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Variations of the SIMPLE method of Patankar and Spalding have been widely used 
over the PQSt decade to obtain numerical solurions to problems involving incompres· 
sible flows, The presenr paper shows several modifications to the method which both 
simplify its implementarion and reduce solution cosrs. The performances of SIMPLE, 
SIMPLER •. and SIMPLEC (the present method) are compared for two recirculllring 
flow problems. 

The paper is addressed to readers who already have experience with SIMPLE or its 
varianrs. 

INTRODUCTION 

Many problems of practical interest require the numerical simulation of two· or 
three-dimensional, elliptic, incompressible fluid flows, and numerical methods of treating 
such problems have evolved rapidly over the last two decades. In the early simulation 
methods vorticity and stream function were usually the calculated variables, but a steady 
increase in the use of primitive variables has prevailed. The Los Alamos group led the way 
with development of explicit transient algorithms such as MAC [l] and SMAC [2]. 
Implicit methods were attractive as a means of avoiding restrictions on the explicit time 
step, but in 197'2 Roache concluded [3] that "no successful implicit formulation has yet 
been achieved." The SIMPLE algorithm of Patankar and Spalding [4], which appeared 
in the same year, not only provided a remarkably successful implicit method, but has 
dominated for a decade the field of numerical simulation of incompressible flows. A clear 
and detailed description of SIMPLE, together with the improvements that have evolved 
since 1972, has been provided by Patankar [5, 6]. 

As with any other algorithm, the application of SIMPLE is not without its diffi
culties and questions. The problems that have arisen in numerous applications of SIMPLE· 
type methods over the last several years have forced the present authors to confront 
some of these issues. These experiences have led to the development of improved meth
ods which a limited circle of other users have found useful. The writing of the present 
paper was undertaken with the goal of making a wider audience aware of some alterna
tives that may prove useful to them as well. 

The approach adopted in writing this paper assumes that the reader has an intimate 
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NOMENCLATURE 

a, b, c, d. e, f coefficients of finite·volume ' ' u,u velocity corrections 
equations x,y Caitesian coordinates 

A 31ea of a control-volume face ll< under-relaxation factor 
B,C coefficients in boundary condi- °'P under-relaxation factor for 

tions [Eq. (26)] pressure 
d pressure coefficient [Eqs. (15b) 'Y residual reduction factor 

and (24b)] r diffusion coefficient 
E time step multiple At time step 
p pressure At* reference time interval 
p• best estimate of pressure AV volume of control volume 
p' pressure correction (equals area for two-dimensional , residual problem) 
s source term /J densitY 
Sc constant part of line31ized q, general dependent variable 

source term q,o best estimate of .P 
Sp coefficient of Q>p in linearized 

source term [Eq. (2)] 
s average value of source term Subsripu 

over control volume 
u,u velocitY components inx andy e, n, s. w control-volume faces (Fig. 1) 

directions E,N,P,S, W grid points (Fig. 1) 
u• . u• velocities based on p• nb neighbor grid point 

familiarity with Patankar's writings [5, 6]. His notation has been used throughout, and 
only the material that bears directly on developments in this paper has been reproduced. 
Taken by itself, this paper appears to deal with a somewhat disconnected sequence of 
topics. 

Two points, however, are worthy of mention. First, although this paper is focused 
on SIMPLE-like methods, some of the ideas advanced may be fruitfully adopted in 
methods that are quite different from SIMPLE. To avoid confusion, none of these appli
cations is discussed. Second, an undercurrent of concern for problems related to round
off runs through the paper. This stems from the authors' use of single precision on IBM 
machines. These problems do not arise as frequently for users of computers that carry 
more significant figures. 

It seems likely that SIMPLE and its variants will continue to enjoy widespread use 
and to evolve. The contributions of this paper are not intended to be the "final word" 
on SIMPLE, but rather to represent a stage in its continuing development. 

FORMULATION OF THE q, EQUATION 

The General <P Equation 

The differential equations expressing conservation of momentum, energy, concen
tration, etc., in two dimensions can be written in Cartesian coordinates in the general 
form 

- (p</J) + - (pu<P) + - (pv<P) = - r - + - r - + s a a a a ( a"' ) a ( a"' ) 
at ax ay ax ax ay ay (!) 
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Under steady conditions the leading term would vanish. Patankar (5, 6] discusses each 
temi' in. such equations, as well as the application of boundary conditions. 

