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Thermal Bridges Across Multilayer Walls· 
An Integral Approach 

SAM U EL HASSID* 

An inte9ral approach has been developed to calculate thermal briljqe effects al the junction between 
dissimilar, multilayer walls. The model is based on the solution of lhe inleqrated lwo-dimensional 
conduction equal ion for the main wall and lire thermal bridge, with appropriale boundary condilions 
be/U'een /he 111•0 so/111ions. Tire heat lransfer coefficients and minimum inlernal surface lemperatures 
as predic1ed by /he model are shown to compare j(wourably wilh a computational .solution, for six 
1ypes of 1/zer111al bridges appearing in lire lnternalional Standard for Thermal Bridges . 

INTRODUCTION 

THERMAL heat transfer through walls, both steady 
state and transient, has traditionally been calculated 
assuming uni-directionality, i.e. neglecting secondary 
heat transfer in the la teral directions. Such an approach 
can be justified on the grounds that since the thickness 
of most building elements is small compared to their 
lateral dimensions, temperature gradients perpendicular 
to the wall can also be expected to be much larger than 
temperature gradients in other directions. 

The uni-directionality assumption can lead to errors 
in the vicinity of the interface between two dissimilar 
building elements, where lateral temperature gradients 
may be appreciable . Several methods have been 
developed to treat lateral heat transfer, the most widely 
used being the empirically based Zone method, recom
mended in ASH RAE Fundamentals [l] . More recently, 
thermal bridge calculations for anti-condensation 
standards were developed by Verhoeven and Liem (2] 
and Hoffman and Schwartz [3], based on computer solu
tions of finite difference equations describing the tem
perature field around a thennal bridge. On the basis 
of computer solutions, Verhoeven (4] has proposed em
pirical correlations, suitable for anti-condensation 
standards, between the thermal bridge effect on overall 
heat transfer coefficient and minimum surface tem
perature and the properties of the thermal bridge. These 
empirical relations have been adopted by the Inter
national Standard on Thermal Bridges (5]. Ceylan and 
Myers (6] have also treated multi-dimensional non
stationary heat transfer by computing the eigenvalues 
and eigenvectors of the mathematical problem. The 
efficiency of this method has been improved by Seem et 
al. [7] . 

It is possible to analyse heat flow patterns around 
thermal bridges using numerical methods based on finite 
difference or finite element discretization. This effort. how
ever, is seldom justified if one is interested merely in a first 
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order correction of heat transfer rates and the internal 
surface temperature that can be obtained assuming uni
directional heat transfer, as for most engineering cal
culations . In this work an approximate analytical 
expression for the additional heat transfer across a wall, 
which is due to the thermal bridge effect is obtained . In 
a previous work [8], the effect of lateral heat transfer 
between two homogeneous dissimilar walls has been 
examined and a simplified expression has been developed 
for the overall heat transfer coefficient and the internal 
surface temperature. The expression was obtained using 
an integral method. In this work, it will be attempted to 
extend the methodolody to cover thermal bridges 
between multilayer walls. 

THEORY 

Consider a multilayer wall of thickness d and thermal 
conductivity A.(x) adjacent to a thermal bridge of width 
b and thermal conductivity ).' (x) the total width of the 
construct being B (Fig. 1). In the above formalism, films 
with surface resistances are included and represented as 
films with zero thickness, but finite resistance. 
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If one assumes infinite extent in the y direction, the 
steady-state heat conduction equation for the wall and 
the thermal bridge is : 

a ( -r) a ( aT) -
8 

A.(x) ~ +-;;-- A.(x)-;;-- = 0, 
x ox oz oz 

(I) 

where Tis the temperature. The boundary conditions are 
as follows . 

At x = 0: 

(2) 

Atx = d : 

T= T;. (3) 

(T0 and T; being the outside and the inside air tempera
ture, respectively.) Note that in the above equations the 
influence of incident solar and longwave radiation has 
been neglected, but those physical processes will be taken 
account of at a later stage. 

