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Abstn1c1 - The paper prcsenis a compu1ati~nal method used t.o o~tain s~lution s of t~e bu~yancy-<i~ven 
laminar and turbulen t flow and heat t.rans ferm a square cavuy with dt fferenu~lly. hca1eds1de walls. A.scncs of 
Ravleigh numbers. ranging from !OJ to 1016 was studied. Donor~lldifferenc10g1s used.and mesh -rc 11 nem~n1 
studies have been pcrfonned for all Rayleigh numbe.rs considered. The tu.rbulence mo~el used f~r Rayli;1gh 
numbers ereatert~an 106 is a(k-s) two-equation model of tur bulence. that includes grav11~ -dens11y gradient 
interaoli~ns. The results are presented in tabular and graphic:il fonn. and as correlauons of the ~usscl t 
and Ravlei2h numbers. Funhennorc, the results for Rayleigh numbers up. to 10 are compared wnh the 

· - benchmark numerical solu1ion of de Vahl Davis. 

!':OMENCLATURE 

D cavity width [m] 
g gravitational acceleration [m s- 2

] 

k kinetic energy of turbulence per unit mass 
[J kg- I] 

Nu Nusselt number 
Pr Prandtl number 
Ra Rayleigh number, pzgD3{36.T Pr/µ 2 

S source term 
T temperature [K] 
r velocity component in the y-<iirection 

[m s- 1] 

w velocity component in the z-<iirection 
[ms- 1] 

y,z spatial coordinates [m] 
i'. = normalized coordinates. 

I. 1:->TRODUCTION 

THE DETERMJl'Ano:-; of buoyancy-driven flow in an 

enclosed cavity provides a suitable comparison prob
lem for evaluatimz the performance of numerical 
methods dealini? with viscous ftow calculations [1-3]. 
Furthermore. the above process has many practical 
applications of which the most widely known is that of 
double glazing. Other applications include nuclear
reactor insulation, ventilation of rooms. solar-energy 
collection and crvstal growth in liquids. There is an ever 
increasinl! amo~nt of research on confined natural 
convecti;n and refs. [ 4-1 OJ are typical examples of such 
work. A recent review of the existing literature is given 
by Ostrach [I I]. Despite all the recent research activity, 
a centml problem that has remained unsolved is the 
coupling between boundary layers and core flows. The 
latter dept:nd on the boundary layer, which.in turn. is 
influenced by the core. This problem was first identified 

• Presenl address : F acuity of Science and Mathematics, 
School of Malhematics. Statistics and Computing, Thames 
Poly\echnic. London SE18 6PF, U.K. 

by Ostrach [5] and discussed more fully in refs. [6, 7]. 
The purpose of this work is to describe a computa
tional procedure for solving the non-linear, coupled 
differential elliptic equations over the entire flow 
domain, with no assumptions concerning the core 
confie:uration or anv other ad hoc simplification for 
Ravlei2h numbers up to 106, and with the speculative 
us~ of-a two-equation turbulence model for higher 
Rayleigh numbers : and to demonstrate that this can be 
accomplished without excessive demands on computer 
time or storage. The presented results are restricted to 
rectan2ular cavities of aspect ratio 1, fluids of Prandtl 

- J number 0.71. and Rayleigh numbers ranging from 10 
to 1016

. However. the procedure is general and can be 
easily applied for practical computations in cavities of 
different aspect ratios, fluids of different Prandtl 
numbers, three-dimensional (3-D) enclosures or tilted 
enclosures such as, for example, those studied by 
Catton [4]. 

.\' nlE PROBLE'1 CONS<DERED 

The problem considered is depicted schematically in 
Fig.!. and refers to the two-dimensional (2-D) flow in a 
square cavity. of side D. The cavity is assumed to be 
of infinite depth along the x-axis and is heated 
differentially along the South (low-y ) and North 
(high-y) walls. The other two (horizontal) walls are in
sulated. 

The no-slip condition is applied on the velocity at all 
four walls. and friction is calculated by invoking 'wall
functions' [12], see Appendix. The hot and cold walls 
are considered to be isothermal. and tbe other two 
adiabatic. Heat transfer through the walls causes 
density changes to the fluid in the cavity. and leads to 
buovancv-driven recirculation. The resulting flow is 
treated ;s steady and, depending on the Rayleigh 
number. laminar (Ra~ IO") or turbulent (Ra> 10°). 
This criterion for switching over to turbulence cal
culations is based on experimental observations [:~5. 
26] and has been used widely in the literature [l-3, 20, 
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CONVECTION TRIDIMENSIONNELLE NATURELLE DANS UN 
ESPACE ANNULI.IRE INCLINE 

Resume-On decrit un travail analy1iquc: c:tc:xpi:r:imc:ntal sur la convection naturelle dans un espace annulaire 
incline cntre un cylindre interieur chaulTe c:t un cylindre exti:ric:ur froid. I.es equations tridimensionnelles sont 
transformec:s en des equations aux differences linics et elles sont resoluc:s numi:riqucment en utilisant la 
mcthode de surela.xations succc:ssivc:s !SOR!. La structure tridimcnsionnelle de l"ccoulemcnt et lcs 
distributions de 1c:mpi:rature c:t dc:s nombres de N ussc:lt sont obtc:nuc:s c:t rc:fl'c:t de: rinclinaison c:st ctudiC. U ne 
visualisation experimentale par une technique de traccur est ri:alisee: des pho1ographics confirmcnt la 

structure tridimcnsionnelle de recoulement obtcnuc: analytiquemcnt. 

DREIDIMENSIONALE NA TORLICHE KONVEKTION IN EINEM GENEIGTEN 
lYLINDRISCHEN RINGRAUM 

Zusammenfassuag-Es wird c:ine theoretische und experimcntellc: Arbc:it bcschriebc:n. die: sich mit der 
naturlichen Konvektion in c:inc:m gcnc:igtcn zylindrischcn Ringraum bc:failt. wobc:i dc:rinnere Zylindc:r bc:hc:izt 
und dc:r auOc:rc Zylinder gekuhlt ist. Die bc:stimmc:nden drcidimensionalen Glcichungc:n werden in finite 
Dilferenzcnglc:ichungen transformicrt und numcrisch gc:lost. wobei die: sukzessivc: Oberrelaxationsmc:thodc: 
(SOR! angc:wandt wird. Dabei werden die: drcidimensionale Struktur dc:r Gcschwindigkeits- und 
Tc:mperaturvenc:ilung sowie die Nussclt-Zahlcn erhaltc:n. und dc:r EinfluB dc:r Neigung auf diese Gro13en 
wird untersucht. Die Stromung wurde mit einem Tracer-Vc:rfahrcn sicbtbar gc:macht: Fotografien der 

Strcichlinien bestitigen die bc:rcchnete dreidimensionale Stromungssuuktur. 