To solve the reJ.evant equations by a finite-volume method, a grid is first generated 
to cover the domain of interest A typical control volume· within such a grid is denoted 
by the shaded area in Fig. ld'. Equation (1) is integrated over this volume, and each term 
in the resulting integral balance is approximated in terms of the discrete values of rp at 
the nodal points (i.e., of P, E, N, etc.). The average value of the source term over the 
volume Sis approximated by the linear relation 

S =Sc +Sp</Jp (2) 

The algebri.ic appro'ximation of the integral balance for the P ~ontrol volume in Fig. Ia 
becomes 

(3a) 

or more simply 

{3b) 

where the summation is over the appropriate neighbor points . The coefficient ap is 
given by 

(4) 

A similar equation applies for each control volume in the grid. Details related to the 
derivation, the application of boundary conditions, the treatment of nonlinearities, etc., 
have been provided by Patankar (5, 6]. 

Nonlinearity and Under-Relaxation 

The form of Eq. (3) implies that these equations are linear.' In fact, the coefficients 
of Eq. (3) may themselves depend on the solution for any one or more of the dependent 
variables represented by rp. 

To accourit for the resulting inter~quation linkages and nonlinearities. repeated 

(o) ( b) ( c) 

Fig. 1 Section of a Cartesian grid showing placement of control-volume bowularies. 
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solutions of the nominally linear fonn of Eq. (3) are required. Each of these solutions is 
defined herein as a "cycle." At the begu:ming of each cycle. the coefficients are evaluated 
using the cf> values obtained in the previous cycle. With the. cycle-by,yde change in coeffi
cients of Eq. (3). the resulting changes in the ¢ .values can be quite large, and this may 
cause slow convergence or even divergence. To moderate the changes in consecutive 
solutions for¢, and thereby improve convergence, under-relaxation is introduced. 

P:nankar (5, 6] introduces · under-relaxation into Eq. (3) through o: as follows : 

(5) 

where ¢i is the value of c/>p from the previous cycle. 
Recommendation 1: The £-factor formulation. The first recommendation , although 

superficially trivial, is to rewrite Eq. (5) as 

( I) . aP 0 
ap 1 + E c/>p = :: anbcf>nb + b TE </Jp 

The transformation that relates Eqs. (5) and (6) is 

E 
0:=1+£ or £=-0:-

1 -ex 

(6) 

(7) 

Why bo ther co implement a change that leaves the equations to be solved alge· 
braically equivalent? The primary reason is that E is capable of direct physical interpre · 
ra tion. Equa tion (6) is precisely the equation that results when the transient tenn is re· 
rained in Eq. (I), so that the solution of Eq. (6) advances ¢ through a time mp ~c which 
is proportional ro the reference time interval !::.!*. i.e.. ' 

t:..t=E t:..t• 
/) .::.v 

where flt* = -
ap 

(8) 

.. .. . Tfle reference time interval is related to the times required to respectively diffuse and 
' · · ·: convect a change of <ti across the control volume, and is an important scaling parameter in 

· "the discrete · problem. Values of the time step multiple£ of unity or less cause !::..t to lie 
jn the range required for stability in an explicit solution for rp. Because the present im
plicit method has been adopted in the hope of speeding convergence, values of Ewell in 
excess of unity are clearly desirable. Values of£ in the range of 4 to 10 are common. 

In general, the value of t:..t* will change from one control volume to the next. If 
·a co·nstant £ is used , ¢ will be advanced nonuniformly in time across the grid. Further

. .. .,.'.more,. -the value of !::.!* and the E value selected may also be different for different 
.. dependent variables. causing them to be advanced at different rates. Such distortions of 

' the transient are often desirable as a means of accelerating convergence (7, 8] . 
The solution obtained for Eq. (6) can therefore be interpreted as an advancement 

of <P through one time step. Temporal development is so familiar that this interpretation 
is helpful, even when the time evolution is distorted. As already mentioned, Eq. (5) is 
algebraically equivalent, but now a bears a nonlinear relation to the time step. TI1e 

'ifT ~·; . . .. . 
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range of E that is of interest in implicit methods represents a narrow range of ex com
pressed near unity. The extra step required to interpret such cx's in terms of the time 
advancement is undesirable, and can be avoided by using the £-factor formularion. 

SOLUTION FOR PRESSURE AND VELOCITY 

Treatment of the Pressure-VelocitV Coupling 

Review of the SIMPLE method. The main purpose of the present paper is to make 
several recommendations related to the solution for pressure and the velocities. To record 
the equations that will be needed later, a brief review of the SIMPLE method is neces
sary . Details that are omitted here may be found in the original references [5, 6]. 

