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Transfer Rates in Single-Sided Ventilation 
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A. J. REYNOLDS* 

This paper describes a numerical study of the transfer rates associated with single-sided ventilation. 
It discusses the relationship between the heat transfer rate across the plane of the window opening 
and the mean temperature maintained in the room. The room is represented by a rectangular two
dimensional cavity which is exposed to the external flow from one side only. Partially closed 
cavities are studied, to simulate the window effect. The study also describes the effect of the area 
of heat release on the cavity walls. It is argued that, by analogy between heat and mass transfer, 
the results are applicable to the transfer rates of the contaminants released in the room. 

The mathematical model consists of the governing differential equations of continuity, momentum 
and energy which, together with two equations for the k-e model of turbulence, are solved using a 
control-volume technique. 

NOMENCLATURE 

A 0 window area, m2 

c,., c 1, c,, c3 , c0 constants in the k-e turbulent-flow model 
c" specific heat, J kg- 1 K - 1 

C concentration, kmol m- 3 

g gravitational acceleration, m s-2 

h heat transfer coefficient, Wm- 2 K- 1 (h = Q/A 0/'iT) 
k turbulence kinetic energy, Nm kg- 1 

L window length, m 
N mass rate of release of contaminant in the cavity, kmol 

m-2 s-1 
p time-averaged static pressure, N m- 2 

tiw wall heat flux, W m - 2 

Q heat transfer rate, W 
R gas constant, J kg- 1 K - 1 

Re Reynolds number 
s., source term for variable <P 

St Stanton number 
St, mass transfer Stanton number 
ST source term in the energy equation 
T temperature, °C 

T0 outer stream temperature, °C 
Tw wall temperature, °C 
Tp temperature at node P next to wall, °C 
Tm mean temperature in the cavity, °C 

u, v time averaged velocity component, m s- 1 

U outer stream velocity, m s- 1 

u+ non-dimensional velocity~= u/u,) 
u, friction velocity (u, = ~•wf P) 

x,y Cartesian co-ordinates 
y+ non-dimensional distance from the wall (y+ = yu,/v) 

Greek symbols 
p coefficient of thermal expansion, K - 1 

r,, diffusion coefficient for variable <Per.= µ/rr.p) 
e rate of dissipation of k, Nm kg- 1 s- 1 

µ dynamic viscosity, kg m- 1 s- 1 

µ, turbulent viscosity, kg m- 1 s- 1 
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µ,rr effective viscosity, µ,rr = µ+ µ, 
p fluid density, kg m- 3 

v kinematic viscosity, m2 s- 1 

<P general dependent variable 
rrT, rrT,i laminar and turbulent Prandtl numbers, respectively 

rr" rrk constants in the turbulence model 
•w wall shear-stress, N m- 2 

Subscripts 
1, 2, 3 refer to the heated walls (see Fig. 1) 

ref reference value 
P refer to node P next to wall. 

1. INTRODUCTION 

SINGLE-SIDED ventilation is that generated by the 
wind external to a building, as the wind flows past an 
opening or openings on one side of the room. Thus the 
removal of heat or some contaminant from the room is 
achieved entirely by scavenging processes at the window 
opening, and not by a bulk flow through the room. The 
temperature level within the room, or concentration of 
the contaminant, is achieved by the zero-sum interchange 
of air which takes place at the window. 

It is well known that the transfer processes for fluid
contaminant combinations characterized by molecular 
Prandtl and Schmidt numbers close to unity are closely 
analogous to the momentum-transfer processes. This 
analogy, known as Reynolds analogy, is commonly 
adopted to relate the transfer of heat, mass and momen
tum in gases, where the condition is commonly satisfied. 
In two earlier papers (1, 2], the present authors have 
investigated in some detail the flow fields associated with . 
single-sided ventilation. The study was based on hot-wire 
measurements, flow visualization and also a math
ematical model. The factors included in these studies 
were: cavity (or room) shape, the influence of acceleration 
and deceleration of the outer flow, Reynolds number of 
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the flow, and size and location of the opening (or win
dow) between internal and external flows. 

There are a number of studies in the literature which 
deal with the fluid flow and heat transfer in fully-open 
cavities [3-5]. Humphrey and To [3] have carried out a 
detailed numerical study (based on the k-s model) of free 
and forced convection flows in a heated two-dimensional 
cavity of arbitrary inclination to the gravity direction. 
They have discussed some of the most relevant studies 
on the subject and have given a number of correlations 
relating Nusselt and Stanton numbers to the Reynolds 
and Grashof numbers. 