TPEXMEPHA.SI ECTECTBEHHA.R KOHBEKUH.R B KOJlbUEBOM 3A30PE ME'iK.lY 
HAK.10HHbIMH UH.1HH.!lPAMH 

r\HHOT3UN-npe.JCTllB.1eHW pe'.lY.1bTaTW aHa..1HTH'IC:CKOro H Jli:cnepHMeHT:L1bHOro HCC.1e.!IOB3HHll 
CCTCCTBCHHOii l'OHBeli:Ullll B •0.1bUeB0:0.1 llllOpe MC)l(.:J.y Ha"-10HHblMH HarpeaaCMblM BHyi-peHHHM II 
ox.1a;i;.lae;\1w;1.1 eHeWHH;\1 UH..1HH.Jpa:o.m. Tpex;\1epHwe ypaeHcHHll CCTCCTBc:HHOii i.:oHacKUHH npeoopa
JoaaHbl B KOHC'IHO-palHOCTHblC II peweHw 'lllC.1eHHO c 11cnOJlb)083HHC:l>I ;\1~0~ aepxHeii pe.1ali:ca.UH11. 
no.1y'leHa Tl)CXMCpHall CTpyi.."Typa pacnpe~c.1.:HHlt CXOpocTH ;!CH.JKOCTll H Tl!;\tnepaT)'pbi. a r.lli:::Ke 
onpe.Jc.1cHw JHa'leH1111 'IHC.1a Hyccc.1i.Ta 11 ucc:.1e.:1.oaaHo e.m111HHe Ha HHX Hai.:.10Ha. Te'leHHe a Juope 
BHJya.111lHflOBa.1oci. c no;\1owi.io :tlf;\tH'IC:CKoro llH.JHli:aTopa: lj>0Torpalj>1111 WTp11xoawx JlHHllii 

no.J:TBepllC.lalOT rpeXMCpHwii ~apai.."Tep CTpylCT)'pbl nOTOKa. no.1y'ICHHblii aHa.1HTH'leCli:H. 
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F1G. l. (a) The process considered. (b) The solution grid used for Ra~ 106
• 

22]. Reicrcncc fluid properties were calculated at the 
ambient temperature To =- 293 K.. 

J. MAlliEMATICAL FORMt.'1.ATION 

A.."'1> MElliOD OF SOLL-rlO!'I 

3.1. Tl1e differential equarions 
For steady How, the equations for continuity, 

velocity components and temperature take the form: 
continuity 

Clpt') .._ C(pw),.. O· 
cy · c: · . (1) 

y-dirc:ction momentum 

~ (prw)+ ~ (prr),.. ~ (µ ':) + ~ (.u ~")+s,.; 
c: cy c: c: er cy 

(2) 

z-dircction momentum 

c c c ( cw) c ( <rw) -:-(p,m·J+ -:-lpm') =--:- µ-_- +-:- µ-a +S,,.;_ 
c: cy c: c: cy y 

(3) 

general transported ftuid scalar. <D (e.g. T, le, e) 

c c c ( c,P) c ( aq,) -:;-(pw¢1J+-:-(pr,P) =--:- r.~ +-:- r.-a +s.; 
c: er c: c: er >' 

(4) 

where r 0 is the exchange coefficient for the transport of 
property q,. The source terms in the momentum 
equations arc 

c ( cw) c ( Cr) cp fJ s ... .. -:- µ~ +-:;- µ-:- -7"+pg-; 
ex cc C)" ~·= c: 70 

(5) 

c ( cw) c ( er) cp s ,._ µ- +- µ- --· 
t" c: C}' C}' er CJ'' 

(6) 

Sr=-0, 

where (J is the temperature rise above ambient To
For Rayleigh numbers above 10• a two-equation 

(k - e) turbulence model was used. Then the above 
equations arc time-averaged equations and µ and r ~ 
arc replaced by their 'effective' values µ.rr and r df• as 
given by the turbulence model [12.13]. 

The generation tcnn in the k-equation includes the 
buoyancy production 

µ, a<P 
Ga=- -Pg-~. 

rr.._ oy 
(7) 

In stable stratification. G11 becomes a sink term so that 
the turbulent mixing is reduced. In unstable 
stratification. the buoyancy will enhance turbulence 
since Ga is positive. The buoyancy term appearing 
tentatively in thee-equation, in other k - ecalculations 
for buoyant Hows [14,24], has been omitted. There is 
no obvious physical reason for including such a term 
and other related work indicated that it is completely 
insignificant [15]. The turbulence model contains five 
constants which were assigned the following values 
[12] 

C 1 =- 1.44; C! =- 1.92; c. • 0.09; 

<rt .. 1.0; rr, .. 1.314. 

More details may be found in refs. [14. 15]. 
Assuming that pis proportional to l/T the densities 

arc obtained from the temperature field. without 
invoking the Boussincsq-type approximations. 

3.2 The solution procedure 
The above equations were solved on a square mesh 

by the finite-domain method outlined in refs. [ 16-18]. 
Finite-domain equations are derived by intcgr:r.tion or 
the differential eqll:l.tions over an elementary control 
volume or cell surrounding a grid node. Upwind 
differencing is used in the convective terms and the 
integrated source tcnn is linearized. Both these 
practices are widely used to enhance numerical 
stability. The upwind scheme has come under much 
criticism recently, but it is only grid-refinement that c:m 
detect the 'false diffusion· associated with the various 

···tt'J?..:. ~~::. .-. 
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schemes. Therefore, care was taken to obtain grid
independent results. Pressures are obcained from a 
pressure-correction equation which yields che pressure 
change needed to procure velocity changes to satisfy 
m:iss continuity. The "SIMPLEST praccice [17] is 
followed for the momentum equations. The most 
significant dilTercnce between "SIMPLEST and the 
well-established 'SIMPLE' algorithm [19] is thatin the 
former the finite-domain coefficients for momenta 
contain only diJTusion contributions. the convection 
terms being added to the linearized source tenn of the 
equations. This implies that. in the absence of diffusion, 
the momentum equations arc solved by a Jacobi point
by-point procedure as opposed to the more popular 
'simultaneous· line-by-line procedures. This mixed 
practice (the use of Jacobi for convection terms, the use 
of line-by-line for diffusion terms) derives from 
experience and in tuition. For example, use of Jacobi for 
diffusion in a pipe would take an extremely long time to 
spread the viscous elfectS of the wall. while a 
simultaneous solution would do that in virtually a 
single iteration. This is not so for the convection terms. 
however, because of their special links with the 
pressure-<:orrection equation. The above mixed 
practice was found to accelerate convergence 
significantly. 