A similar set of equations describes the temperature 
field in the thermal bridge: 

a (· ' aT) a ( ·' aT) ax ;. (x) ax + oz' A (x) az' = O. (4) 

At x = 0 : 

(5) 

At x = d: 

T= T; . (6) 

Equations (!) and (4) are subject to the following 
additional boundary conditions. 

At the symmetry line of the thermal bridge (z' = 0) : 

oT/oz' = o. (7) 

At the symmetry line of the main wall (z = (B-b)/2): 

aT/az = o. (8) 

At the interface between the wall and the thermal 
bridge : 

Tl, - o = Tl ,·= bt2, (9) 

A.(x) aT /ozl, = 0 = 4' (x) oT/8z' lz = b/2· (10) 

In principle, equations (1)-(10) can be solved using 
the method of separation of variables. This process, how
ever, is not very efficient for this particular problem: 
the eigenfunctions for the bridge are different from the 
eigenfunctions for the main wall and the convergence of 
the series is rather slow. It is more appropriate to use an 
approximate integral approach and convert the partial 
differential equations (I)-( I 0) into ordinary ones by inte
grating with respect to x from x = 0 to x = d. Thus, the 
independent variable would be: 

r·' F(z) =Jo 4(x' )T(x',z)dx'. ( 11) 

Now, integrating equation (1) from x = 0 to x = d, 
one obtains : 

( 12) 

where Q; and Q 0 are the thermal flux in the internal and 
outside boundaries of the wall, respectively. 

Now, for large distances from the thermal bridge, the 
temperature distribution tends to the two-dimensional 
solution: 

/:J.T f dx' /J..(x') 

T00 (x)-T0 = ld , 
dx' / )..(x') 

0 

(13) 

(14) 

From the temperature distribution given by equation 
(13), a value of F can be derived : 

r·' r· tJ. T Jn i.(x' ) d:c' Jo dx'' f).(x" ) 

F~ = r·' 
Jo dx' /J.. (x') 

(15) 

Now, for large distances from the thermal bridge: 

(16) 

(17) 

where 

L ~ = f: A.(x ) dx f dx' /).(x' ) 

I ),;d,(r, + ?i. + i 1 t), (18) 
1- 1 -r J =l J 

L;2 = r• J..(x) dx rd dx' / ).(x') 
Jo J~ 

(19) 

In equations (18) and ( 19), the layers are counted from 
outside inwards, r, and r; are the external and the internal 
film resistances, respectively, and d)J..j has to be replaced 
by the film resistance for the case of air gaps. 

Now, one can assume that, to the first order, equations 
(16) and (17) are valid for all z. Thus equation (12) 
becomes: 

/:J.T r" ,l.(x' ) dx' -F(z) 
d 2F F(z) Jo 
dz2 - T + L 2 = 0. (20) 

0 ' 

One can further simplify equation (20) by replacing 
F(z) by f(z), in which the temperature in the integrand 
is replaced by its deviation from the two-dimensional 
solution: 

f(z) = r A.(x')[T(x',z)-T00 (x')]dx'. (21) 

Thus equation (12) becomes: 

(22) 
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A similar e:quation can be derived for the thermal 
bridge: 

where: 

d 2
/' /'(z) f'(z) 

dz' 2 - L~" - L;i- = 0, 

f'(z) = r .l.'(x')[T(x',z)-T'.,,(x')] dx', 

ll.T r dx'/.l.'(x') 

T'.,, (x) - To = r I 0 

, 

J: dx' /).'(x') 

I" I' L~ 2 =Jo .l.'(x) dx Jo dx' /.l.' x') 

N ( d. i- 1 d) I ;..;d,. r, + 2 :, + I ~ , 
t= I A; J= I Ai 

fd i'd L; 2 = .l.' (x') dx' dx" /A' (x") 
0 x 

;, .l.'d ( d, ;, d1) L.;' r,.+2).'.+L. "f. 
i = I I 1= 1+ I J 

Note that: 

L~ 2 +L; 2 = L.l..,.d;/U. 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

Equations (22) and (23) are subject to the symmetry 
boundary conditions, which can be derived by integrating 
equations (9) and (8) from x = 0 to x = d and subtracting 
the influence of the two-dimensional solution. 