The studies by Yamamoto et al. [4] and Ideriah [5], 
not cited by Humphrey and To [3], are also relevant 
to the present work. Yamamoto et al. [4] have studied 
experimentally the forced convection heat transfer from 
heated cavities of various depth to width ratios. They 
have also given correlations for the Nusselt number in 
terms of the Reynolds number and the depth to width 
ratio. Ideriah [5] has carried out a numerical study of 
turbulent flow in a heated cavity driven by the external 
flow in an adjoining channel. He adopted the same 
numerical method and the turbulence model as have been 
adopted in the present study. The results for the fluid flow 
and temperature fields are given for Reynolds numbers 
mainly in the range of 10 000 to 200 000 and Archimedes 
numbers (Ar= Gr/Re 2

) between 0 and 0.37. However, 
the height of the adjoining channel, containing the "exter
nal" flow, was relatively small compared with the cavity 
depth. Since this configuration is likely to modify sig
nificantly the development and location of the shear 
layer, the results are of limited application to building 
ventilation. 

The present paper addresses the problem of specifying 
the transfer between internal and external flows, and thus 
the internal temperature (or concentration) level. The 
contaminant considered is in fact thermal energy, and 
the concentration is thus measured by the temperature 
level in the room. The investigation is based on computer 
modelling, using the same mathematical model as the 
earlier studies [l, 2]. The approach is justified by the 
detailed comparisons made in the earlier papers between 
measurement, flow visualization and results of com
putation. 

The particular contributions of this study which dis
tinguish it from earlier studies are: 

• Consideration of partially open cavities, rep
resentative of more normal room configurations 
where the window occupies only part of the "open" 
wall 

• Consideration of a number of heating modes, in an 
attempt to develop results that are more-or-less inde
pendent of the way in which heat is released within 
the "room" 

e The use of a mean air temperature (in determining the 
temperature level above that of the external flow), 
rather than a wall temperature (as adopted by other 
investigators), in order to produce results rep
resentative of in-room conditions 

e Concentration on higher values of Reynolds number, 
where effects of buoyancy are insignificant 

• Extension of the results to transfer of passive con
taminants. 

2. THE MATHEMATICAL MODEL 

The governing differential equations of mass, momen
tum and thermal energy can be written in the following 
general form : 

where ¢ = 1, u, v or, T. The diffusion coefficients r q, and 
the source terms Sq, are given in Table 1. The turbulence 
model adopted in this study is the k-c. model. As a result, 
two additional equations, one for the turbulence energy 
k and the other for its rate of dissipation s, are solved 
simultaneously with the other equations. These two equa
tions are also written in the form of equation (1), using 
the substitutions shown in Table 1. The eddy viscosity is 
then calculated from k and s using the relationship (T. l) 
in Table 1. A detailed description of the k-s model and 
other turbulence models can be found in [6]. The set 
of governing differential equations are transformed into 
discretised forms using a control-volume method. These 
are then solved using the Line-by-Line method and 
TDMA (Tri-Diagonal Matrix Algorithm [7]). The solu
tion procedure employs the SIMPLE (Semi-Implicit 
Method for Pressure-Linked Equations) method of 
Patankar and Spalding [8] for calculation of pressure. 
Full details of these procedures can be found in [7]. 

The buoyancy terms in the v-momentum, k ands equa
tions are given here for completeness. In fact, in the 
present study the effect of buoyancy forces is small. This 
can be realized with reference to the values of the par
ameter Re 2/Gr, which denotes the ratio of inertia forces 
to buoyancy forces. Humphrey and To [3] have con
cluded that for Re 2/Gr > 2 the heat loss from a cavity is 
strongly affected by the inertia forces. For Re 2/Gr > 21.3 
the flow field in the cavity is dominated by the inertia 
forces and becomes independent of orientation of the 
cavity. For the range of parameters adopted in the pre
sent study (see Table 2) the buoyancy forces are therefore 
negligible. 