The equations arc solved by a line-by-line procedure 
which is similar to Stone's Strongly Implicit Method 
but free from parameters requiring casc-to<asc adjust
ment and so less complex and slower. The prcssure
correction equation is solved in a 'whole-field' manner, 
2-D simultaneous. Further details may be found 
in refs. [ 16, 1 7]. 

3.3. Tire N11sseil number 
From the engineering viewpoint, the most important 

characteristic of the How is the rate of heat transfer 
across the cavity. The Nusseltnumberon the hot wall at 
r = 0 is given by 

Nu(-)= - a - ---· (ao) (ar) D 
- c.v r•o iiy ,.0 TH - Tc' 

(8) 

(cT) q;._11 • - .,. __ 
C}' 7•0 K • 

(9) 

Vu( ) 4:.11 D j - ,_ _____ • 

- K TH-Tc' 
(IO) 

where the heat Hux at the wall. q:,011, is caJculated by the 
program. from wall-functions [12.19]. 

The average Nussclt number is given by 

1\IU = I' (c~~)d=l;-a .... == N
1 I ~~(o.;,i. (II) Jo <.1 i• 1 oy 

The mid-plane value Nu 1 ·~ is also computed as it is 
probably [J] a more accurate quantity in describing the 
heat flow across a cavity with adiabatic ·end' walls. The 
three- and five-point formulae commonly used by other 
investigators [20] for resolving the wall temperature 
gradient in equation (8) were also used. The five-point 

ws: .. ... 
~-: ~.~r~ 

formula gave resuils very close to the ones calculated by 
equation ( 10) for Ra up to lOd, but it became erroneous, 
as expected, for the high Ra numbers. 

-'· RESl'LTS A."D DISCUSSION 

The main results are presented in graphic:il and 
tabular form. and as Nu vs Ra correlations. The 
graphical results are obtained by the post-processor 
GRAFFIC [:!!]. 

Solutions were computed for Pr= 0.71 (air) and Ra 
between lOJ and 1016

• The solutions for Ra up to 106 

were obtained by using normalized variables. in such a 
way that dimensionless velocities were of the order of 
unity, in orderto improve the numerical accuracy of the 
results. Indeed it was found that this procedure led to a 
3% improvement in the important parameters over the 
dimensional solution, due co the limited accuracy of the 
mini-computer used. 

The validity of the relationship O(y, z) .. 0( 1-y, 
1-:), where 0 is the dependent variable. was found 
to hold for all the solutions obtained. with very close 
approximation, everywhere in the How field. An ex
ception to this was in the cavity core for Ra> 1012, 

probably due to the round-off error in the very small 
velocities encountered in this region. as compared with 
the large ones at the wall boundary layers; but even 
then the departure from the above centre-symmetry 
was within a few percent 

The presented results are practically grid in
dependent (see Section 6 on grid dependence). 

The velocity components at the domain centre-lines 
are shown in non-dimensional form (using KiD as a 
scale factor. where Kis the thermal diffusivity) in Figs.2-
4. for Rayleigh numbers Ra=- !Ol, 10'5 and 106 . 

It can be seen from these graphs that as the Rayleigh 
number increases. the velocity maximum moves closer 
to the wall and its amplitude increases. At the same . 
time. the velocity between the two maxima becomes 
progressively smaller and at Ra > 106 How reversal is 
observed immediately outside the boundary layers. 
The reason for the above behaviour will be explained in 
conjunction with the thermal distribution inside the 
section. 

Figure 5 shows streamlines for Ra ::11 JQl-1016• 

Corresponding maps of temperature arc shown in 
Fig. 6. The presented contours. in all the figures arc 
labelled according to a well-known convention. For ex
ample. in Fig. 6 the contours are labelled via the 
statement 283(2)303 K. This means that temperature 
contours arc presented every 2 K with the first (at the 
extreme right) corresponding to 283 K and. the last to 
303 K. ' 

At Ra ,.. I OJ. streamlines arc those of a single vortex, 
with its centre in the centre of the dom:iin. Corre
sponding isotherms arc parallel to the he.:ited walls, 
indicating that most of the heat transfer is by heat 
conduction. The effect of convection is seen as the 
departure of the isotherms from the verticaJ. The vortex 
is generated by the horizontal temperature gradient 
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F1a. 4. (a) The vertical velocity component: Ra"" 106 . (b) The horizontal velocity component: Ra,. 106• 

across the section. This gradient, aTioy, is nega
tive everywhere in this case. giving rise to positive 
(clockwise rotation) vorticity. 

As the Rayleigh number increases (Ra=- !a4) the 
central screamline is distoned into an elliptic shape and 
the efi'ect of C\)nvection is more. proaoUDced in the 
isotherms.. T cmperature gradients are now morcsevere
ncar the vertical walls. but diminish in the centre. 
This behaviour continues to Ra - 105 ; the ccntra! 
streamline is further elongated and two secondary 
vortices appear inside it. Its long axis is now tilted in the 
direction of the flow, as the secondary vortices arc 
convected by the flow in the periphery. Heat transfer 
by convection in the viscous boundary layers alters 
the temperature disaibution to such an extent that 
t.cmperacure gradients in the centre arc close to zero. or 
change sign. thus promoting negalivc vorticity. This 
causes th.e development of secondary vortices in the 
core. 

As discussed in rcC[22], thesecondaryvoniccsin the 
square cavity do not result from an instibility of the 
base flow but area direct consequence of the convective 
distortion of the temperature field. As Ra incrcises. the 
development of thermal boundary laym intensifies 
cT:/a_v in the vicinity of the walls. and the convection 
within each layer leads 10 negative ar /cy in the centre. 
A vorticity sink thus separates the regions of 
concentrated vorticity generation and two secondary 

vortices arc formed. VtScous dilfusion appears to 
prohibit the development of these vortices for Ra 
< 10'. The voTticcs at Ra =- 10' are sufficiently strong. 
to convect the temperature fields to th.e extent that the 
isotherms arc nearly horizontal in the centre. 
preventing any vertical motion there (see w-vclocity 
plots in Fig. 3). 

