, FL	4266	2370	127	0.64	TMY
Jacksonville, FL	4501	2500	126	0.64	TMY
Miami, FL	5906	3281	113	0.57	WYEC
Orlando, FL	4593	2551	126	0.64	TMY
Tallahassee, FL	3633	2018	95	0.48	WYEC
Tampa, FL	4629	2571	113	0.57	WYEC
W. Palm Beach, FL	5910	3283	132	0.67	TMY
Augusta, GA	4618	2565	121	0.61	TMY
Atlanta, GA	4906	2725	119	0.61	WYEC
Macon GA	4453	2473	124	0.63	TMV
Savannah, GA	4387	2437	125	0.63	TMY
		/	145	0.03	
HIIO, HI	1767	981	110	0.56	TMY
Honolulu, HI	3626	2014	155	0.79	TMY
Lihue, HI	3200	1777	146	0.74	TMY
Des Moines, IA	9149	5082	142	0.72	WYEC
Sioux City, IA	10560	5866	165	0.84	TMY
Boise, ID	6746	3747	135	0.69	WYEC
Lewiston, ID	5643	3135	124	0.63	TMY
				0.00	
Chicago, IL	8781	4878	150	0.76	WYEC
Moline, IL	8634	4796	152	0.77	TMY
Springfield, IL	8382	4656	160	0.81	TMY
Evansville, IN	6326	3514	132	0.67	TMY
Fort Wayne, IN	8427	4681	155	0.79	TMY
Indianapolis, IN	7913	4396	137	0.69	WYEC
South Bend IN	8257	4587	150	0.76	TMY

(

	TABL	E B.1a (Contd.): LOCA	ATIONS DATA (U	SA)	
CITY, STATE	INFILTRATION	DEGREE-DAYS	SPECIFIC IN	FILTRATION	DATA
	IDD [°F-days]	IDD [°C-days]	s [ft/min]	s [m/s]	SOURCE
Dodge City, KS	9025	5013	177	0.90	WYEC
Goodland, KS	9366	5203	177	0.90	TMY
Topeka, KS	8214	4563	149	0.75	ТМҮ
Lexington, KY	6493	3607	140	0.71	TMY
Louisville, KY	6574	3652	138	0.70	TMY
Baton Rouge, LA	4692	2606	120	0.61	TMY
Lake Charles, LA	5324	2957	122	0.62	WYEC
New Orleans, LA	4652	2584	122	0.62	TMY
Shreveport, LA	534/	2970	129	0.05	I MI Y
Boston, MA	8472	4706	162	0.83	WYEC
Baltimore, MD	6570	3650	138	0.70	TMY
Caribou, ME	12550	6972	163	0.83	TMY
Portland, ME	8585	4769	136	0.69	WYEC
Alpena, MI	8805	4891	132	0.67	TMY
Detroit, MI	8624	4791	141	0.72	WYEC
Flint, MI	8930	4964	151	0.705	IMY
Grand Rapids, MI	6/93	4885	151	0.77	TMT
Sault Ste. Marie, Mi	11515	0205	150	0.70	Thir
Duluth, MN	12515	6952	158	0.80	TMY
Minneapolis MN	13200	/3/U 6033	158	0.80	WVEC
Rochester, MN	11663	6479	171	0.86	TMY
Columbia MO	7507	4170	140	0.75	TM
Columbia, MO	7507	4170	148	0.75	IMY
Springfield MO	7539	4158	158	0.80	TMY
St. Louis, MO	7793	4329	136	0.69	WYEC
Jackson MS	4896	2710	121	0.61	TMV
Meridian, MS	4399	2443	112	0.57	TMY
Billings MT	10376	5764	176	0.89	TMY
Glasgow, MT	11597	6442	165	0.84	TMY
Great Falls, MT	10878	6043	175	0.89	WYEC
Helena, MT	8915	4952	144	0.73	TMY
Miles City, MT	9959	5532	154	0.78	TMY
Missoula, MT	7577	4209	125	0.64	TMY
Asheville, NC	5421	3011	127	0.64	TMY
Cape Hatteras, NC	5525	3069	157	0.80	IMY
Greenshoro NC	4339	2321	123	0.62	TMY
Raleigh, NC	5103	2835	116	0.59	WYEC
Bismarck ND	12419	6899	161	0.82	WYEC
Fargo, ND	13896	7720	179	0.91	TMY
Grand Island NE	10175	5652	172	0.87	TMY
North Platte, NE	9200	5111	154	0.78	TMY
Omaha, NE	8950	4972	144	0.73	WYEC
Scottsbluff, NE	9374	5207	161	0.82	TMY
Concord, NH	8240	4577	129	0.66	TMY
Newark, NJ	6799	3777	149	0.75	ТМҮ
Albuquerque, NM	4854	2696	126	0.64	WYEC
Clayton, NM	7206	4003	174	0.88	TMY
Roswell, NM	4989	2771	139	0.71	TMY
Elko, NV	7147	3970	123	0.62	TMY
Ely, NV	9432	5240	155	0.78	TMY
Las Vegas, NV	3524	1957	138	0.70	WYEC
Keno, NV	5929	3293	124	0.63	TMY
winneniucca, ivv	1060	2033	130	0.09	IMI
Albany, NY	8185	4547	141	0.72	TMY
Burraio, NY New York NV	9840 7518	2466 4176	1/4	0.88	IMY
Rochester, NY	9437	5242	152	0.79	TMY
Syracuse, NY	9047	5026	152	0.77	TMY