The special treatment of the flow near walls follows 
the well-known wall-function method [4, 9]. According 
to this method, the heat flux from a wall, which is kept 
at a constant temperature Tw, to the turbulent flow adja
cent to it is calculated from: 

(2) 

which is derived using the relations for turbulent bound
ary layers as explained in [6]. Tt is defined as: 

Tt = (JT,i[Uf +f]. (3) 

The function f can take different forms. The one which 
is used in this study is due to Jayatillaka [10], given by: 

(4) 

TP in equation (2) is the temperature at a node on the 
first grid line adjacent to the wall. Equation (2) implies 
that the first grid line should therefore be located in 
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Table I. The differential equations of the mathematical model 

Equation <P f' ¢ s¢ 

Continuity 0 

u-momentum u µ,ff ap a ( au) a ( av) 
- ax + ax µ,ff ax + ay µ,ff ax 

v-momentum v µ,ff ap a ( au) a ( av) 
- ay +ax µ,ff ay + ay µ,ff ay -g(P-Pcor) 

Turbulence energy k µ,ff/ak Gk-CDps+pgf3u'T' 

Energy dissipation µ,ff/a, 
e s2 s -

C, kGk-C2 pk +C,pkgf3v'T' 

Energy equation T f',ff Sr 

-pv'T' = f'T,t ~~, Gk=µ{{ (~:)2 +(~;)']+(~; + ~:)] P = ~~· 
The empirical constants have been adopted from Launder and Spalding [I I] and take the 
following values: c" = 0.09, c0 = 1.0, c 1 = 1.44, c2 = 1.92, c3 = 1.0, ak = 1.0, a, = 1.3. 
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the turbulent region of the boundary layer, say, when 
y+ > 30. If the calculations indicate that y+ < 11.63, 
then simpler relations describing the heat flux by con
duction through the viscous sublayer are used. A full 
account of the treatment for the flow in the boundary
layer region, and the incorporation of the boundary con
ditions can be found in [4]. 

3. GEOMETRY OF THE PHYSICAL DOMAIN 

u 
Case L/B (ms- 1) 10- 5 Re 

1.0 10 2 

2 1.0 5 

3 1.0 50 10 

4 1.0 10 

5 1.0 10 

6 1.0 IO 

7 1.0 5 

8 0.5 10 2 

Figure 1 and Table 2 show the geometry of the cavity 
and the external-fl.ow conditions. The basic square shape 
is adopted for most calculations, but a cavity whose depth 
is one half its open width is also considered. In addition 
to cavities fully open to the external air fl.ow, con-

Table 2. Results for the calculations carried out 

Heated Q, Q, Q, Q !J.T l03 h 
wall (W) (W) (W) (W) (OC) (W m- 2 K- 1) 103 St Geometry 

I 358 -60 -28 270 6.6 135 !LI ---> 

2 -23 358 -33 302 6.9 144 11.8 Ll 3 -76 -62 558 420 12 114 9.4 
I 214 -50 -20 144 6.6 72 12.2 u 2 -16 273 -27 230 7.6 99 16.8 
3 -52 -50 355 253 13.2 63 10.7 
I 1272 -156 -79 1037 6.2 553 9.4 u 2 -49 1221 -70 1102 4.7 773 13.l 
3 -200 -157 1872 1515 9.4 526 8.9 
I 214 -46 -19 149 6 162 13.7 u 2 -20 241 -26 -195 9.1 140 11.9 
3 -43 -31 294 220 9.6 151 12.8 
I 249 -34 -24 191 8.6 146 12.4 u 2 -12 193 -18 163 5.7 186 15.8 
3 -54 -31 367 282 13.5 138 11.7 
I 187 -41 -18 128 9.5 89 7.5 

lJ 2 -13 196 -13 170 6.6 170 14.4 
3 -33 -23 191 135 7.7 115 9.7 
I 265 -54 -24 187 6.7 91 15.3 The same as 

case 2 but 
with uniform 
inlet velocity 

I 463 -45 -21 397 9.5 137 11.3 ---> 
2 -[[ 224 -6 207 3.1 219 18 LI 3 -54 -15 333 264 5.9 145 12 
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Flow -

Fig. I. Schematic diagram of the cavity. L = H = 0.306 m. 

sideration is also given to half-open cavities (that is, when 
the opening occupies half the "window" wall) as shown 
in Table 2. 