Increasing Ra to 106 , causes the secondary vortices 
to move closer towards the walls and are convected 
funher downstream. A third vonex appears in the 
centre of the section. again rotating clockwise. This is 
surprising. as one would expect this last vortex to rotate 
counterclockwise. to reduce the shear between the 
other two vortices. Mallinson and de Yahl pavis [22] 
attribute this to the presence of a small positive 
temperature gradient in the centre. Viscous diffusion 
between the secondary vortices dissipates any 
counterclockwise vortices thal might appear. Heat 
transfer. is now mostJy by convection in the rapidly 
moving ftuid near the walls. The boundary layers 
adjacent to the venical walls have becom.e thin and fast. 
In 1he central. region the venic:li stratification in the 
temperature distribution. shown in Fig. 6 with 
increasing values from the bouom to the top of the 
cavity,prcventsanyverticLlmotionasconfirmedbythe 
w-plots in Fig. 4. In general. as Ra is increased w tends 
to become comparatively small outside the venica.J 

·boundary layers. and is vinually zero over the central 
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60~~ofthecavity width at Ra= 10°. Thcma.i:imum and 
minimum w values for each profile are strongly affected 
by the Ra number as shown in Table I. In this table(and 
also in Table 2l the velocities are normalized usingD as 
a scale factor for length and D~, K as a scale factor for 
time. The results obtained for Ra ~ 106 were identical 
whether the (k - el model was used or nor. due to 
·virtually zero k generation. 

As the Ralyeigh number increases from 106 to 108 • 

the secondary vortices generated in the central core. 
are convected further upstream and closer to the 
dilferentially heated walls. The central vortex has now 
dilfused into the other two vortices which become a 
dominant feature of the flow. The boundary layers on 
the heated walls are now very thin. At the upstream 
comer of each boundary layer. the low momentum 
outer layer is absorbed by the adjacent vortex. while 
the rest of the boundary layer follows the adiabatic 
wall under the action of the secondary vortices. 

For Ra = 10 10 the central vortex reappears [Fig. 
S(f l] and the other two vortices are shifted closer to the 
walls and get thinner and elongated. As Ra increases 
further, the vortex system becomes progressively 
weaker and eventually (Ra= 1016

) disappears com
pletely. High velocities now only occur within the thin 
boundary layers. and the ftow in the central core is 
stratified. The streamline patterns offig. S(hl show this 
feature very clearly. Recirculation now only exists 
within the isothermal layers of fluid and the sense of 
rotation alternates between adjacent layers. 

The accompanying temperature maps, for Ra = 108 

and 1010 show the temperature range in the core 
diminishing, from bet\veen 289 and 197 K to 291 and 
295 K. A steep temperature gradient accompanies the 
location of the secondary vortices. The horizontal 
extent and magnitude of this gradient determines the -
extent and strength oi the vortices described earlier. 
The negative temperature gradient in the central vonex 
is observed. For high Ra. the T-profilcs bave a very 
steep slope within the thermal boundary layers; and 
this becomes steeper as Ra increases. Outside the 
boundary layers the T-profiles are almost horizontal 
and temperature increases with =· 

Surprisingly. as the Rayleigh number increases even 
further. the temperature range in the core increases 
again. to between 288and198 K (Ra ::a 1011 ) and finally 
to 287 and 299 K at Ra=- 1016

. This is due to weak 
interchange of heat and momentum between adjacent 
Huid layers as the flow becomes increasingly stratified. 
At the same time. the temperature gradient in the 
horizontal direction diminishes to zero. This is to be 
expected. since now the walls are ·too far away· lo have 
any inlluence in the core !Rao:: DJ. while 6 :c o-J ... ). 

Figures 7 and S show horizontal and vertical velocity 
contours at various Ra numbers. For Rayleigh 
numbers up lo I 0° these contours are normaliz;d. but 
not for the higher ones. The main observalions 
discussed so far can also be inferred from these figures. 
i.e. the location and thickness of the boundary layers 
and the location of reverse flow regions accompanying 
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Table 2. Comparison of the 1wo solutions 

Ra 
lOl 104 

2 2 

t"ma• 3.544 3.649 16.18 16.178 
0.832 O.l!IJ 0.832 0.823 

\\'rnaa 3.593 3.697 19.44 19.617 
(' 0.163 0.178 0.113 0.119 :-ru 1.108 1.118 2.101 U43 
Nu....., lA96 I.SOS 3.482 3.528 

- 0.0825 0.092 0.1425 0.143 
Nu"'i" o.no 0.692 0.643 0.586 

- 0.9925 1.0 0.9925 l.O 

Note: ( l) Present solution: (2) de Yahl Davis' solution (3]. 

the secondary vortices. The vertical velocity maximum 
moves closer to the hot wall as the Rayleigh number 
increases. and it is close to the centre of the hot wall for 
Rayleigh numbers up to t06 (see also Table 1). The 
maximum horizontal component also moves closer to 
the hot wall as the Rayleigh number increases, and is 
shifted upwards. 

Figure 9 shows the resulting velocity fields. The 
boundary layer profiles and the diminishing velocity 
fie.Id in the centre are clearly seen. An enlarged view of 

. the central portion of Fig. 9{d) (indicated by the dotted 
line) shows clearlr the presence and direction of the 
three secondary vortices I Fig. 10). 

Figure 11 presents boundary layer velocity profiles at 
the ·hot' wall for Ra= 1011

• at various :-locations. The 
boundary layer gets progressively thicker as we move 
from the bottom (!Z = t5, = = 0.0075) up to:"" 0.5. 
Further up,:"" 0.795. negative fiow is observed at the 
edge of the boundary layer, which is now thinner. The 
reason for this was explained earlier in connection with 
the presence of the secondary vortices. The boundary 
layer at : ~ 0.9925 has almost disappeared as it 
approaches separation at the top comer. Inspection or 
the detailed results indicates that both velocity 
components arc indeed negative at that comer. The 
velocity profiles within the boundary layers are not 

10' 10• 
2 2 

35.73 J.+.73 68.31 64.63 
0.357 0.855 0.87! 0.850 

69.08 68.59 21I.8 217.J6 
0.067 0.066 0.0375 0.0379 
4.430 4.519 8.754 8.799 
7.626 7.717 17.S72 17.925 
0.0815 0.081 0.0375 0.0378 
0.824 0.729 1.232 0.989 
0.9925 1.0 0.9925 l.O 

logarithmic in nature (neglecting the near-wall points 
where a logarithmic profile was imposed by the use of 
the 'wall functions'). This is in agreement with the 
results of George and Capp [27]. 