)

)

1.

.

	TABLI	E B.1a (Contd.): LOC.	ATIONS DATA (US	SA)	
CITY, STATE	INFILTRATION IDD [°F-days]	DEGREE-DAYS IDD [°C-days]	SPECIFIC IN s [ft/min]	FILTRATION s [m/s]	DATA SOURCE
Akron, OH	8118	4510	151	0.77	TMY
Cincinnati, OH	6756	3753	143	0.72	TMY
Cleveland, OH	8579	4766	151	0.77	WYEC
Columbus, OH	7328	4071	144	0.73	TMY
Dayton, OH	7681	4267	139	0.71	WYEC
Toledo, OH	8570	4761	149	0.76	TMY
Youngstown, OH	8688	4826	154	0.78	TMY
Oklahoma City, OK	7761	4311	156	0.79	WYEC
Tulsa, OK	7665	4258	150	0.76	TMY
Astoria OR	5025	2701	130	0.66	TMY
Medford OR	4721	2622	106	0.54	WYEC
Portland, OR	4860	2700	124	0.63	WYEC
Salem, OR	5027	2792	127	0.64	TMY
Allentown DA	7941	1256	147	0.75	TMV
Anentown, PA	7641	4330	147	0.75	TMY
Frie PA	8843	4200	167	0.85	TMY
Harrisburg PA	6470	3594	132	0.67	TMY
Philadelphia PA	6917	3842	146	0.74	TMY
Pittsburgh, PA	7462	4145	136	0.69	WYEC
Providence, RI	7679	4266	149	0.76	ТМҮ
Charleston, SC	5072	2817	122	0.62	WYEC
Columbia, SC	4635	2575	117	0.59	TMY
Huron, SD	12605	7002	174	0.88	TMY
Rapid City, SD	10143	5635	168	0.85	TMY
Sioux Falls, SD	11326	6292	171	0.87	TMY
Chattanooga, TN	5102	2834	114	0.58	TMY
Knoxville, TN	5042	2801	121	0.61	TMY
Memphis, TN	5931	3295	134	0.68	TMY
Nashville, IN	5607	3115	119	0.01	WIEC
Abilene, TX	6655	3697	165	0.83	TMY
Amarillo, TX	7274	4041	164	0.83	WYEC
Austin, TX	5652	3140	133	0.67	TMY
Brownsville, TX	8193	4551	138	0.70	WYEC
Corpus Christi, 1X	8128	4515	146	0.74	IMY
Del Kio, I X	3524	3008	143	0.72	WVEC
El Paso, IA Fost Worth TV	5055	2010	120	0.03	WVEC
Houston TV	6180	3/38	139	0.70	TMV
Lubbock TX	6150	3416	160	0.81	TMY
Midland Odessa TX	4957	2743	154	0.78	TMY
Port Arthur, TX	5449	3027	133	0.67	TMY
San Angelo, TX	5084	2824	141	0.72	TMY
San Antonio, TX	5138	2854	122	0.62	WYEC
Waco, TX	6916	3842	147	0.75	TMY
Wichita Falls, TX	7358	4087	158	0.80	TMY
Salt Lake City, UT	6632	3684	138	0.70	WYEC
Norfolk, VA	5829	3238	147	0.74	TMY
Richmond, VA	5119	2843	123	0.62	TMY
Roanoke, VA	5552	3084	131	0.66	TMY
Burlington, VT	9319	5177	145	0.74	ТМҮ
Olympia, WA	5299	2943	122	0.62	TMY
Spokane WA	2011	3220	130	0.09	TMV
Takima, WA	5997	3331	128	0.65	TMY
Green Bay, WI	10434	5796	155	0.78	ТМҮ
La Crosse, WI	9220	5122	147	0.74	TMY
Madison, WI	9785	5436	143	0.72	WYEC
Milwaukee, WI	9855	5475	166	0.84	TMY
Charleston, WV	5294	2941	116	0.59	ТМҮ
Casper, WY	11511	6395	193	0.98	TMY
Cheyenne, WY	10503	5835	174	0.88	WYEC
Sheridan, WY	8523	4735	140 \	0.71	TMY

