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A three-dimensional recirculation flow in a ventilated room was predicted
by the numerical methods in which the turbulence models are applied. The
predicted results are compared with the experimental results obtained in

a model room in order to estimate the practical utilities of such methods
from the viewpoint of engineering. Taking account of the practicability of
prediction method which the engineers regard as important, two turbulence
models were selected and they were incorporated into the numerical pre-
diction methods respectively. One is the two-equation model, in which
transport equations of turbulence energy and its rate of dissipation are
adopted. The other is the Deardorff’'s model, in which the subgrid scale
eddy coefficient is utilized. The prediction was made by each numerical
method. Consequently, no noticeable difference is recognized between
both predicted results. Each result is compared with the experimental
results. Generally speaking, each agreement is good with regard to the
mean velocity. Thus we can conclude that the numerical method using the
two-eguation model has more practical utility than that using Deardorff’s
model, because it can give the solutions in a shorter computer time.

Introduction

Prediction of the distributions of velocity, temperature, and
concentration in a room is not only available for designing
air-conditioning systems, but is also important in providing
amenity in a room. Recent advancements in numerical
methods for fluid-mechanics have been accompanied by
investigations on numerical prediction of these distributions.
However, in that case, because the air flow in a room is
turbulent, we must apply the numerical method in which
the effects of turbulence on mean tlow are taken into
account. Thus it is necessary to discuss the numerical
methods of predicting the general turbulent flow. It can be
considered that those methods which have been developed
are roughly divided into the following two types according
to the physical meaning of the averaging operator to be
used on modelling turbulence. One is a type of method in
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which one of the turbulence models devised independently
of the numerical method is applied. The two-equation
model, which was studied by Davidov,' Harlow-Nakayama?
and others, is most typical of such models. The other is a
type of method which is called "largeeddy simulation’. This
method was investigated by Smagorinsky et al.®and Lilly 2
In the former the averaging operator indicates the ensemble
average or the time average for the duration that is longer
than the time scale of the largest eddy in the turbulent flow
to be solved. But in the latter it denotes the space average
over the grid volume of the finite-difference scheme applied
to the numerical calculation. Thus the eddies that are larger
than the grid scale can be analysed by solving the partial
ditferential equations for the averaged motion. In the earlier
formulations of both methods. Reynolds’ stresses were
assumed to be connected with the strain tensor of the mean
flow by a scalar eddy viscosity. Later the investigators’
interests have been directed to development of the stress-
equation models®~7in which Reynolds' stresses themselves
are dependent variables, because the relations between
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stresses and strains assumed in the earlier formulations
seemed to give rise to erroneous predictions of turbulence
quantities.

The purpose of this work is to estimate the practical
utilities of those numerical methods from the viewpoint of
engineering, Thus the stress-equation models were excluded
from the aims of this work as, first they are too complicated
to obtain the numerical solutions of the whole flow field in
a short computer time and secondly the exact prediction of
turbulence quantities is not so much required in the problem
of room environment as in fluid-mechanics. The first require-
ment of this problem is to predict the distributions of
velocity, temperature and concentration averaged during the
period that is much longer than the time scale of the energy-
containing eddy. We must note there are not only jets and
boundary layers but also some recirculations in a ventilated
room, Consequently the numerical method using the two-
equation model and the large-eddy simulation method
utilizing the sub-grid scale eddy coefficient were selected as
the numerical methods that should be discussed in this
work. The transport equations of turbulence energy and its
rate of dissipation are adopted in the two-equation model.
The latter method was developed by Smagorinsky er al.?
and then was extended to the study ot channel flow by
Deardorff.® The modelled turbulence which was used in this
method is referred to as ‘Deardortf’s model' in this paper.
Generally, in the large-<ddy simulation, it is necessary to
calculate the unsteady solutions for a long period, even when
only time mean flow is required. Nevertheless the Deardorff’s
model was adopted because of its simplicity. That is, in this
model a single universal constant appears on formulating
turbulence.