Figure 12 presents iv-velocity profiles within the 
narrow boundary layer near to the hot wall, for Ra 
= I 010 with two different scaling factors. Three profiles 
arc presented at three horizontal stations, :/D = 0.25, 
0.50 and 0. 7 5. Figure 13 presents the same information 
for Ra "" 1oi:. 

The important quantities for the problem con
sidered, e.g. the Nusselt numbers and the maximum 
velocities are summarized in Table L The table shows 
the calculated Nussclt numbers at the 'hot' walL 

The maximum and minimum values arc given in the 
table. together with the Nusselt number at j =- y/D 
= 0.5. The same table, contains values of the maximum 
vertical velocity component on the horizontal mid-line 
and its location, the maximum horizontal velocity on 
the vertical mid-line and its location and the maximum 
horizontal and vertical velocities over the whole 
domain and their location. 

The neat transfer coefficient is seen to increase with ...... 
Rayleigh number, as convection becomes dominant. 
but not as fast as the ftow. Thus, passing from Ra "" lOl · 
to 106 leads to an increase of w.....,. from 3.59 to lll.8: 

Table 3. Comparison of present and experimentaJ correlations (arrows indicate range of validity of · 
equations used) 

Nu (!:iminar) 
log Ru Equation f 121 Equation (20) ... , 

Q•o 

5 

6 

8 

10 

1.128 

4A70 

1.!02 +2.4 

1.960 +14.6 
.•••• • f . • ••• • •• •• ••• 

H85 +18.3 

Nu (turbulent) 
Equation (14) Equation (21) 

1.698 

3.621 

1.546 +9.S 

ij2l ·· · ···~~:8 

7.723 7.167 + 1.1 
~ ........•. ... ... ... ..... .. .. ......... 

35. l 4 33.40 + 5.2 

159.9 

121.5 

155.0 

720.0 

+3.1 

+1.0 
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(al (b) 

(cl (d) 

l fl 

~ I 

JL , !L, 4 

FIG. 7.Horizontal velocity(11)contours:(a).Ra • 10.1,contoursat -3.55(0.71113.SS:(b)Ra - 10"",contoursat 
-1613..2) 16:(c).Ra • 10•,coutoursat -43(8.62)43;(d).Ra • 106 ,contoursat -ll7.88(23.58) U7.88;\el.Ra 
• 101

• contours at ± 0.005, 0.01, 0.02. 0.03, 0.04, 0.05: (0 Ra - 1010
, contours at ±0.01, 0.025, 0.05, O.Q75, 0.1. 

but the maximum Nusselt number increases only from 
1.496 to 17.87, despite the passage from dilrusion
dominated to convection-dominated transfer, as 
revealed by the configuration of the isotherms. 

The maximum Nusselt number occurs at the bottom 
of the cavity and the minimum 3.t the top. 

The results for Rayleigh numbers up to 106 are 
compared 'Aith the benchmark solution provided inrcC. 
(3] which can be considered as accurate. The 
qualitative agreement. of the presented plots of stream 
function. temperature and velocity maps with those or 
the benclunark solution is very good. Quantillltive 

comparison is provided by the N usselt numbers and the 
maximum velocity values in Table 2. Agreement is 
generally good. Difri:n:nccs exist in the minimum 
Nusselt number, panicularly at Ra=- 106 . Although 
the agreement of the maximum and centre-line Nusselt 
numbers is better than l..5"10 over the whole Ra range. 
the present predictions indioue a higher minimum 
Nusselt number than the benchmark solution. 

Numerical errors and the first-order differencing 
scheme used in this work do not account ror the 
observed dilTerene:cs, since the results are practic:illy 
grid independent However, there are two other 
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(al (b) 

(cl (d) 

(el ·(fl 

t2 

r 

,L, !L. 

(g) 

,~y 

( 
F1G. S. Venical velocity(w) contours: (a) Ra • lOl, contours at -3.555(0.711)3..SSS ;(b) Ra• 1<>4, contours at 
-19.24(3.848)19.24: (c) Ra• JO'. contours at -67.55(13.51)67.55: (d) Ra• 1<>6, contours al -2.17.J& 
(43.47) 217.38: (el Ra • 10•, contours at ±0.0075, 0.0125, 0.02, 0.03. 0.04. O.OS,0.06:(0 Ra • 1010

,-->0. 
··- < 0, contours al :t0.01, 0.025, O.OS. 0.015, 0.1, 0.15; (g) Ra • 101 !, contours at ;!:0.01. 0.025. O.OS. 0.1. Q.2. 
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F1a. 11. Boundary layer velocity profiles at Ra - 1011, 'hot' wall 

di!Terenccs between the procedures, namely the 
elimination of the Boussinesq assumption in the 
present work and the implied use of the linear velocity 
profile between wall and near-wall pointS, in the shear
strcss calculation. The latter should not account for any 
difference either, provided that the benchmark solution 
has properly computed the wall shear-stresses. 

The computations were repeated by using the 
Boussinesq approximation. Minor differences were 
observed for Ra = I Ql and 104

, with a maximum of 1 ~~ 
For Ra~ 105 and 106 the differences were up to 3.7'}~; 
the minimum Nusselt number being 0.804 at Ra= 105 

and 1.188 at Ra= 10°. The large errors in the 
calculation of the minimum Nusselt number appear to 
be due to the sensitivity of itS calculation. Suppose for 
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· Fia. 12. .. ·.Velocity profiles within boundary layer. Ra - 1010 

Uwo sc:alin11 factors). Three horizontal stations at: (1) :/D 
• 0.25: 121 : . D • 0 . .50: (31 ::D • 0.1S. 

example that at Ra :a 106 the solution predicts a near
wall maximum temperature of 302.Sl K instead of the 
correct value of, say, 30284 K. This representS a very 
accurate temperature prediction with an error of Jess 
than 0.0 I~~ (well within the convergence criterion used, 
see Section 5). For a wall temperature of 303 K, the 
application of a one-sided formula for calculating a 
temperature gradient at the wall, would lead to a N umin 

which for the present grid spacing would be 1.267 
instead of 1.067, e.g. in error by 19%. The same is not 
true in the case of Numu.. Thus the same accuracy in 
temperature (say 300.43 K instead of 300.4 K) leads to 
Numaa ~ 17.l3insteadof17.33.e.g.inerrorbyoniy 1~~
Therefore, despite the large errors at Ra = 106 in the 
derived quantities, it is suggested that the present 

0 

011 1d 1 

\ \\ oa. a• 
11i'- \ \.. 
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F1a. 13. w-Vcloc:ity profiles within boundary layer. Ra '"' 10': 
(two scaling factorsl. Three horizontal stations at: (I) :/D 

• ~: (21 :iD • O.SO: (3) z/D =- 0.7S • 
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solution may still be about 1 ~~accurate in terms of the 
computed primitive variables. 