Using the staggered grid shown in Fig. 1, b and c. the finite-volume equations for 
u and u, respectively .• have the form of Eq. (6). Rewriting the u-momentum equation for 
the control volume centered at e to explicitly show the pressure term 

(9) 

where p is pressure. Ae is the area of the face of the P control volume at e. and 

(10) 

The Se in Eq. (10) is the coefficient of Ue in the linearized source term [see Eq. (2)]. For 
any guessed pressure distribution p*, the u* velocities obtained by solving the u-momen
tum equations [like Eq. {9)] satisfy 

(11) 

The u velocities obtained from Eq. (9) using the correct (but generally unknown) pressure 
distribution p would satisfy the continuity condition, while the u* velocities from Eq. 
{l l) in general violate this constraint. Correction of the guessed pressure by p' = p - p* 
is therefore 'necessary to correct the u* field by u' = u - u*. The relation between p' and 
u' is obtained by subtraction of Eq. (11) from Eq. (9): 

(12) 

The pressure p and velocity u that satisfy both the mass and the momentum constraints 
are 

u =u* +u' 

p =p* +p' 

Attention is now turned to the method used to find p'. 

(13) 

{14) 

The exact equation for p', derived from Eqs. (12) and (13) and the continuity 
constraint, is complicated and unsuitable for economic calculations. The SIMPLE pro
cedure derives a more suitable equation by neglecting the underlined term in Eq. (12). 
Combining the simplified Eq. ( 12) with Eq. ( 13) yields 

·Y a. 

i 
~ 
t 

l 
·t 
'l • ' . ' 
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Ue = u: + de(pP -pf:) 

Ae 
de=-

ae 

The continuity equation [5, 6] for the control volume shown in Fig. la is 

(puA ),.. -(puA)e + (puA)s - (puA)n = 0 

(I Sa) 

(I Sb) 

(16) 

Introducing equations like Eq. (15) for u and u into Eq. (16) leads to 

where aE = (pAd)e aw= (pAd)w 

aN = (pAd)n as = (pAd)s 

ap=aE+aw+aN+as 

b = (pu*A)w -(pu*A)e + (pu*A)s -(pu*A)n 

(17) 

(18) 

(19) 

(20) 

(21) 

The SIMPLE procedure is implemented by executing the following sequence of 
steps [ 5, 6] : 

1. Guess a pressure field p"". 
'"' Evaluate the coefficients of the momentum equations [such as Eq. (11)] and 

solve to obtain u* and u*. 
3. Evaluate the mass source [Eq. (21)] and solve Eq. (17) for p'. 
4. Correct the velocity field, using equations like Eq. (15). Correct the pressure 

field using Eq. (14), with the modification discussed in the following paragraph. 
5. Solve other cp equations; update properties, coefficients, etc. 
6. Using the p found in step 4 as the new p*, return to step 2. Cycle through this 

loop until convergence is achieved . 

To obtain Eq. (15) from Eq. (12) the term ~ anbu~b was neglected. This approxi
~ation results in p' values that are too large, and this in tum causes slow convergence or 
divergence of the cycle outlined above. To remedy this, Patankar recommends under
reiaxation in the momentum equations by employing a::=::: 0.5 (£::::: 1), and under-relaxa
tion of the pressure correction by replacing Eq. {14) by 

(22) 

where a:P :=::: 0.8. 
This completes the review of the SIMPLE method. With the equations recorded for 

easy reference, some recommendations are now made that can dramatically improve the 
economy of the method and simplify its application. 

Recommendation 2: The SIMPLEC approximation. The SIMPLE method just 
described requires the introduction of the relaxation parameter E in the momentum 
equations [e.g., Eq. (9)] and of aP in the pressure correction [Eq. (22)]. The cost of 
obtaining a solution depends critically on how close to their optimal values E and aP have 
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been chosen. The search for the optimal values may, however, be more expensive than 
simply using nonoptimal values. 

The SIMPLEC approximation removes the need for the Ctp under-relaxation. The 
solution cost for any given E with SIMPLEC is roughly equivalent to [or perhaps better 
when source terms like be in Eq. (9) are large] that obtained by using the optimal value 
of aP in the SIMPLE method. The SIMPLEC approximation is now described. 