The numerical method using the two-equation model has
been successfully used to predict various flows, as recom-
mended by Launder-Spalding.'® A few results have already
been reported which were obtained by applying this method
to the flow in a ventilated room.'"** As compared with
those studies, this work has the following features. First the
three-dimensional numerical method is employed. Secondly
two different turbulence models, namely, the two-equation
model and the Deardorff’s model are applied. Also the
results predicted by both models are compared with each
other. These results are then compared with the experi-
mental results which were obtained by measuring three
components of velocity at many points in the ventilated
model room space with a supersonic anemometer. Finally,
care must be taken that the problem studied in this work
was confined to the isothermal flow for simplification of a
problem. The isothermal flow is the most fundamental type
of air flow in a ventilated room, To add temperature field
to it is far easier than to solve itself,

Mathematical formulation

Conservation equations

For the isothermal incompressible turbulent flow, the
equations for conservation of momentum and for continuity
can be described as follows. see Nomenclature for definition

of terms:
Zo ( ) aP a
"y D= o = o ) (1)
8U,~/Bx,-=0 (:)

where the stresses due to viscous forces are neglected,
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because Reynolds’ stresses —puu; are much larger

Two-equation model of turbulence :
According to Hinze,l:'l Reynolds’ stresses are assumie®
(BU,- oU; 2 ”

—pu.u.:u —+-—-)—-—p S

5 i aX]' Bx,» 3 #

The transport equations of turbulence energy and its rateie) '::.

dissipation recommended by Launder-Spalding®1© 3re
written:

0k 0 1 0 (u, ok
—+~—(kU)—-—-(— — ) +S—¢

ot  dx p 0x; ‘oy 0x;

8e+ 0 1 9 (u, Be) i S = e?

or 0x; (et = p 0Xj \0 0x; "k 2__ )

where molecular diffusion is ignored and:
B

(&)
P ax, ax,- ax,- ( )

The turbulent viscosity u, is defined as:
ur = Cppk?le N

In this work, the constants appearing above are given the
following values:

0, =10, 0. =13, C, =139, C,=2.0, Cp=0.09

Jones-Launder** made an attempr at replacing €, by an
algebraic function of turbulence Reynolds number to
analyse more precisely a turbulent boundary layer, which
has the weak turbulence region in very close to the wall. But
such a modification was not adopted in this work, because
the flow in a ventilated room consists largely of injected
jets and recirculations. The boundary layers near the walls
were assumed to be included in the boundary conditions.

Deardorff’s model of turbulence

The overbar used in this model implies averaging
over the grid volume. Thus the subgrid scale components are
filtered out from all dependent variables. Reynolds’ stresses
are assumed to be similar to (3) in form, namely:

au; oUyN 1
—puiu; = pK — + —§p6,~,~ukuk (8)

ox; 0x;

where X is the subgrid scale eddy coefficient and has a
physical meaning different from u,/p. Smagorinsky er al.?
estimated K as follows:

pdbet=]

where c is a dimensionless constant and A is a grid interval.
Deardorff® evaluated 0.1 for ¢, and this value is also used in
this work.

1/2

K = (ch)? (9)

ox; Ox;

Solution procedure

The Marker-and-cell (MAC) method,'> !¢ in which three
velocity components and pressure are taken as dependent
variables, is very convenient to solve the equations for con-
servation of momentum and for continuity. But the forward
finite-difference scheme used for time differential in the
original MAC method has a second-order error. When solv-
ing the unsteady flow, this error not only makes the solu-
tions incorrect but upsets the computation itself on account
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of the numerical instability caused by the negative numerical
' diffusion. Therefore in this work the Adams-Bashforth
" scheme'” having a second-order accuracy was employed for

the time differential. This scheme, for dU;/3t = R;, is:
3 1 {
(Ui"+1 - U:‘n)/A[ =;Rin - ;R‘!'— (10)

where nAr=t. The same finite-ditference schemes that are
used in the MAC method were applied to space differentials.
The schemes of advection terms have the property of con-
serving the total kinetic energy even on the field of discrete
quantity. The partial differential equations for turbulence
could be solved by the same numerical technique as was
applied to the equations for motion.