ANSI/ASHRAE STANDARD 119-1988

(

÷

6.

TABLE B.1a (Contd.): LOCATIONS DATA (USA)						
CITY, STATE	INFILTRATION	DEGREE-DAYS	SPECIFIC IN	FILTRATION	DATA	
	IDD [°F-days]	IDD [°C-days]	s [ft/min]	s [m/s]	SOURCE	
Washington, DC	6341	3522	133	0.67	WYEC	
Calgary, ALB	11269	6260	151	0.77	10 Year	
Edmonton, ALB	13109	7282	144	0.73	WYEC	
Fort St. Joh, BC	12921	7178	147	0.74	10 Year	
Prince Rupert, BC	7668	4260	140	0.71	10 Year	
Vancouver, BC	5405	3002	123	0.62	WYEC	
Victoria, BC	4922	2734	107	0.54	10 Year	
Williams Lake, BC	10016	5564	132	0.67	10 Year	
Thompson, MAN	16350	9083	143	0.72	10 Year	
Winnipeg, MAN	14758	8198	166	0.84	WYEC	
Saint John, NB	10949	6082	155	0.79	10 Year	
St. John's, NF	13544	7524	196	0.99	10 Year	
Stephenville, NF	12118	6732	170	0.86	10 Year	
Frobisher Bay, NWT	25705	14280	185	0.94	10 Year	
Kapuskasing, ONT	13968	7760	144	0.73	10 Year	
Ottawa, ONT	10216	5675	133	0.67	10 Year	
Sault Ste. Marie, ONT	11295	6275	165	0.84	10 Year	
Thunder Bay, ONT	11835	6575	135	0.69	10 Year	
Toronto, ONT	9246	5136	137	0.69	WYEC	
Charletteterum DEL	11420	4981	162	0.82	10 Tear	
Montreal, QUE	10496	5831	143	0.72	WYEC	
Quebec, QUE	11697	6498	140	0.71	10 Year	
Regina, SAS	14752	8195	170	0.86	10 Year	
Saskatoon, SAS	13605	7558	154	0.78	10 Year	

)

)