Since the main approximation in the SIMPLE method is that the 1: anb u~b term in 
Eq. (12) can be neglected, it is appropriate to focus attention on this equation. If the 
pressure p is changed by p', the velocity at e responds by the change u~, while those 
at the neighbor points respond by u~b· These velocity changes will all be of the same 
order. The SIMPLE approximation that 1: anbu~b can be ignored in Eq. (12), while a 
term of similar magnitude on the left-hand side is retained (1: anbu~ appears on the left
hand side w.hen Eq. (IO) for ae is substituted into Eq. (12)], can therefore be viewed 
as inconsistent:· 

To introduce a "consistent" approximation, which still leads to a suitably simple 
expression for p', the term 2: an bu~ is subtracted from both sides of Eq. ( 12 ). This yields 

(23) 

In the SIMPLEC approximation, the underlined term 1: anb(u~b -u~) is neglected; the 
C is appended to the name SIMPLE as a reminder that, in the sense just discussed, this is 
a consistent approximation. Replacing u' by u - u* and adopting the SIMPLEC approxi
mation. Eq. (23) becomes 

(24a) 

where now 

(24b) 

The equations and sequence of steps in SIMPLEC are identical to those in SIMPLE 
with the following exceptions: 

1. The d's are computed from equations such as Eq. (24b) rather than Eq. (15b). 
2. These d's replace the previous d's in the p' coefficients [Eqs. (18) and (19)) and 

in the velocity correction equation [Eq. (24a)]. 
3. p' should not be under-relaxed so that aP = 1 is used in Eq. (22). 

Disamion of SIMPLEC. The changes that are necessary to incorporate SIMPLEC 
into a SIMPLE code are minor, but the consequences can be great. This will be demon
strated in two problems presented in detail at the end of the paper, but it may be helpful 
to preview these results by referring to Figs. 6 and 7. 

When the Sp portions of the source terms [see Eq. (2)) in the momentum equa
tions are zero, the SIMPLEC method becomes identical to the. "consistent time step" 
(PS3) scheme of Raithby and. Schneider (8]. This earlier scheme was derived by con
straining the "time step" implied in the pressure correction to be consistent with the 

. . 
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time step implied in the solution of the momentum equations. This~ requires that,* in 
Eq. (22), 

(25) 

It can be shown that, with this value of C/.p, the values of a.pp' in SIMPLE are identical 
to the corresponding p' values in SIMPLEC:, and that the resulting velocity corrections 
are also identical. 

When the Sp in the momentum equations are nonzero, the SIMPLEC formulation 
should be adopted. SIMPLEC has the property that, when diffusion and advection of 
momentum are negligible compared to the pressure gradient and source terms, the ap· 
proximation introduced inco Eq. (23) that results in Eqs. (24) becomes exact. These 
conditions are approached in the analysis of the flow in heat exchangers, poro us media , 
etc., where the pressure gradient is essentially in balance with drag forces. 

Both the SIMPLE and SIMPLEC methods are appropriate ·for the solution of 
incompressible fluid flow problems for which the predominant factor governing solution 
cost is the pressure-veelocity coupling (8] . In other situations the interaction between 
the turbulence model and the momentum equations. or the interplay of the buoyancy 
forces in the momentum equations with the temperature or concentration, may be the 
factor mainly responsible for slow convergence. In such cases efficient treatment of the 
pressure-velocity coupling becomes ofless consequence. 

Thep ' Equation where Velocity Boundary 
Conditions or Pressure is Prescribed 

In both the SIMPLE and SIMPLEC procedures, the pressure correction p' is used to 
both update the pressure, Eq. (14) or (22), and correct the velocities, Eq. (15) or (24). 
The values of p' are obtained by solving a set of equations, each of which resembles Eq. 
( 17). But before such a solution is attempted, consideration must be given to the treat· 
ment of p' at boundaries where velocities boundary conditions are specified and at 
interior points where pressure is specified. These two topics are addressed in this section. 

''Standard" treatment of p' at boundaries where velocities are prescribed. Suppose 
the boundary condition equation for Ue in Fig. 2b is of the form 

(26) 

where the suitable values of B and C would be selected to impart the desired boundary 
condition. The momentum equations are solved for u* , 1c1sing the corresponding boundary 
condition 

u; =Bu! +C (27) 

where the same B and C are used in Eqs. (26) and (:27). With au* solution that satisfies 
Eq. (27), p' is used to correct u* to u. The boundary conditions on p' should be such 
that the resulting u field satisfies Eq. (26). 

•There was a tYpographic error [ 9] in the original paper ( 8 J • ·i 
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SPECIF'lED 
PRESSURE BOUNDARY 

Fig. 2 Control volumes (a) for which pressure is specified, and 
(b ) for which Ue is related to Uw by a boundary condition. 
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When the boundary velocity is specified (i.e., B = 0 and C = uspecified), a zero 
gradient on p' normal ro the boundary gives the desired result [4] . Patankar [5) has 
since suggested an alternative treatment for th is case which requires no explicit applica· 
tion of a p' boundary condition. The question of how p' should be treated for other 
velocity boundary conditions has not been addressed. Recommendation 3 provides a 
method that uses the velocity boundary conditions, such as Eq. (26), to implicitly assert 
the correct conditions on p'. 

