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A three-dimensional recirculatlon flow in a ventilated room was predicted 
by the numerical methods in which the turbulence models are applied. The 
predicted results are compared with the experimental results obtained in 
a model room in order to estimate the practical utilities of such methods 
from the viewpoint of engineering. Taking account of the practicability of 
prediction method which the engineers regard as important, two turbulence 
models were selected and they were incorporated into the numerical pre­
diction methods respectively. One is the two-equat ion model, in which 
tra nsport equations of turbulence energy and its rate of dissipation are 
adopted. The other is the Deardorff's model, in which the subgrid scale 
eddy coefficient is utilized. The prediction was made by each numerical 
method. Consequently, no not iceable difference is recognized between 
both predicted results. Each result is compared with the experimental 
results. Generally speaking, each agreement is good with regard to the 
mean velocity. Thus we can conclude that the numerical method using the 
two-equation model has more practical utility than that using Deardorff's 
model, because it can give the solutions in a shorter computer time. 

Prediction of the distributions of velocity, temperature, and 
concentration in a room is nor only available for designing 
air·conditioning systems, bur is also important in providing 
amenity in a room. Recent advancements in numerical 
methods for fluid-mechanics have been accompanied by 
investigations on numerical prediction of these distributions. 
However, in that c::ise, because the air flow in a room is 
turbulent , we must apply the numerical method in which 

which one of the turbulence models devised independently 
of the numerical method is applied. The two-equation 
model, which was studied by Davidov, 1 Harlow-Nakayama 2 

and others, is most typical of such models. The other is a 
type of method which is called ·Jarge-eddy simulation'. This 
method was investigated by Smagorinsky et al. 3 :i.nd Lilly .4 

In the former the averaging oper:itor indicates the ensemble 
average or the time average for the duration that is longer 
than the time scale of the largest eddy in the turbulent flow 
to be solved. But in the latter it denotes the space average 
over the grid volume of the finite-difference scheme applied 
to the numerical calculation. Thus the: eJdics that ar~ larger 
than the grid scale can be analyseJ by solving t11e partial 
differential equations for the averaged motion. In the earlier 
formulations of both methods. Reynolds' stresses were 
assumed to be connected with the strain tensor of the mean 
flow by a scalar eddy viscosity . Later the investigators' 
interests have been directed to development of the stress· 
equation modelss-1 1n which Reynolds' stresses themselves 
are dependent variables , becau~e the relations between 

the effects of turbulence on mean flow :i.re ·takcn into 
account. Tiws it is necessary to discuss the numerical 
methods of predicting the general turbulent flow. It can be 
considered that those methods which have been developed 
are roughly divided into the following two types according 
to the physical meaning of the averaging operator to be 
used on modelling turbulence. One is a type of method in 
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stresses and strains assumed in the earlier formulations 
seemed to give rise to erroneous predictions of turbulence 
quantities. 

The purpose of this work is to estimate the practical 
utilities of those numerical methods from the viewpoint of 
engineering. Thus the stress-equation models were excluded 
from the aims of this work as, first they are too complicated 
to obtain the numeric3l solutions of the whole flow field in 
a short computer time and secondly the exact prediction of 
turbulence quantities is not so much required in the problem 
of room environment as in fluid-mechanics. The first require­
ment of this problem is to predict the distributions of 
velocity, temperature and concentr!tion averaged during the 
period that is much longer than the time scale of the energy­
concaining eddy. We must note there are not only jets and 
boundary layers but also some recirculations in a vencilated 
room. Consequencly the numerical method using the two­
equation model and the large-eddy simulation method 
utilizing the sub-grid scale eddy coefficienc were selec ted as 
the numerical methods that should be discussed in this 
work. The transport equations of turbulence energy and its 
rate of dissipation are :i.dopted in lhe ewe-equation model. 
TIHi laner method was developed by Smagorinsky er al. 3 

and chen was extended to the study or channel flow by 
Deardorff .8 The model led lurbulence which was used in this 
method is referred to as ·Deardorff"s mode l' in this paper. 
Gene rally , in che lar.ge~ddy simulation, ic is necessary to 
calculate the unsteady solutions for a long period , even when 
only time mean flow is required. ~evenheless the Deardorfrs 
model was adopted because of its simplicity. Thac is, in this 
model a single universal constant 3ppears on formu lating 
turbulence. 