4. BOUNDARY CONDITIONS 

The inlet conditions for velocity and turbulence energy 
were based on our experimental data and were the same 
as those adopted in the calculations reported in [l, 2]. 
The temperature at inlet was set at l 9°C. The mainstream 
velocity was 10 ms- 1 and the boundary-layer thickness 
was 27 mm for most of the calculations. However, vel
ocities of 5 m s- 1 and 50 m s- 1 have also been 
considered, giving Reynolds numbers 1 x 105 to 10 x 105

, 

spanning the range between experimental models and 
realistic rooms. 

The north-end of the flow domain was bounded by a 
symmetry axis as shown in Fig. 1. At the outlet plane, 
the v-components were set to zero, and the u-components 
were calculated using the predicted u-values at the 
upstream plane, so that the overall conservation of mass 
was satisfied. 

One of the inner walls was kept at constant tem
perature of 100°C. This condition was set in turn at each 
of the three walls (I, 2 or 3), as identified in Fig. 1. The 
temperatures of the two other walls were set at 20°C. 

5. COMPUTATIONAL DETAILS 

The grid was 46 x 46. In the y-direction, 23 lines were 
placed in the cavity and the rest between the window and 
the symmetry axis. The grid lines were more concentrated 
near the walls and in the shear layer region. In the x
direction, 23 lines were located inside the cavity and the 
rest in the downstream side. 

The Reynolds number used to characterise the flow 
was defined as : 

UL 
Re=

v ' 
(5) 

where U is the imposed uniform outer velocity, and Lis 
the length of the window, measured in the direction of 
the outer flow. 

The heat transfer characteristics of the several shear 
layers developed in the circumstances defined in Table 2 
have been determined in terms of a Stanton number 
defined as: 

St= Q 
pcvA 0 UllT' 

(6) 

where Q is the heat transfer rate through the "window", 
between the room and the external flow. It is determined 
from: 

(7) 

that is, the algebraic sum of the heat transfer rates into 
or out of the room from the walls, obtained by integration 
over the three inner faces. A 0 represents the area through 
which the transfer between the room and the external 
flow takes place, that is, the window area. ~Tis defined 
as: 

(8) 

where Tm represents the mean temperature within the 
cavity, and T0 is the imposed outer temperature. 

Three different measures of Tm were considered, 
namely, the temperature at its geometric centre, the tem
perature averaged over the volume symmetrically dis
posed about the centre and occupying 50% of the entire 
enclosed volume, and the temperature averaged over the 
entire room. As a consequence of the highly effective 
turbulent mixing in the room, the three differed only 
slightly, and the second was chosen as best representing 
typical conditions in the room, away from the heating 
surface itself. 

The same computer program used in our earlier studies 
[1, 2] was used, so that the results will be directly com
parable. 

6. RESULTS 

Table 2 presents the key results of the calculations 
carried out. Cases 1-3 demonstrate the results for a fully 
open square cavity. Each of these cases comprises three 
sub-cases, for heating of one of the three cavity walls, 1, 
2 and 3, respectively. Cases 4-6 represent results for a 
50% open cavity, for the same arrangements for the 
heating of the walls. Case 7 is given to demonstrate the 
effect of introducing a uniform velocity just upstream 
of the window, rather than the boundary-layer profile 
adopted in other calculations. In case 8 a more shallow 
cavity has been considered. 

Inspection of the tabled values leads to the following 
observations in relation to the variation of the Stanton 
number: 

(a) For the situations considered, almost all the 
Stanton numbers characterising the transfer pro
cesses fall into the range 0.009-0.016. It would be 
possible, of course, to move beyond these limits by 
selecting particular combinations of conditions. 
Nevertheless, it appears that a value around 
St = 0.012 is representative of the shear-layer 
activity in varied circumstances. 

(b) For the fully open cavity, the effect of 
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(a) 

I 
24+ 

Fig. 2. Contours of temperature in the fully open cavity : (a) Wall 2 is heated; (b) Wall 3 is heated . 

Reynolds-number variation is small for the higher 
values (Re = 200 000 and 1 000 000) representative 
of modestly-sized models and of actual rooms. 

The position of the heating surface within the room 
gives rise to changes typically between 10 and 25 per cent 
from the average value. The reason for this is manifest in 
Figs 2a and b which show, respectively, the temperature 
contours for cases when walls 2 or 3 are heated. 
Evidently, in the latter case the heat introduced has a 
better opportunity to diffuse into the central part of the 
cavity, and the temperature change across the shear layer 
is larger. 