Recommendation 3: Treatment of p' where velocity boundary conditions are 
prescribed. Substitution of the expression for Ue given by Eq. (26) into the continuity 
equation, Eq. ( 16), for the volume centered atP in Fig. lb, yields 

(28) 

The i ' equation that results from the substitution for uw. Us, and Un, using equations such 
as Eq. (24a), is again Eq. (17), but with the following coefficients: -

ae = 0 aw= (pAd)w -(pA)edwB 

aN = (pAd)n as = (pAd)1 

ap =ae +aw +aN +as 

bp = (pu*A)w -(pu*A)e + (pu*A)s -(pu*A)n 

(29) 

(30) 

(31) 

(32) 

Note that, since ae is zero, the influence of pf: on p'p is reduced to zero; that is, no ex· 
plicit boundary condition relating Pe to p'p is required. A similar procedure can be 
repeated for each control volume that has one or more faces lying on a boundary where 
the velocity is prescribed. 

Titis treatment results in coefficients in the p' equations that are dependent on the 
velocicy _boundary conditions. Once appropriate values of B and C in equations such as 
Eq. (26) are specified to convey the proper velocity boundary conditions, the appropriate 
boundary treatment of p' is implicitly assured. 

For the special case of a specified normal velocity at a boundary, the present treat· 
ment results in coefficients of the p' equation that are identical to those which arise when 
Patankar's procedure is followed [SJ . A treatment of boundary conditions similar to that 
described here was proposed independently by Maliska [16] for the solution of the 
equations of motion in non-orthogonal coordinates. 

p' at points where pressure is specified. For incompressible fluid flows, only deriva
tives of pressure enter the equations of motion. If it desired to solve for a unique pressure 
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sure distribution, the pressure level at one point must be specified. (Such a pressure speci
fication can itself significantly affect solution cost, but this is discussed in the following 
section.) In other problems, the flow is driven by a pressure difference that is externally 
imposed so that pressure specification at two or more points is required. At any location 
P where che pressure has a specified value PSPEC (see Fig. 2a), the guessed pressure pp is 
assigned this value. The pressure correction should not alter the pressure from this value 
so that, from Eq. (14), 

(33) 

Recommendation 4: Modification of p' equation at points where pressure is speci
fied. Equation (33) can be applied by modifying the coefficients in Eq. ( 17) for the 
corresponding P node as follows: 

ap= 1 

aE =aw = aN =as = b = 0 

(34a) 

(34b) 

Titis is obvious and straightforward, but such a practice sometimes results in solution 
difficulties due to round-off. These arise when the ap coefficients for the p' equations in 
the neighbor control volumes are much different from unity in magnitude. The recom
mended solution to this problem is to set ap in Eq. (34a) to the same magnirude asap in 
the neighbor control volumes. 

Solution of thep' Equation 

Now that the formulation of the p' equation has been considered in some detail, 
several points related to the solution of this equation set will now be addressed. The 
solution of the p' equation can represent as much as 80% of the total cost of solving the 
fluid flow problem. It is therefore a high priority to solve for p' in an efficient manner. 
The use of direct solution methods tends t0 be unattractive because of large storage 
requirements and computer effort. Extremely fast Poisson equation solvers are available 
(e.g., [10] ), but these are not applicable to the p' equation because of its nonseparable 
form. Furthermore, the coefficients of p' change on each cycle so that other sparse
matrix solvers that are applicable require a new decomposition each time the coefficients 
are updated. Iterative methods such as successive over-relaxation (SOR), Stone's [I I] 
strongly implicit procedure (SIP), and the modified strongly implicit (MSI) method of 
Schneider and Zedan [12] are better suited to this application. Patankar [6] recommends 
a combination of a block correction to lines, followed by line-by-line iterations based on 
the tridiagonal matrix algorithm (TOMA). The latter method has the combined advantage 
of simplicity and low storage requirements. The following section contains a minor varia
tion on Patankar's method which considerably enhances convergence. 

The use of iterative solvers also raises the question of when iter,ation should be 
terminated. This section also proposes a convergence criterion that is particularly suitable 
for the p' equation. 

Recommendation 5: TOMA solver for p'. Equation (17) for p' can be restated as 
follows for solution along a line of constant j: 

(35) 
• I 

r •• 

i 
! 