At z = (B-b)/2: 

df 
(29) -=0 

dz · 

At z' = 0: 
df' 
dz'= O. (30) 

From equations (9) and (10), two additional boundary 
conditions can be derived, expressing the continuity of 
temperature and flux at the interface between the main 
wall and the thermal bridge: 

F 00 + f (z = 0) F'.,, + f' (z' = b/2) 

I .l.dx f .l.'dx 

(31) 

(32) 

where : 

, ll.T f .l.'(x')dx' r dx"/)..'(x") 

F 00 = Id 
Jo dx' / ).' (x') 

(33) 

It has to be noted that equation (31) is not strictly 
correct, but the physical justification behind it is that 
continuity of temperature at the junction of the thermal 
bridge to the main wall is more important for parts of 
the configuration in which the conductivity is high, which 
account for the largest part of the thermal flux. 

The solutions of equations (22) and (23), subject lo 
the symmetry boundary conditions (29) and (30) are: 

f = A cash [ ( z - B ~ b) / L J (34) 

f' =A' cosh (z/L'), (35) 

where: 

L = L,L0 /j(L,1 + L~) 

= L;La / J(f>dx)(f dx/i.). (36) 

L' = L;L~/j(L; 2 +L~ 1 ) 

= L'.L' I ' 0 (f ).' dx)(f: dx/.l.'). (37) 

Introducing equations (34) and (35) into the boundary 
conditions at the junction between the main wall and the 
thermal bridge, i.e. equations (31) and (32): 

Fn +A cosh [(B-b)/2L] F',,, +A' cosh (b/2L') 
(38) f .l.dx f .l.'dx 

-(A/L)sinh[(B-b)2L] = (A'/L')sinh(b/2L'). (39) 

From equations (38) and (39), expressions can be derived 
for f(z) and/' (z'): 

f(z) (
L ' 

2 £2) L 
-f,--;, - i sinh [(B-b)/2L] 

- ;; 

L/s L' /s' 
tanh[(B-b)/2L] + tanh(b/2L') 

t:..T 

x cosh [ ( z - B ~ b) / L J ( 40) 

(
L' 

2 L2) L' 
j'(z') R~s,- ~ sinh(b/2L') 

lfT = - L /s L' /s' 

tanh [(B-b)/2L] + tanh (b/2L') 

xcosh(z'/L'), (41) 

where ; 

s = f .l.(x) dx, 

s' = r A' (x) dx, 

R = f dx/.l. (x), 

R' = f dx/X(x), 

(42) 

(43) 

(44) 

(45) 

and F Cfj and F'.,, are expressed in terms of L0 , s, L~ and 
s' , using equations (15), (18), (26) and (33). 

Two quantities are of particular importance in thermal 
bridges, the minimum internal surface temperature at the 
centerline of the thermal bridge. as expressed through 
the non-dimensional parameter ( and the average heat 
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transfer coefficient U:ov: 

( = [T; -T;,(z' = O)]/tlT 

= (Q;nrJ/tlT 

= [U' -f'(z' = O)/(L; 2tlT)]r;, (46) 

U.v = [ U' b+ U(B-b) 

+2{(f B-h)/

2 

f(z) dz)/ L.2 

+(r 2 

f'Cz') dz')L;
2

} / 11T ]/ s, (47) 

where r; is the internal film resistance and U' is the ther
mal conductance of the thermal bridge. From equations 
(40) and (41), the following expressions can be obtained 
for ( and u.v : 

f-; - i L; 2 sinh (b/2l') 