The numerical method using the two-equation model has 
been successfully used co predict various flows, as recom­
mended by Launder-Spaldin.g.9• 

10 A few results have already 
been reported which were obtained by applying this method 
co the flow in a ventilated room.JI, I'.! As compared with 
those srudies, this work has the foUowing features. First the 
three-dimensional numerical method is employed. Secondly 
two different turbulence models , namely, the two-equation 
model and the Deardorff's model are applied. Also the 
results predicted by both models are compared with each 
other. These results are then compared with che experi­
mental results which were obtained by measuring three 
componencs of velocity at many points in the ventilated 
model room space with a supersonic anemometer. Finally, 
care must be taken thac the problem studied in lhis work 
was confined to the isothermal now for simplific:nion of a 
prob'lcm. The isochermal flow is rhe most fundamental type 
of afr now in a ventilated room. To add temperarure field 
to it is far easier than to solve itself. 

\1athematical formulation 

Consermtion equations 

For 1 he iso1hermal incompressible turbulent t1ow. the 
<!quations I'm conservation of momentum and for conrinuitv 
can he Jescrihed as follows. ;ee Nomenclature for detlnitio~ 
1if terms: 

au; a 1 aP a 
- +- (U;U;)=-- - - - (u;u;) 
ar ax; p axi ax; (1) 

auifax; = o (2) 

where the stresses due to viscous forces are neglected , 
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because Reynolds' stresses -pu;u; are much larger: 

Two-equation model of turbulence . 
According to Hinze,13 Reynold~' stresses are as; •. 

_ (aui aui) 2 
-pu;u; = µt - + - - - pkoi; 

ax; axi 3 . 

The transport equations of turbulence energy and its r 
dissipation recommended by Launder-Spalding9 • 10 are 
written: 

ak a 1 a (µr ak) 
- + - (kU;) = - - - - + S - E 
at ax; p ax; ak ax; 

ae a . I a (µt ae) E e2 

-+-(eU;)=-- -- +Ci-S-C2 - (5) 
at ax; p ax; ae ax; k k 

where molecular diffusion is ignored and: 

s =!:!!au; (aui +au;) 
p ax; ax; ax; 

Th~ turbulent viscosity µr is defined as: 

µr = CDpk2/E 

In this work , the constants appearing above are given the 
following values: 

(6) 

(7) 

ak=l.O, a<=l.3, C1 =1.59, C2 =2.0. CD=0.09 

Jones-Launder14 made an attempt at replacing C 1 by an 
algebraic function of turbulence Reynolds number to 
analyse more precisely a turbulenr boundary layer, which 
has che weak turbulence region in very close co the wall. Bur 
such a modification was not adopted in this work, because 
the flow in a ventilated room consists largely of injected 
jets and recirculations. The boundary layers near the walls 
were assumed to be included in the boundary conditions. 

Deardorff's model of turbulence 
The overbar -- used in this model implies averaging 

over the grid volume . Thus the subgrid scale components are 
filtered out from all dependent variables. Reynolds' stresses 
are assumed to be similar to (3) in form, namely: 

(
au. au.) 1 

-puiu; = pK -
1 
+ _j - - PD;;ukuk 

ax; axi 3 
(8) 

where K is the subgrid scale eddy coefficient and has a 
physical meaning different from µr/P. Smagorinsky et al. 3 

estimated K as follows: 

faui (aui au.)} 1
1
2 

K=(ch)2 - -+-1 
\ ax; ax; axi 

(9) 

where c is a dimensionless constant and h is a grid interval. 
Deardorff~ evaluated 0.1 for c, and this value is also used in 
this work. 