.i 
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where a;1=ap b1;=ae c;;=aw 

d;; =aN e;; =as /;; = b 

and where i and; denote nodal °locations in the x and y directions. With the dependent 
variables that lie off the line [those in brackets in Eq. (35)] temporarily fixed, a direct 
solution for all the p' values on the line can be obtained with one TDMA application. 
Such a line solution is the basis of an iteration scheme that solves along each ; line and 
then each i line, and repeats the pattern until convergence is achieved. The rate of con
vergence of such a scheme depends crucially on the treatment of the off-line dependent 
variables. 

Suppose that a partially converged p' field, denoted by [p ' ] 0 , has been obtained 
from one or more TDMA-based iterations. In the current iteration Eq. (35) is to be 
solved along each j line, sweeping in the direction of increasing;. On the j line the best, 
available estimate of Pt;- i is that obtained from the just-completed solution along the 
j - I line. This is the off-line value used in Eq. (35). The available estimate of Ptt• i is 
from the previous iteration i.e., [p/1+ il 0 , and substitution of this value into Eq. (35) 
can cause slow convergence. To accelerate convergence an approximation , similar to 
Stone's partial cancellation [ 11] , is introduced. With [p'] BE defined as. a better esti· 
mate of p' 

fp;j+ iJ BE= [p:;+iJ o + (8 - l)(pfj+ l - [p;j+ i} 0 ) 

:>:: [pi;+il 0 + (8 - l )(pi; - [pi;] 0
) 

(36a) 

(36b) 

In these expressions 8 is a relaxation parameter such that for 8 = I [pi;+ iJ BE is taken 
as fFi;+iJ 0

• The approximation in Eq. (36b) is therefore introduced into Eq. (35) to 
obtain 

{a;; -dij(8 - I)}p(; = b1; Pt+ 1; + C;;Pt-1j + d;; {fFt;+ iJ 0 
- (8 :._ l)[p{;J 0 } 

+ e;;Pti-1 + f;; 

A similar estimate is made for solutions along i lines. 

(37) 

Figure 3 illustrates how the cost of obtaining a solution to the p' equation, -to a 
given accuracy, depends on the value of 8 employed. These results were obtained fdt; ·the 
sliding lid problem illustrated in Fig. 4b. Experience to date suggests that, if the aspect 
ratio of the grid is not too far from unity, the optimal constant value of 8 lies in the 
range -1.85-1.95, while 8;;;;. 2 often results in divergence. A conservative value of 8 = 1.85 
is therefore recommended. 

The same solution method can be used for the transport equations. The dependence 
of the rate of convergence on 8 is similar to that illustrated for p'. 

Convergence criteria. If iteration of the p' equation is terminated before sufficient 
convergence is achieved, the continuity constraint is poorly satisfied by the corrected 
velocities. These velocities are later .used to calculate new coefficients, so that the error is 
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Fig. 3 Dependence on the value of o of the number of item· 
tions required to reduce the norm of the error in p' co O. l"i
of its original value. 
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propagared with rhe possible result of divergence or slow convergence. On rhe other hand, 
it is uneconomical and wasteful to drive the p' equation ro a tight convergence each time 
ir is solved. The performance of the enrire solution algorithm depends heavily on the 
criterion used for rerminaring iteration on the p' equation; recommendation 6. in the 
following section, proposes a suitable crirerion. 

TI1e convergence criteria used ro rerminate the irerarive solurion of the momentum 
equarions as well as other scalar equations are usually not so critical. The relaxation 
factor [£ in Eq. (9)] built into the equation specifies the ''time'' through which the 
equation advances the solution. If the equation is not driven to convergence, the solurion 
is roughly equivalent to that for a smaller time advance than is specified. The effect of 
this is usi.;ally harmless. 

\03 PRESSURE 
... u SPE'.CIF'IEO,:r 

"Q. Lp• SPECIFIED AT I .~ 
OJ POSITION SHOWN IN Fig 48 I f . 
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Fig. 4 (a) Reduction of the residual of the p' equation as a function of iteration number with 
and withoutp' specification. The problem is sketched in (b) . 
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( 0) ( b) 

Fig. S Boundary conditions that lead to a redundant pressure equation (a) along a line 
or (b) at a point. 
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Recommendation 6: Convergence a-iteria for the p' equation. If p' is the initial 
(guessed and normally assigned to be zero) p' distribution, the initial value of the Eu
clidean norm of the residuals llr pll 0 is given by 

0 o, o, • o, o, o, 21112 
llrpll = [~ (aEPE + awPw T aNPN + asPs + bp -appp) (38a) 

where the summation is over all interior volumes. After k iterations, the corresponding 
norm llrpllk is 

jlk [~ ( I .J.. I I ' I + b I . 2] 112 llrp = - aEPE · awPw +aNPN -r- asPs P -appp) (38b) 

Iteration is continued until the following criterion is satisfied: 

(39) 

Equation (39) guarantees that iteration has reduced the residual to at least the 
fraction ·l'p of its initial value. Optimal values of the residual reduction factor "tp typi
cally range from 0.25 to 0.05. 