Direct comparisons are not possible for the 
turbulence runs, due to the scarcity of experimental 
e,·idenc:. However. the use of the k - & model in other 
related work (e.g. buoyant turbulent How in buildings) 
has led to favourable comparisons with experiment 
[15]. 
· Furthennore. the presented solutions certainly show 
some of the features that are observed experimentally 
[position of vortices and their shifting with increasing 
Ra number. thennal stratification. etc.) and indicate. 
qualitatively at least, the correct change in How 
structure as Ra increases. 

Finally, the correlations of the present results given 
below are in good agreement with well-known 
correlations derived from a large number of 
experiments for Ra up to 108 [23],andappearto extend 
the validity of those correlations up to Ra ... 1012• For 
higher Ra a set of new correlations is proposed. 

4.1. Derit"ed Nu - Ra correlaiions 
The following correlations for maximum, minimum 

and average Nusselt numbers were derived from the 
present predictions by !eaSt-square linear regression. 

Lami11ar ( 103 ~ Ra ~ 106) 

Nu 1:z ,. ~ =- 0.143Ra0
·:99 ; (12) 

Numu. = 0.130Ra0
•
356

• (13) 

The minimum .Vu is not given as the log Nu vs log Ra 
curve is not .a straight line. 

Turo11/e11c (106 < Ra is;; 1012
) 

Nu = 0.082Ra0·J19 ; 

Nurnu. ,. 0.057Ra0 ·3 ~9 : 

(14) 

(15) 

Numin,. 0.016Ra0·J 15• (16) 

Tur/Julene (101.l <Ra is;; 1016
) 

Nu,. l.325Ra0 •2" 5 ; (17) 

Numu,. 0.34Ra0
•
316

; (18) 

N11min"' 0.137Ra0•2l3. (19) 

4.1. Comparison with experimenca/ corre/tUions 
The: :ibove correlations are compared with the 

follo"ing experimental ones in Table 3 (23]: 

laminar 

(I.)- I 9 
Su= 0.196Ra1

'" D 

(2.S x !OJ <Ra< 2.S x 104
); (201 

turbulent 

_ (L)-1 9 
.\'11 a 0.07'.!.Ra 1' 3 D 

(2.8 x 10" ~Ra~ l.55 x 101); (21) 

where: L Dis the: cavity aspect ratio . 

. -~ · 

It can be seen that extrapolation of the experimental 
turbulence correlation up to Rayleigh numbers of 10 1: 

is in good agreement with the present predictions. 
despite the fact that the former is applicable to cavities 
of aspect ratios between 3 and 42 The aspect-ratio 
effect explains the relatively large differences observed 
for the lower Ra numbers. and the closer agreement 
obtained for higher Ra numbers: the effect of aspect 
ratio diminishes as Ra increases. · 

The switch in the exponent of the Rayleigh number 
for the: correlations for Ra> 10 1 ~ was introduced 
simply by requiring a zero error from the lc::i.st-square 
linear regression. Experimental evidence. however 
limited. indicates an exponent of 1/3. If the exponent of 
Ra is assumed to be 1/3, then the best correlation of the 
present results over the whole of the turbulent range 
gives 

Nu • 0.060Ra113
• (''"') 

The above correlation gives higher values than those 

obtained by MacGregor and Emery(N";; ~ 0.046Ra113
) 

[28] and by Cowan et al. (Nu ,. 0.043 Ra113) [26]. 
However, the former [28] refers to cavities of aspect 
ratio 10-40 with constant heat Rux boundary 
conditions at the hot face, and isothermal cold face and 
the latter [26] refers to water and to Ra numbers up to 2 
x 1011 • 

S. CONVERGE."10: A!"'\'D COMP~lER TIME 

A converged solution was defined as one that met the 
following criterion for all dependent variables 

max 1q,•• 1 -<fi•t ~ 10-•, 

between sweeps n and 11+ 1.- At this stage mass 
continuity errors per slab were of the order of l o-s and 
therefore insignificanL Further sweeps of the solution 
domain confirmed no changes and were actually 
pointless since the accuracy limit of the computer wa. 
approached. The sum of the absolute volumetric error 
over the whole field was again insignificanL at 10-". 

Convergence was found to be affected by the 
Rayleigh number. Hence. the high Rayleigh number 
cases required more sweeps than the low ones. To 
improve convergence. a false time-step relaxation was 
used. This was reduced by an order of magnitude:.. from 
0.1 toO.Ol for both velocities.for Ra > 10~.and to0.001 
for Ra> 1010_ This is to be expected since this 
relaxation factor is proportional to the fluid residence 
time in a :ypical cell: and it is therefore appropriate 
to reduce it as the velocity in the boundary layers in
creases with Rayleigh number. 

To economize on run-times each Rayleigh number 
case was restarted from the: previous one fstarting with 
Ra• !OJ) and 200 sweeps were found adequate for 
convergence. The domain dimension D was the 
parameter adjusted to get the required Rayleigh 
number value. 

.;,,.• · ·~~- ... 
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Fie;. 14. Velocity comparison (Ra"" 106
) for 40 x 40 and 80 x 80 solutions . 

A 100-swecp run required 11 min CPU time on the 
Perkin-Elmer 3220 mini-computer, for the 30 
x 30 grid. and 15 min for a 40 x 40 grid. The above mini

computer is several times slower than mainframe 
machines. In general. the time per finite-domain cell, 
per sweep, per variable was 1.5 x 10- 3 s CPU on the 
Perkin-Elmer machine. A full run at Ra • 1014 

using a 60 x 60 grid would require 300 sweeps and take 
2.5 hon the mini-computer for solving the six equations 
(c:, w,p.k.e. n. 