Solution procedure 
The ~arker -and-ceU (~l..\C) method,15

•
16 in which threll 

velocity components and pressure are taken as dependent 
variables, is very convenient to solve the equations for con· 
servation of momentum and for continuity. But the forward 
finite -difference scheme used for time differential in the 
original MAC method has a second-order error. When solv­
ing the unsteady flow , this error not only makes the solu­
tions incorrect but upsets tl,e computation itself on account 
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of the numerical instability caused by the negative numerical 
diffusion. Therefore in this work the Adams-Bashforth 
scheme 17 having a second-order accuracy was employed for 
the time differential. This scheme, for aU;/ot = Ri, is: 

3 l cur+ 1 -· un;t:i.r = 2 RF - 2 RF- 1 (! 0) 

where nt:i.r-= t. The same finite-difference schemes that are 
used in the MAC method were applied to space differentials. 
TI1e schemes of ad vection terms have the property of con­
serving the total kinetic energy even on the field of discrete 
quantity. The partial differential equations for turbulence 
could be solved by the same numerical technique as was 
applied to the equations for motion. 

Any quantity was made dimensionless by dividing by a 
representative quantity having the same dimension and com­
posed of the bulk velocity of a supply outlet U0 and its 
width L 0 , before the partial differential equations were 
reduced to the finite-difference equations. In rhe prediction 
by the two-equation model, timt: integration was started 
from the initial conditions of Vi = 0 in the room and was 
continued until the solution was steady. On the other hand, 
;n the prediction by the Deardorffs model, the solutions 
:·rom dimensionless time t = 180 to 780 were regarded as 
available for the calculation of st:itistical quantities and were 
stored on magnetic tape. The initial conditions were the 
same as in the prediction by the two-equation model and 
::i.t = 0.2. 

Geometry and boundary conditions 
Figure 1 illustrates the model room used to predict and 

me:isure the velocity distribution. This room is a 2 x 2 x 2 m 
cube with a supply outlet at the centre of the ceiling :rnd m 
exhaust inlet at one of the walls. Both the outlet and inlet 
are 2/9 x 2/9 m square. In the predictions the space in the 
room was divided into 18 x 18 :< 18 cells (or grid volumes) 
having the same shapes as the cubes. 

/ 
/ 

/ 

/ 
/ 

Su"91Y outlet 

/ 

9Lo 

9Lo 

I 

}- --------- - - -
.•/ Uo 

Exhaust 1rlet 

Figure 1 Geometry of an experimental model room 

The boundary conditions in both predictions were 
arranged on the same assumptions. The conditions satisfying 
the wall law were employed for all wall boundaries. For 
example, if the wail is located in the x- y plane at z = 0, the 
boundary tonditions for U, V, W, k and e are given as: 

(µ, aau) = (µ, aau) = 2hm (µrlfJz=h 12 ( 11) 
Z z=O Z z=hl2 

(µr :~)==O = (µr :~)z=hl2 = 
2~ (µrlfJz=hl2 (12) 

(W)z=O = 0 (13) 

(ak) = (~) = 0 
az I z~O az. ==hl2 

(14) 

'C314 
( . - kJt:.; - - 0 . . 312 
E)z=ll/2 - Co( · l)z=h12 - -;;: lk)~111:. ( 15) 

where the curbulent momentum f1uxes are assumed to be 
constant below z = h/2. The power laws are applied to the 
profiles of Uand Vfrom z = 0 to h/2: 

U = C.z/hr(U)z=11i2 (16) 

v = ! ~=/hrl V).:=11 12 

m = l /7 was used for rhis work. In ( 15) the following 
:issumption is used: 

(l):=li/2 = 1<C1J4:: = 1<.C1J
4
h/2 

( 1 7) 

(18) 

Of course ( 14) and ( 15) are not necessary in the prediction 
by the Deardorffs model. These boundary conditions are 
different from those which Deardorff8 used. 