{ 

(
L'2 Li) L' } 

( = r; U' + L/s l' /s' 

tanh [(8 - b) /2L] + tanh (b/2L') 
(48) 

U 
= U'b+ U(B-IJ) 

"" B 

:. (l~ 2 - l~)2 
B R 's' Rs 

+~~~~~~~~~~~-

l /s l ' /s' 
tanh [(B-b)/2l] + tanh (b/2l') 

(49) 

Equations (48) and (49) relate the thermal bridge heat 
transfer properties to the difference between the con
ductivity-weighted temperature average in the thermal 
bridge and the main wall, which appears within par
entheses in the numerators of the fractions in their right
hand sides. They are likely to give incorrect results in 
cases that this difference approaches to zero, when in one 
part of the thermal bridge-main wall configuration the 
temperature difference is positive and in the other part it 
is negative. In such cases, it is proposed to relate the heat 
transfer between the thermal bridge and the main wall 
to the difference between conductivity-weighted average 
temperatures in the internal half of the wall: 

(50) 
Thus equations (48) and (49) become: 

{ 

L' } , S L; 2 sinh (b/2L') 
( = r; U + Lfs L' /s' ' 

tanh [(B-b)/2 L} + Lanh (b/2L') 

(51) 

U'b+ U(B-b) 
U,v = B 

2S 2/B 
+ ~~~~~~~~~~~ 

L/s l ' /s' 
tanh[(B-b)/2L] + tanh (b/2L') 

(52) 

Equations (51) and (52) are to be used when: 

(53) 

There are, admittedly, more rigorous ways to treat ther
mal bridges for which equation (53) is valid, but it is not 
thought that the gain in precision is justified by the added 
complexity . 

Equations (48) and (49) can be extended to account 
for different sol-air temperatures inside and outside the 
main wall and the thermal bridge. This can be done 
by modifying the continuity boundary condition at the 
junction between the main wall and the thermal bridge 
[equation (31)] to account for these differences: 

To, + [t'l T,L~/ R +f(::: = O)]/s 

= T~, + [t'l T~l~ 2 
/ R +/' (z' = b/2)]/s', (54) 

where T0 , is the sol-air temperature outside the main 
wall, T~, is the sol-air temperature outside the thermal 
bridge, t'l T, is the difference between the sol-air tem
peratures inside and outside the main wall and t'l T; is the 
difference between the sol-air temperatures inside and 
outside the thermal bridge. 

Introducing equations (34) and (35) into equations 
(54) and (32), expressions can be derived for ( and Q.,, 
the average heat flux through the main wall-thermal 
bridge system : 

Y· { ( = t'l~; U't'lT; 

(t'lT;L~
2 t'lT,L~ , ) L' } 

RT - ~+To, -To, L; 2 sinh (bf-L') 

+ Lis L'/s' ' 
tanh [(B-b)/2L] + tanh (b/2L') 

(55) 

U'MT; + U(B-b)t'lT, 
Q.v = B 

~(l~ 2 
_ L~)(t'lT;L~ 2 

_ !J.T,L~ , _ ) 
B R's' Rs R's' Rs + 70' T0

' 

+ L/s L' /s' 
tanh[(B-b)/2l] + tanh(b/2l') 

COMPARISON WITH COMPUTATIONAL 
RESULTS 

(56) 

In Figs 2 to 13, the values of u.v and ( for equal 
external and internal sol-air temperatures at the main 
wall and the thermal bridge, as calculated using the model 
are compared with their corresponding values as com
puted using finite difference digitilization. A 41 x 41 gr.id 
was used and the resulting matrix was solved using uc
cessive over-relaxation. Six types of Lhermal bridge were 
con idered, acco rding to the ISO classification [5] : Type 
a (homogeneous walls) , Type b (insulation oucsidc the 

_.. ................................ ------------~~~~~ 
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main wall), Typed (insulation in the middle of the main 
wall), and Type e (insulation inside the main wall). In 
each of the figures, the average relative deviation el and 
the average squared relative deviation are shown. Each 
combination of the following parameters was considered. 

For the thermal bridge width b: 0.05; 0.10; 0.20 m. 
For the total construction thickness d: 0.10; 0.20 m. 
For the insulation thickness d;ns: 0.2 d; 0.4 d; 0.6 d. 
For the main wall conductivity i. : 0.2;2 W (m- 1 K- 1

). 

For the insulation conductivity A.;n,: 0.02; 0.04; 0.06 