It is not an easy matter to compare the above 
reported CPU times with those of other methods in the 
literature, because of different computers used and 
different practices in reporting these times. 

However. it appears to the authors after their survey 
that the present computer-time requirements arc 
modest. and possibly an order of magnitude less than 
those reported in the literature for the same cases.. If 
true, this is certainly due to the speed of the SIMPLEST 
algorithm and the associated whole-field pressure 
solver, coupled with the thorough optimization of 
FORTRAN arithmetic and the very orderly bookkeep
ing in the software. embodying the solution procedure.. 

6. GRID DEPENDENCE AND COMPUTER STORAGE 

Initial investigations were performed on a uniform 
30 x 30 grid. This was found to be adequate for Ra 
=- !Ol. but not for higher values. An improved 30 x 30 
grid was then used. with closer spacing near the walls 
(Fig. !), to increase boundary layer resolution. 

This grid was used for all Rayleigh number cases up 
to Ra ,. 106 and the results were stored. 

To check grid dependency, the grid was further 
refined to 40 x 40 by adding intermediate cells in the 
central region. All cases (up to Ra = 106

) were re-run 
restarting from interpolation of the 30 x 30 results. for 
another 100 sweeps. In their bulk. the results showed 
little change. although the secondary vortices at Ra 

· = IO' and l 06 were., as expected. better resolved. The 
maximum velocity increased by 5% in the Ra• 10' 
case. and these arc the results presented in this paper. 

The grid was refined again to 80 x 80 by halving all 
cells and the Ra= 106 case was run for another 300 
sweeps. V cry minor changes were o bscrved, as shown in 
Fig. 14, for the velocity profile inside the bot wall 
boundary layer. The maximum velocity increased by 
0.4% in the Ra= 106 case. The same observations 
apply also to the temperature-field changes with grid 
refinement. It is concluded that the results up to Ra 
,. 106 arc practically grid-independent. 

Fortheturbulcntcasescarewas taken to place 10-15 
grid cells inside the wall boundary layers. The thickness 
of these layers is given by 8/D =- 4.86Ra _ ,,.., for Pr 
=- 0.71. Care was also taken to concentrate several of 
these 10-15 points between the velocity peaks and the 
wall. and to place the first grid point very close fo the 
wall (y/D = 1x10- 6 ror the high Ra numbers, y
varying between 1 and 12along the hot wall). The above 
considerations arc very important for treating the 
boundary layers in accordance with the essential 
physics, since in the wall region temperature gradients 
arc most severe and hence provide an important source 
of vorticity. If the first grid point is too far from the wall 
then the results will be grossly distorted by this effect. 
Thrcegridswereused.(y,::) =- 40 x 80,60xl20and100 
x 160. PracticaJly grid-independent results seemed to 
be obtained using a grid of (y,.:) = 60 x 120 for all 
Ra ;i. 108 ; the 100 x 160 grid leading to a maximum 
further change of 1.2~~ for the maximum velocities and 
1.5% for temperature.For Ra > 10 14 the resulting grid 
cells in the core were thought to be too ill-conditioned 
(aspect ratio of up to 10: I) for sufficient accuracy. 
However, the flow in the core for these high Ra numbers 
is nearly stagnant and the cell aspect-ratio ctTect 
appears not to be important, as was indicated by 
repeating the runs with half the above ratios. 

The program required 90 K-words; of these. 35 K
words were required ror data storage (30 x 30 grid). 

7. CONCLUSIONS 

The problem considered represents a 2-D approxi
mation to a series of practical problems. The study 
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dcmonstr:ued that numerical solutions can be obtained 
quickly and economically for such problems, where 
buoyancy effects are dominanc. 

Accurate results were obtained at both ends of the 
Rayleigh number seal::. at least for the laminar range. 
indicating that both diffusion-only or convection-only 
heat transfer problems can be tackled with ease. The 
results were presented in graphical and tabular form. 
and as correlations between the Nusseit and Rayleigh 
numbers. 

The main points of the present method can be 
summarized as follows: (al the model consists of the 
coupled differential elliptic equations which arc solved 
over the entire fiow domain, with no assumption 
concerning the core configuration: (bl the procedure is 
strongly convergent and results were easily obtained 
even at Rayleigh numbers as high as 1016 :(CJ practically 
grid independent results were obtained with only 
modest computer storage and CPU time requirements. 
Indeed. a survey revealed that the present method may 
be up to an order of magnitude faster than other 
available procedures. enabling very fine grid runs to be 
performed within practicable resources: (d) the 
procedure and associated computer program are 
general and can be used immediately for 3-D natural 
convection problems in cavities of any aspect ratio and 
orientation. and fiuids of any Prandtl number. It is 
therefore immediately applicable to all related practical 
problems: tel che speculative use of the (k - et model in 
this work has indicated that. despite its well-known 
deficiencies in terms oi physical realism. it may still lead 
to a reasonable prediction of the o\'erall fiow structure 
of the problems considered; (ft apart from the 
uncertainty connected with the 1k - et model itself 
another source of uncertainty is provided b~· the 'wall
functions '. ~tore work is required to establish more 
realistic ·wall-functions· for buoyancy-dominated 
Hows. Once established. it is a very simple matter to 
incorporate in the present model. 

Although only time-averaged steady-state results 
have been presented. the procedure can also be used in 
its in-built transient mode. Also radiation and variable 
property effects. that have been neglected in the present 
study. must be included to in\'estigate their im
portance at high Rayleigh numbers. Finally. much 
more experimental work is required for high Ra 
numbers to provide data for improving and ,·alidating 
the computer models. 
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APPENDIX 

THE WALL BOUNDARY CONDITIONS 

The trea1ment of wnll boundary condi1ions for turbulent 
b

0

uoyant flows presents a source of uncertainly in !he present 
work. It is therefore wonbwhile dcscnbing briefty what was 
done. ·Wall functions' were used for bo1h the laminar and 
turbulent calculations. In 1hc laminar cases this simply meant 
that the wall shear stress was evaluated from the presumption 
of a linear velocity variation between the calculated near-wall 
value and the zero wall value. 