The heat-transfer rates through all three walls (Q 1, 

Q2 , Q3) increases as Reynolds number increases. As a 
consequence of this, the total heat transfer rate Q across 
the plane of the window increases. The same trend can 
be seen for the heat-transfer coefficient h, but not for the 
scaled coefficient St. 

(c) The typical effect of reducing the size of the 
window is modest, the Stanton number changing on 
average by some 10% when the aperture is changed 
from fully open to half open. However, the position 
of the window on the wall is important, with vari
ations of some 20% about the mean being typical as 
the position is changed. The smallest transfer rates 
are predicted for a window placed on the upstream 
side of the room (case 6). Figure 3 shows the con
tours of temperature for a case of half-open cavity. 

(d) The structure of the outer boundary layer 
is of considerable importance. For the somewhat 
extreme deviation introduced in these calculations 
(case 7) a 25% increase in transfer rate is engen
dered. One must surmise that changes in the external 
pressure gradient (leading to acceleration or decel
eration of the outer flow-not investigated here) will 
also give rise to significant changes in the transfer 
rate . In this connection it is worth noting that the 
structure of the shear layer was found in [l] to 
depend strongly on the external pressure gradient. 

(e) Finally, as would be anticipated, the shape of 
the room has a marked effect on the transfer rate. 

For the flatter cavity considered (case 8), the transfer 
rate is increased and the dependence on the position 
of heat release within the cavity is stronger (Fig. 4). 
These trends are what simple geometric consider
ations would suggest. 

7. DISCUSSION 

Humphrey and To [3] have developed a simple 
relationship (for fully-open cavities), applicable to high 

Fig. 3. Contours of temperature in the half-open cavity. Wall I 
is heated. 

Fig. 4. Contours of temperature in the shallow cavity. Wall 2 is 
heated. 
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values of Re 2/Gr, between the Stanton number and the 
Reynolds number : 

St= aRe6
, (9) 

where a= 0.0154 and b = -0.14. If three ranges for 
the Reynolds number, namely, (i) 100 000-200 000, (ii) 
200 000-1 000 000 and (iii) 100 000-1 000 000 are con
sidered (for each of the three modes of heating, i.e. heated 
walls 1-3), then forms of equation (9) can be derived 
from the results given in Table 1, leading to nine values 
of b ranging from -0.081 to -0.136. Taking a weighted 
average of these values (namely, weight 1 for range (i), 
weight 2 for range (ii) and weight 3 for range (iii)) we 
obtain values of b equal to -0.114, -0.089 and -0.083 
for heated walls 1, 2 and 3, respectively. This suggests that 
a value of b about -0.10 is broadly representative of 
heat transfer from cavities for varied modes of heat input. 

Returning to the results given in Table 2, the computed 
fl.ow fields suggest that the transfer rate and the tem
perature are related by St= 0.012, typically. This value, 
allowing for the difference in the definition of /J.T in the 
present work and that in Humphrey and To [3] (where 
/J.Thas been defined as the difference between the average 
of the temperatures of the three cavity walls and the 
temperature of the outer stream) is consistent with the 
values obtained using equation (9). The results of [1, 2] 
showed that the measured shear stresses differ by at most 
10% from those predicted. Since the air flows under 
consideration are ones in which a close relationship 
between momentum and heat transfer is to be expected, 
one is led to suppose that the transfer rates within the 
shear layer are also predicted by the computational model 
with the same accuracy. This justifies the use of the value 
St = 0.012 as a guide in relating heat inputs and air 
temperatures. 

The results given above can be presented more 
explicitly in the form: 

l'lT=~ 
pcPA 0 U' 

(10) 

which presents the temperature elevation within the room 
in terms of the net rate of energy release to the fl.ow within 
the room and other relevant factors. This result can be 
extended to transfers of a passive contaminant released 
within the room (for example, water vapour, carbon 
dioxide or some other product of combustion) by recast
ing it in terms of the mass-transfer Stanton number: 

(11) 

where N is the mass rate of release of the contaminant, 
and /J.C is the mass concentration within the cavity. In 
practical terms, we can write: 

(12) 

The investigation of sensitivities undertaken earlier in 
this paper suggests that the simple rules given above 
are subject to variations as large as 50%, depending on 
factors such as the way in which the heat (or con
taminant) is released, the nature of the outer flow, the 
size and position of the window, and the shape of the 
room. By carrying out a systematic programme of cal
culation, covering perhaps hundred diverse cases, it 
would be possible to prepare a table from which more 
accurate values of the characteristic Stanton number 
might be selected. By this means one might reduce the 
uncertainty in the prediction of the transfer to perhaps 
20%. More precise estimates than these would seem to 
require computer modelling or measurement of the trans
fers using specially designed models. An accuracy of per
haps 10% might then be attained. 