If the solution is driven into a very tight convergence, the values of llrpllo may 
already be near the round-off limits of the machine and Eq. (39) will demand con
vergence to better than round-off: Titis should be avoided by terminating iteration before 
llrpl!k reaches the round-off limit. 

There are two advantages of the proposed criterion. First, the same value of "f P can 
be used for most problems. Titis avoids costly trials to determine a suitable value of the 
convergence criterion. The second is that the number of iterations on the p' equation for 
each cycl~. is roughly the same [ 13] . Some other criteria. such as 

(40) 

where e P is a prescribed tolerance. require too many iterations in the early cycles. and too 
few as the converged solution to the fluid flow problem is approached. The result is 
excessive computer time requirements. Like many others, the criterion given by Eq. (39) 
suffers the disadvantage that computational effort is required to calculate the residuals 

ilrpll· 
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A similar convergence criterion can also be used for the other equations. 
Fixing the level of p'. It was mentioned in the previous section that fixing the 

pressure at a point could significantly affect the solution cost. This and other conse
quences of pressure specifications are now addressed. 

Suppose that in a two-dimensional. constant-density problem all normal velocities 
were specified at the boundaries; these. of course, must be specified in such a way that 
mass is conserved globally. Now, if mass conservation is enforced at all interior control 
volumes except for one, then global mass conservation guarantees satisfaction also for the 
volume at which it was not locally enforced. In fact, the local enforcement of mass con
servation for this volume results in a redundancy in the p' equation· set, which , in turn. 
causes a singular matrix to be encounrered when a direct solver is used. This problem 
arises because the p' equation and its boundary conditions only establish p' w within an 
additive constam; i.e., the level of p' is not fixed. Specification of a value of p' at any 
interior point in place of the continuity constraint establishes the level and removes the 
problem. For further information on this, the reader is referred to a lucid' discussion by 
Patankar [5]. 

Iterative solvers, as opposed rn direct solvers,.may often be successflilly used with
out specifying the level of p'. In fact; by allowing p' to "seek its own level" rather than 
enforcing the level, the convergence rate can be increased [5, 14] . Just how important 
this effect can be is not well appreciaced. To illustrate this, the norm of the error in p' 
(the square root of the sum of the squares of the error, lle~il) is plotted against the 
number of solver iterations for the sliding lid problem [15] illustrated in Fig. 4; the 
solver described in the section 'Solution of the p' Equation' was used. In the first case, 
p' = O was specified at the point shown in Fig. 4b, while in the second, no specification 
was made. The dramatic reduction in the rate of convergence that result~ from the p' 
specification is illustrated in Fig. 4a. 

It is usual to specify the gradient of velocity, rather than velocity itself, at bound· 
aries where the fluid leaves the calculation domain, and this gives rise to quite different 
pressure specification requirements. Suppose in Fig. Sa that ul! = uw is specified on the 
outflow boundary, while v = 0 is prescribed along the ·two boundaries of constant y. 
For the bottom control volume at the outflow boundary, the boundary conditions, 
together with the continuity constraint, dictate (for constant density) that v at the upper 
surface of this control volume is zero. A similar application to each but the uppermost 
volume requires that all the u's be zero so that the continuity constraint· for the top 
volume is redundant. Just as in the previous case, in which the equations established the 
pressure in the full two-dimensional region only to within an additive constant , now the 
pressure along this line can only be determined to within an additive constant. It also 
follows, as before, that a direct solution would fail, but now a line solver applied to this 
line is a direct solver. To apply the TDMA solver along this line would require that one 
of the continuity equations on the line be replaced by a specification of p'. It is interest· 
ing to note that a point-iterative solver would not encounter difficulties. 

In some cases, gradients in the normal velocity are specified as zero along two 
boundaries that intersect. In this case, the boundary conditions make the continuity 
constraint redundant for the doubly shaded control volume in Fig. Sb, which lies at the 
intersection of the boundaries. Unless this redundancy is removed, the TDMA solver 
would fail along either line and a point-iterative solver would fail at the corner volume. 
Replacement of the continuity constraint by a specification of p' at the intersection 
volume is required to remove these solution difficulties. 