Theshcarstresscalculatedin thiswaywasthcnindudcdasa 
source term for the velocity component parallel co the wall 
For the turbulent calculations. I.he Revnolds number for the 
near-wail point was first evaluated. rrtfus was less than 132.25 
(y" ,. l 1.5, the value a1 which the laminar and turbulent wall-

functions intcrscctl the above laminar wall-function was ali:o 
u~ed. I( the Rcvnolds number ...,.as l?rcater than 132.25. the 
presumed velocity variation was - logarithmic. and the 
corresponding shear-stress coefficient was evaluated. Both k 
and r. were fixed at the nc-.ir-wall grid nodes at the values which 
would prc\•ail there irindccd the universal logarithmic velocity 
profile prevailed. The wall heal transfer ra1e w:u evaluated 
from the Chilton-Colburn form of the Reynolds analogy. in 
which the Stanton number (So is related 10 the friction 
coefficient (C,) as follows : 

(Al) 

where C, is related to the wall shear stress ( r,.) and the parallel-
10-wall velocity lwl as follows: 

Cr • t..,l(P lwl1). (A2) 

The heat transfer rate per unit area at the wall (q;,) is then 
deduced from : 

q;_ .. St PlwfC,('1;,-T..l. (AJ) 

w~erc T,, is the temperature at the grid node in question.and T. 
the temperature at the wall. 

ll is realized that the wall functions may be inliucnced 
considerably by rcmpcraturc variations. and iodccd that the 
logarithmi.c form used is probably not appropriate since 
buoyancy cffectS arc ignored in the log layer. A better wall 
function could be based on either the Monin-Obukov log
lincar profile (29], or on the cube root profiles or Gc:orge and 
Capp [27]. 

CONVECTION LAMINAIRE ET TURBULENTE DANS UNE CA VITE FERM EE 

Resume-On presen1e unc methodcnumerique pour obtcnir des solutionsd'ecoulemem nature! et de transfert 
de chalcur dans une cavite carree avcc des parois latCrales cbauJrccs differemmenL Oo ctudic un domaine de 
nombrcs de Raylei;h cmrc lOJ et l0°. On utilise unc dilferenciation de ccllulcs donauic:cs c:t des ctudcs de 
maillagc sont de,·eloppees pourtous lcsnombres de Rayleigh considerCs.. Le modelcde turbulence utilise pour 
16 norobrcs de-Raylei;h superieurs a 10• est UD modelc V.:-el a deux equations qui inc1u1 lcs interactions 
gnl\ite·gradient de massc volumique. Les rC:sultacs sont presentes sous formc de tables ct de yuphiqucs ct de 
formulesdcnombrcsdeNusselt e1dc Rayleigh. Enouuc..lcs rC:sulcatSdeoombrcsdc Raylcighjusqu·a lO' soot 

compa~ avec la solution nurneriquc de Yahl Davis. 

LAMINARE {J'ND TURBULENTE FREIE KONVEKTION IN EINEM GESCHLOSSENEN 
HOHLRAUM 

Zusammenfassung- Es wird eine Bcrechnun@Sl!ICChodc beschricben. die dazu dicnt. Losungcn rur die 
laminarc und turbulcn1e. von Auft.riebskr:iftcn bcstimmtc Str6mung und den Warmciibergang in eincm 
Hohlraum mit quadr.uiscllcm Querschniu und un1crschiedlich bchcizten Sci1cnwandcn zu crhaltcn. Die 
Ravlciith-Zahl wurde im Bereich von lOJ bis 10• variien. Es werden ·donor-cell--Diffcrcnzm verwcndct. 
Ei~lluSse der Gincrvcrfeinerun!! wurdcn bei alien becrach1eccn Raylcigh-Zahlcn unccrsucht. Ats 
Turhulenzmodcll llir Rayleigh-Z:ihlen gro&r 10• wurdc ein lk - F.1-Modcll \'crwcndet. welchcs 
Wcchsclwirkun!!cn Mschen Schwcrkrafc u.nd Dichtegradicntcn betiiclcsichtigL Die Ergcbnisse wcrdcn in 
tabc:llariS(;hcr und !!1'3fischcr Form und als Korrelationcn von Nusselt· und Rayleigh-Zahlcn darges1dlL Die 
Ergcbnissc rur Raylcigh-Zahlen bis 10" werden mi1 den Rcferenz-Losungcn von de Yahl Davis vcrglichcn • 
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JlAMHHAPHAR Iii TYP6Y JIEHTHAR ECTJ:.CTBEHHAR KOHBEKU11.SI 
B 3AMKHYTOA nOJIOCTH 

AHHOTll~OnHCWBaeTCll 'IHC/ICHHWii MCTO.ll peweHHll Ja.aa'I cB06o.aHOICOHllCICTHBHOro JlaMHHapHoro 

II Typ6y.1eHTHOro TC:'ICHHll H -rennonepeHoca B l(BaJlpaTHOii noJIOCTH c OOICOBblMH CTCHl(aMH. 

Hllrpc:TLIMH .ao pa:iHoii TeMnepaTYJ>w. Hc:c:ne.aoaaHHll npoao.11HJ1Ha. a m1anal0He 3Ha'leHHii 'IHC.ia 

Pe.1e1t OT !Ql JlO !0 16
• npH nocrpoc:KHH pa3HOCTKOH CXCMbl HCI0.'1 .. JOUHW .llOHOpCICllC ll'IC:iilCH. 

,!L.111 sc:cx paCXMaTpHaaeMwx lHa'ICHHii 'IHC.ia PeJteA npo110.11HJ1aa. Hc:c.ie.aoaaHHll 11.1HllHHJ1 HJ1>1e.1i.'ICHHJ1 

CCTKH llll peWCHHC. npH JHa'ICHHllX 'IHC.1a Pe.'IC:ll. npe11wwa10WHX 106
• HCnOJ1blOBa..1aa. .lllyxnapa

MCTpH'ICCXaA (k - £) MO.:teni. ryp6ync:HTHOCTH, Y'fHTWBalOWall BlaHMO.llCiiCT'BHC MC".«.ay CH.10ii 

TlllKCrnl H rpa.llHC:HTOM MOTHOCTH. PC3yJlbTaTbl npe.llCTaBJIC:HW B Bff.llC TI0.1HU H rpacj>HICOB. a 

Tal(ll\C a 111.ac oooowcHHWX JaaHCHMOcreii MClK.llY 'IHCJtaMH Hycce.ii.Ta R Pene11. KpoMe Toro. 

npoac.aeHo cpaaHeHHe p1:3yni.raToa. nony'ICHHWX npH 'IHcnax Pene11. MCHbWHx IO". c 'IHC;1CHHWM 

· peweHHeM .ac Baani. ,LlaaHca • 