Any guantity was made dimensionless by dividing by a
representative quantity having the same dimension and com-
posed of the bulk velocity of a supply outlet U, and its
width L, before the partial differential equations were
reduced to the finitedifference equations. In the prediction
by the two-equation model, time integration was started
trom the initial conditions of U; =0 in the room and was
continued until the solution was steady. On the other hand,
in the prediction by the Deardorff’s model, the solutions
‘rom dimensionless time ¢ = 180 to 780 were regarded as
available for the calculation of statistical quantities and were
stored on magnetic tape. The initial conditions were the
same as in the prediction by the two-equation mode!l and
Ap=). 2,

Geometry and boundary conditions

Figure 1 illustrates the model room used to predict and
measure the velocity distribution. Thisroomisa 2x2x 2m
cube with a supply outlet at the centre of the ceiling and an
exhaust inlet at one of the walls. Both the outlet and inlet
are 2/9 x 2/9 m square. In the predictions the space in the
room was divided into 18 x 18 % 18 cells (or grid volumes)
having the same shapes as the cubes.
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Figure 1 Geometry of an experimental model room

The boundary conditions in both predictions were
arranged on the same assumptions. The conditions satisfying
the wall law were employed for all wall boundaries. For
example, if the wall is located in the x—y plane at z = 0, the
boundary conditions for U, ¥, W, k and ¢ are given as:

aU U 2m
(“r—) = (.“r'—> == Wl)z=np (11)
z=0 0z z=h[2 h

0z/,
1% v 2m
(ur 32/ = (ur I >~=h/2 e Wrlz=npp  (12)
(W)Z:o = O (13)
ak: 3k
(~) i (—) =0 (14)
0z/529 \0Z/.=pp
, ; 20t
(€)z=npr = Co(k** Dgznja = k)2l (15)

Kkh

where the turbulent momentum fluxes are assumed to be
constant below z = 4/2. The power laws are applied to the
profiles of U and V trom z =0 to A/2:

U= (‘33,/h)m(U)z=h/2 (16)
V= (:Z/i}!)m(l”):z/l/z (17)

m = 1/7 was used for this work. In (15) the following
assumption is used:

(Da=npr = kCY*= =kCHn)2 (18)

Of course (1<) and (15) are not necessary in the prediction
by the Deardortf’s model. These boundary conditions are
different from those which Deardorff® used.

At the outlet and inlet, the normal velocities to the
boundary surface were assumed to have steady and uniform
profiles. It seems that the boundary conditions at the
corners of outlet and inlet have to be carefully treated when
utilizing a numerical method in which vorticities and vector
potentials are used as dependent variables.!® [n this case, the
corners are singular points on the numerical calculation.
The MAC method does not cause such a problem. The
boundary condition thar all velocity components are zero
also holds good at the corners. The turbulence quantities at
the supply outlet were set to the vaiues measured with a hot-
wire probe. That is, in the prediction by the two-equation
model the dimensionless values of & and € at the outlet were
2% 10™*and 5.1 x 1077 respectively, and in the prediction
by Deardorff’s model K = 5 x 107 at the outlet. At the
exhaust inlet the normal derivatives of these quantities
were assumed to be zero.

Results

The results predicted by the two-equation model and by
Deardortf’s model and the experimental results are given in
Figures 2—-9. Each is composed of three figures which were
obtained from those results respectively. Figures 2, 3 and 4
show ihe mean velocity vectors in the x—y plane. and
Figures 3, 6 and 7 show the distributions ol W(=U;). Figure
& presents the distributions of the resultant velocity U, in
the y—= plane at x = 4.5. All the values are made dimension-
less by dividing by Uy. Measurements were performed with
a three-direction supersonic anemometer having probes
spaced 10 cm apart between the transmitting head and
receiving head. Consequently, each component of the
velocity vector could be measursd correctly except in the
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Figure 2 Distributions of dimensionless velacity vectors in x—y plane at z = 1.0. (a), two equation model; (b) Deardorff's model;
{c) experimentai
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Figure 3 Distributions of dimensionless velocity vectors in x—y plane at z = 4.5, (a) two equation modei; (b), Deardorff’'s model;
(c), experimental