... 
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Extension of recommendations to the applicatiQn of SIMPLER. The SIMPLER 
method of Patankar [5, 6] improves upon the method used by SIMPLE to estimate 
the pressure p by solving for a separate equation for pressure. The equation for pressure 
has the ·same coefficients as the p' equation. with the source term alone being different. 
The above recommendations related to the application of boundary conditions and to the 
solution of the p' equation are readily extended to the p equation. Although it is possible 
to extend the SIMPLEC approximation to the SIMPLER procedure, it is not necessary 
since, in SIMPLER, separate pressure-like equations are solved to correct the velocity and 
to estimate the new pressure field. 

Pressure. unlike p', does not vanish as the solution to the equation set is approached. 
For some problems, the authors have experienced convergence difficulties! when solving 
the pressure equation of SIMPLER, '>.'hich were caused by computer round-off. This 
problem can be overcome by rewriting the p equation as a pressure correction equation. 
Not only does this reduce the effect of round-off, but the similarity between this equa
tion and the original p' equation permits the subroutines developed for p' to be directly 

'.· used for:ihe solution of this pressure correction. 

COMPARISON OF SOLUTION METHODS 

For the purpose of demonstrating the applicability of the proposals set forth and 
of evaluating the relative performance of SIMPLE. SIMPLER, and SIMPLEC, two fluid 
flow problems· involving. respectively, an internal confined flow and an external flow are 
considered. The laminar recirculating t1ow of water in a 4 :1 rectangular rank on a 
20 X 10 'grid (see Fig. 6a) was used as the internal flow rest problem. As an external flow 
problem, the laminar flow of air over a rearward-facing step, as shown in Fig. 6b, was 
computed on a 25 X 25 grid. All calculations were carried out on an IBM 4341-Type 1 
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Fig. 6 Geometries for the two comparls~n problems. 
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Fig. 7 Comparison of computational effort to solve two problems using,_ SIMPLE, -_SIMPLER. 
and SIMPLEC. 

computer. using single-precision FORTRAN H·Extended. All the numerical results were 
obtained with the same basic code, so that the TDMA solver, the criteria for terminating 
iteration,, che application of boundary conditions, etc .. were as recommended and only 
the method of treating che pressure-velocity coupling changed. Comparisons are presented 
of the computational efforc requir1~d tO achieve pressures that agree with ·::exact" values 
to within 0.5% of the range of pressure in the probleni. The .. exact" solution was estab
lished, using the same grid and differencing scheme, by driving the s91"1tion to a very 
ti!ilit convergence. _ . ..,, 

w The efforr required for each of the methods to satisfy thevabov~ requirement is 
dependent on a number of pa_rameters including the distoned time step multiple E and 
the residual reduction factor 'Yp. Figure 7, a and b, illustrate the sensitivity of computa
tional effon to E for each method; the residual reduction factors were chosen so that the 
computaJ:iQ.OaLefforLwas.~minimized at its optimal E value. The values of Ip are indi-
cated in Fig. 7. _____ .. 

The resuits shown in Fig. 7 report effort for optimal residual 'reduction factors. It 
has been cJetermined through numerical experiments that the sensitiviry of each of the 
m_ethods 't<? the residual reduction factors (i.e., 'Y P) is very similar. Jn addition, co ensure 
that only the nature of the pressure-velocity coupijng is being observed, numerical experi
ments similar to -those outlined above were performed with the coefficients of rhe mo
mentum conservation equations held fixed at their "exact" values. The results of these 
experiments indicate trends very similar to those illustrated in Fig. 7. 

CONCLUDING REMARKS 

A number of modifications to the application of SIMPLE and its variants have been 
recommended in this paper. including 

• The £-factor formulation 
• The SIMPLEC approximation 
• Treatment of p' where velocity boundary conditions are specified and where 

pressure is specified 
· .;i;::· 

! ... 

t 
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• TOMA solver for p' 
• Convergence criterion for the p' equation 

These modifications result in either simplification of the appUcation of SIMPLE-like 
methods or improved economy. The applicability of the proposals set fortl\ was illu· 
srrated in two problems and the computational costs of SIMPLE. Sll\1PLER. and 
SIMPLEC were compared. These results illustrate that both SIMPLER and SIMPLEC are 
substantially more economic than SIMPLE, and that SIMPLEC is usually less expensive 
than SIMPLER for the problems solved. 
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