W(m - 1 K- 1). 

For the thermal bridge conductivity i.' and the total con
struction width B, the values of 2 W (m- 1 K- 1

) and 1 m 
were taken, respectively. For the type a bridges between 
homogeneous walls, a larger range was tested for b, d, ). 
and ).'. 

Calculations made using equations (48) and (49) are 
in hollow symbols, whereas calculations made using 
equations (51) and (52) are shown in full symbols. In the 
same figures, the average relative error e and the average 
root square relative error E are shown : 

\ .H f - 141 
e= - I --

- 1\1 ; = I I 4 I ' 
(57) 

1 M {j-j41 }Z - I -
M ; = I /. , ' 

(58) 

where Mis the number of points,/41 is the quantity ( U.v 
or() as computed using the finite difference method and 
f is the quantity as computed using the model. 

It can be said that agreement is good for all cases, with 
exception perhaps, of the predicted ( for type d bridges. 
Note also that the values of ( (but not the value of 
U.v) as calculated by the correlations suggested by the 
International Standard for Thermal Bridges [5] displays 
a rather smaller deviation from the computational result 
than the method suggested in this work for thermal 
bridges, but the method presented in this work has two 
advantages: (a) it is uniform for all types of thermal 
bridges and one does not need to identify the thermal 
bridge type; (b) it can account for different values of the 
sol-air temperature inside and outside the wall. 

DISCUSSION 

A simple model has been devised for the thermal 
bridge effect, which makes it possible to incorporate this 
effect in a comprehensive program for energy calculations 
in buildings, like DOE-2 [9] or ESP [10] with almost no 
effect on storage and cpu time requirements. 

The model can successfully reproduce the main fea
tures of the thermal bridge effect. The thermal bridge 
effect on uav is shown to depend strongly on s, which 
gives a quantitative expression to the ability of the main 
wall to transfer heat laterally. The effect is also shown to 
depend strongly on lateral thermal gradients and is much 
larger for b, d and e type thermal bridges than for a c 
and f type ones. The thermal bridge effect predicted by 
the model tends to zero as the thermal bridge width b 
tends to zero. For several types of thermal bridges, the 
minimum internal surface temperature is lower than in 
a laterally infinite construction identical to the thermal 
bridge. This is the case for Type e thermal bridges (main 
wall insulated from the inside), indicating that insulating 
the main wall from the inside without insulating the 
thermal bridge may increase the risk of condensation. 

Admittedly, the model requires several simplifying 
assumptions. However, given the relatively small mag
nitude of the effect on energy and power requirements, 
a modification that would be more correct, but would 
severaly increase storage or cpu-time requirements is not 
justified. 

Of course, there are several improvements possible and 
even necessary. It is necessary to try and relate to the 
particular problems associated with corner effects, even 
between similar walls. It is also necessary to extend the 
method to cover thermal bridge heat transfer around 
windows. This would necessitate the introduction of a 
surface resistance between the wall and the thermal 
bridge (window). 

Finally, one should remember that craftsmanship in 
thermal bridges is a factor that may have a large effect 
on their thermal performance and that this is a factor 
that cannot be accounted by any theoretical calculation 
method. Still, it is felt that the thermal bridge effects may 
be important enough so that their neglect cannot 
be justified and therefore a crude method for taking 
them into account, like the one proposed in this work, is 
necessary. 
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