O 02 O 02 Q 02
~~~SNMNN Sy NN S W P
\"._'“\\\\n\tuu s\\\\nuirﬂz/u s ow SEL £ 4 .
Vom~SSNNANN N ] (N R A I I A e
\_--..‘\\\\xlf/f// NSNNXNNV U A s , ~ ~ Vil s s,
Nommma~NNV VAL s NSNNANNDY |y A A
S A R L SaNSIWNWN VL g A A e S = % Ml v -
'-.‘4‘.-—\\\///,//—— ~wmwsSYSwN W {4 Y v L_
-‘-‘_-~¥L{ /I/I—f'\b_ - s N b P P }_ ~ - ~‘\'_\_{ B s
- e A w g o w ——— ,.-_....—nd-\-....__*,é.. - N wm e\ P e g e
.-—*--—A)-}-—'\ \\\\‘:-:/Ar- ,“44“}‘&\\\-.—:;?"-— - ‘/Lr-l\—--.—-— —
_.--~-...;// Y VAN et P A BN e =
it 2 BN S ,,;;,,,y:\\\\\\—-’ 2 4 7 /4N NN
eV A R EEE R R f2 2777 1V V UL NN NN -
x,-;-;};//,t\\\\\\ //////f!l'\\\\\\\ o YT R B A | LR Y
Sttt AN R R R R R Y42 Z727 510001 VNN i~ o~ -
eV PP VYRR EEERE V272000010 VAN | 71
4‘-—’11,//[,‘\\\\\ -—‘,,,,I,~/ \\.\\.—\ !

Figure 4 Distributions of dimensioniess velocity vectors in x—y plane at z = 8.0. (a), two equation model; (b), Deardorff’s model; (c), experi-
mental
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Figure 8 Distributions of dimensionless resultant velocity in y—z plane at x = 4.5, (a), two equation model; (b), Deardorff's modet; (c), experi-
mental

Figure 9 Distributions of dimensionless turbulence velocity in y—z plane at x = 4.5, (a), two equation model; (2}, Deardorff's model; (c), experi-
mental

Appl. Math. Modelling, 1980, Vol. 4, February 71




Three-dimensional flow in a ventilated room: Y. Sakamoto and Y. Matsuo

jet region and in the vicinity of the walls where the velocity
profiles were sharp. The bulk velocity at the outlet was

9.2 m/s during measurements, and the air flows appeared
turbulent almost throughout. Sampling duration was 60 s.
Each record of the velocity components was sampled every
12 msec, and the statistical quantities were calculated as
follows:

1 N
—N é t)n (19)
13 | N

L g { (@~ () }2 (20)
=14 n 1

where V is the total number of samples. Such statistical
treatment was also given to the unsteady solutions calculated
by Deardorff’s model. although the values of the sampling
interval and duration ditfered from those of the experiment.
From the experimental results the jet seems to diffuse as
soon as it leaves the outlet, as shown in Figure 8. However,
this result is suspect, because a supersonic anemometer is
not a suitable instrument for measurement of a small jet
having a width comparable to the probe span. Except for
this discrepancy, the results predicted by both turbulence
models agree well with the experimental results. We cannot
generalize as to which prediction agrees best with the experi-
mental results. The results predicted by Deardorff’s model
are not perfectly symetric on the plane at x = 4.5, The cause
of this may be that the sampling duration was too short.
Figure 9 shows the distributions of dimensionless turbulence
velocity u, /U, in the y—z plane at x = 4.5. As concerns this
quantity, both predicted values are larger in the vicinity of
the exhausrt inlet than the experimental values. [t appears
that, around the supply outlet, the result predicted by
Deardorff’s model corresponds better with the experimental
result than that predicted by the two-equation model. In
the recirculation regions agreement of both predicted results
with the experimental result is fair.

Conclusions

The distribution of mean velocity in a ventilated room
could be fairly well predicted by both numerical methods.
But there are conspicuous discrepancies between the predic-
tions and the experiment in regard to the distribution of
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turbulence velocity. It might be inferred that the zo38

tion for Reynolds’ stresses, i.e. (3), or the numeric il
instability caused those discrepancies. However; b
distribution of mean velocity is the first requiremengh
many practical predictions, such discrepancies shou[g¥
be regarded as so serious. Finally, from the viewpoinf@
engineering, we can conclude that the numerical methed
utilizing such turbulence models are available for the pi2
tical predictions of air flows in actual rooms. As regardg
two-equation model and Deardorff’s model, the differenes
between both predicted distributions of mean velocity jgi
not so large that the former is more advantageous than
latter in view of the time required for computeration, The "+&*
numerical method using the former can give the solutiong

of the whole flow field in less computer time,
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