At the outlet and inlet. the normal velocities to the 
boundary surface were assumed to have sieady and uniform 
proiiles. It seems that the boundary conditions at the 
corners of outlet and inlet have to be carefully treated when 
utilizing :i numerical method in which vorticities and vector 
potentials are used as dependent variables.18 In this case, the 
corners are singular points on the numerical calculation. 
The \1AC method does not cause such a problem. The 
boundary condition that all velocity components are zero 
also holds good at the corners. The turbulence q uanrities at 
the supply outlet were set to the values measured with a hot­
wire probe. That is, in the prediction by che two-equation 
model the dimensionless values of k and eat the outlet were 
2 x l 0 -4 and 5 .1 x 10-7 respectively' and in the prediction 
by Deardorffs model K = 5 >: 10-3 at che outlet. At the 
exhaust inlet the normal derivatives of these quantities 
were assumed to be zero. 

Results 

The results predicted hy the two-equation model and hy 
Deardort'rs model and the experimental results are given in 
Figures 1-9 . Each is composed o! three figures which were 
obtained from those resul ts respectively . Figures::. 3 and 4 
show rhe mean vcloeity vl!1:to rs in the x - y plane. :ind 
Fig11res 5. 6 and 7 show cite dimibu tions of IV(=U 3 ) . Figure 
8 presents the distributions of the result:int velocity Ur in 
they-: plane :it x = 4.5 . . ~II the values :ire made dimension­
less by dividing by U0 • Measuremencs were performed with 
a tnree .Jirection supersonic anemometer having probes 
spaced 10 cm apart between the transmit.ting head and 
receiving head . Consequently, each component of the 
velocity vector could be measur'!d correccly except in the 
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jet region and in the vicinity of the walls where the velocity 
profiles were sharp. The bulk velocity at the outlet was 
9.2 m/s during measurements, and the air flows appeared 
turbulent almost throughout. Sampling duration was 60 s. 
Each record of the velocity components was sampled every 
12 msec, and the statistical quantities were calculated as 
follows: 

1 N 
u. = - I cu·) 

I N n=l In 
( 19) 

(20) 

where N is the total number of samples. Such statistical 
treatment was also given to the unsteady solutions calculated 
by Deardorff's model. although the values of the sampling 
interval and duration differed from those of the experiment. 
From the experimental results the jet seems to diffuse as 
soon as it leaves the outlet, as shown in Figure 8. However, 
this result is suspect, because a supersonic anemometer is 
not a suitable instrument for measurement of a small jet 
having a width comparable to the probe span . Except for 
this discrepancy, the results predicted by both turbulence 
models agree well with [he experimental results. We cannot 
generalize as to which prediction agrees best with rhe experi­
mental results. The results predicted by DeardortTs model 
are not perfectly symetric on the plane at x = 4.5. The cause 
of this may be that the sampling duration was too short . 
Figure 9 shows the distributions of dimensionless turbulence 
velocity ur/U0 in they-.:: plane at x = 4.5. As concerns this 
quantity , borh predicred values are l:l.rger in the vicinity of 
the exhaust inlet than the experimental values. It appears 
that, around the supply outlet , the result predicted by 
Deardorff's model corresponds better with the experimental 
result than that predicted by the two-equation model. In 
the recirculation regions agreement of both predicted results 
with the experimental result is fair. 

Conclusions 

The distribution of mean velocity in a ventilated room 
could be fairly well predicted by both numerical methods. 
But there are conspicuous discrepancies between the predic­
tions and the experiment in regard to the distribution of 
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turbulence velocity. It might be inferred that the~ 
tion for Reynolds' stresses, i.e. (3), or the numen 
instability caused those discrepancies. However;lfe ~ 
distribution of mean velocity is the first requirem ,. 
many practical predictions, such discrepancies shouf 
be regarded as so serious. Finally, from the viewpoini 
engineering, we can conclude that the numerical meth 
utilizing such turbulence models are available for the- " 
tical predictions of air flows in actual rooms. As reg;U 
two-equation model and Deardorff's model, the differ " · 
between both predicted distributions of mean velocity· 
not so large that the former is more advantageous than , 
latter in view of the time required for computeration. The :\~­
numerical method using the former can give the solutions " 
of the whole flow field in less computer time. 
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