Although the actual turbulent processes through which 
momentum and heat (or mass) transfers are achieved are 
fairly closely analogous, it is a matter of some delicacy 
to relate the overall shear forces and transfer rates. In 
flows of the kind considered here, with upstream- and 
downstream-facing surfaces on which pressure forces are 
developed, and with significant mean bulk-convection 
terms, momentum and energy balances are of a complex 
form, and great care must be taken in determining the 
quantities characteristic of the fl.ow that can meaningfully 
be compared. In particular, it is vital to distinguish 
between transfers across the mean dividing streamline 
between cavity fl.ow and external fl.ow (where Reynolds 
analogy might be expected to apply) and the transfers 
across the closely adjacent plane separating cavity and 
the external region. 

It should be noted that the mechanism of energy and 
momentum transfer which is considered in this paper is 
the shear layer which develops spontaneously at the 
interface separating the room and the external fl.ow, 
modified in some degree by the boundary layer in 
the external fl.ow. There is, however, another possible 
mechanism inducing single-sided ventilation, namely the 
pumping action of large-scale turbulence, or gustiness, in 
the fl.ow around the building. This is the phenomenon 
studied by authors such as Cockroft and Robertson [11]. 

8. CONCLUSIONS 

The calculations reported in this paper provide the 
means of estimating the transfer rates achievable through 
single-sided ventilation. The magnitude of the variations 
associated with changes in parameters defining the sys
tem has also been determined. Although these predictions 
provide the best available basis for design calculations, 
direct experimental verification of the computed results 
is desirable. 

Acknowledgements-The authors wish to acknowledge the sup
port of the Science and Engineering Research Council, through 
its "Energy in Buildings" Specially Promoted Programme. 

REFERENCES 

1. M. M. M. El Telbany, M. R. Mokhtarzadeh-Dehghan and A. J. Reynolds, Single sided ventilation
!. The flow between a cavity and external air stream. Bldg Envir. 20, 15-24 (1985). 

2. M. M. M. El Telbany, M. R. Mokhtarzadeh-Dehghan and A. J. Reynolds, Single sided ventilation
Il. Further considerations. Bldg Envir. 20, 25-32 (1985). 



Transfer Rates in Single-Sided Ventilation 

3. J. A. C. Humphrey and W. M. To, Numerical simulation of buoyant, turbulent flow-II. Free and 
mixed convection in a heated cavity. Int. J. Heat Mass Transfer 29, 593-610 (1986). 

4. H . Yamamoto, N. Seki and S. Fukusako, Forced convection heat transfer on heated bottom surface 
of a cavity. J. Heat Transfer 101, 475--479 (1979) . 

5. F . J . K. Ideriah, Prediction of turbulent cavity flow driven by buoyancy and shear. J. Mech. Engng 
Sci. 22, 287- 295 (1980) . 

6. W. Rodi, Turbulence Models and their Application in Hydraulics-A State of the Art Review. 
International Association for Hydraulic Research, Delft (1980) . 

7. S. V. Patankar, Numerical Heat Transfer and Fluid Flow. McGraw Hill, New York (1980). 
8. S. V. Patankar and D. B. Spalding, A calculation procedure for heat, mass and momentum transfer 

in three dimensional parabolic flows. Int. J. Heat Mass Transfer 15, 1787- 1806 (1972). 
9. B. E. Launder and D . B. Spalding, Turbulence models and their application to the prediction of 

internal flows. Heat Fluid Flow 21, 43-54 (1972). 
I 0. C. V. L. Jayatillaka, The influence of Prandtl number and surface roughness on the resistance of the 

laminar sub-layer to momentum and heat transfer. Progress in Heat and Mass Transfer. Vol. I. 
Pergamon Press, London (1969). 

11. J. P. Cockroft and P. Robertson, Ventilation of an enclosure through a single opening. Bldg Envir. 
11, 29- 35 (1976). 

161 




