Ventilation and aircondition of partial area in high and large workshop

Sun Dan-Long
Shanghai Volkswagen Automotive Company Ltd SVW
Anting, Shanghai, China

VENTILATION AND AIRCONDITION OF PARTIAL AREA IN HIGH AND LARGE WORKSHOP

Sun Dan:-Long
Shanghai Volkswagen Automotive Company Ltd SVW
Anting, Shanghai, China

Summary

We meet often: ventilation and aircondition are required in some local area in huge factory building, but they are not needed in other areas, and because of the restriction of technology, equipment and productive condition, this local area cannot be divided by solid materials. Under the above-mentioned cases, there are following advantages if you use the method; economizing investment in copital construction; decreasing daily operating charge; saving energy and satisfing the special requirement due to the restriction of thecluology, equipment and productive condition. The method is ventilation and aircondition of local area in huge factory buildings. There are three manners:blowing in mode;drawing out mode and mixed mode. To the three manmers stated above, author will offer a new method, that is to get analytical solutions by using the concept of conformal mapping in complex functions at last author gave two examples for the sake of illustrating the method by computer.

> Introduction

In modern industry, because of the specialization of tatiour division and the high technological requirements, some new problems have been produced. For example:

1) Ventilation and aircondition are required in some local area in huge factory building, but they are not needed in other areas;
2) Because of the restriction of technology, equipment and productive condition, this local area cannot be divided by solid materials.

fig. 1

fig. 8

fig. 3

Therefore, a new problem of ventilation and aircondition of local area in huge factory buildings is produced. Solving this kind of problems, will bring about many benefits, such as:

1) economizing investment in capilal construction;
2) decreasing daily operating charge;
3) saving energy;
4) satisfing the special requirement due to the restriction of technology, equipment and productive condition.

There are three manners in ventilation and aircondition of local area in huge factory buildings:

1) blowing in mode, see figure 1 ;
2) drawing out mode, see figure 2;
3) mixed mode, see figure 3.

To solve the three problems stated above, the traditional method is to get experiential formulae by experiments. This paper will offer a new method, that is to get analytical solutions by using the concept of conformal mapping in complex function.

Mathematical Model

In order to set up the model of the problem of ventilation and aircondition of local area in luge factory buildings, first we make some assumptions as follows:

1) Because of the huge factory buildings, the roof and wall can be considered that have no effects on the flow field of the local area.
2) Because of being inside the building, there is not any strong wind, but only some little disturbing airstream caused by people.
3) Because of being inside the building and blowing or drawing, air steadily, the air flow is steady flow and is independent of time 1 .
4) Because the air is compressed very little, the flow can be considered a uncompressable flow.
5_{5}) In engineering practices, the length of local area is of ten greater than the width, so the flow could be thought as a plane flow.
5) In ventilation and air condition, it is permissible to consider the flow as a flow without vortex.

fig. 4
fig. 5
Therefore, for the three problems stated above, we can set up their mathematical models separately:
6) Blowing in mode:
X axis is on the ground (see figure 4). The above plane is flow field, "U" is the speed of flowing wind, "Y" is the speed of disturbing airstream.
7) Drawing out mode:
X axis is on the ground (see figure 5), The above plane is flow field " J " is the speed of drawing wind, $\quad V$ " is the speed of disturbing airstream.
8) Mixed mode:
X axis is on the ground (see figure 6), The above plane is the flow field, "J" is the speed of blowing wind, " V " is the speed of drawing, wind, " P " is the speed of disturbing airstream.

Complex Velocity, Complex Potential and Superposition

The speed of a point in a plane can be expressed:
$V_{z}=V_{x}-i V y$
(1)

Here V_{2} is called complex velocity.
For the whole plane flow field, the general formula can be expressed:
$V(z)=V_{x}(x, y)+i V_{y}(x, y)$
(2)

As stated in hydromechanics, velocity potential and flow function in plane flow without vorlex are two harmonic functions that meel Cauchy-Reimann condilion. There two functions can constitute a analytical complex function W :
$W(z)=\emptyset+i \psi$
(3)

Here $W(z)$ is considered as complex potential.
The relationship between comoplex velocity and complex potential can be written as follows:
$\frac{d w}{d z}=\frac{\partial \phi}{\partial x}+i \frac{\partial \psi}{\partial x}=V x-i V y$
(4)

Because complex potential $w(z)$ is a analytical function, so $W(z)$ have the property of superposition. In this paper, this property will be used to find the analytical solution of a more complex flow field.

> Flow Field of Ventilation and Aircondition in Blowing in Mode.

This problem can be reduced to find the complex potential of the flow field in fig. 7. " u "" is the speed of the blowing wind. " v " is the speed of the disturbing airstream.

Solution:

1) Determine the form of $z=f(\xi)$

In order to transform the polygon on plane z into a line, we can use Schwarz-cristalfer Cormula:
$\frac{d z}{d \xi}=c\left(\xi-a_{1}\right)^{\alpha_{1}-1}\left(\xi-a_{2}\right)^{\alpha_{2}-1} \cdots\left(\xi-a_{n}\right)^{\alpha_{n}-1}$
(5)
or
$z=c \int\left(\xi-a_{1}\right)^{\alpha_{1}-1}\left(\xi-a_{2}\right)^{\alpha_{2}-1} \cdots\left(\xi-a_{n}\right)^{\alpha_{n}-1} d \xi+c_{1}$
(6)
have c, c are complex numbers, $a_{p} a_{p} \ldots a_{n}$ are real constants.

fig. 7

fig. 8

The relationship of all correspond points can be taker as follows:

k	α_{k}	a_{k}
1	0	∞
2	0	-2
3	2	-1
4	$-1 \geqslant 2$	m
5	2	n

Because in mapping, the symuetric points are mapped as symmetric ones still, so $m=1, m=2$. Therefore, formula (5) can be written as;

$$
\begin{aligned}
\frac{d z}{d \xi} & =c\left(\xi-a_{1}\right)^{\alpha_{1}-1}\left(\xi-a_{2}\right)^{\alpha_{2}-1} \cdots\left(\xi-a_{5}\right)^{a_{5}-1} \\
& =c(\xi-2)(\xi+1)^{-\frac{1}{2}}(\xi-1)^{-\frac{1}{2}}(\xi-2) \\
& =c\left(\xi^{2}-2^{2}\right)\left(\xi^{2}-1\right)^{-\frac{1}{2}}
\end{aligned}
$$

Io: (7) $\begin{aligned} & \text { Integrate equation (7): }\end{aligned}$

$$
\begin{aligned}
z & =c \int \frac{\left(\xi^{2}-2^{2}\right)}{\left(\xi^{3}-1\right)^{1 / 2}} d^{+}+c_{1} \\
& =c\left[\cosh ^{-1}(\xi)+\frac{3 \xi}{\left(\xi^{2}-d_{1}\right)^{2 / 2}}\right]+c_{1}
\end{aligned}
$$

(B)

Here integrate constant c and c_{1} can be determined by using boundary condition $A_{2} A_{3}$ and $A_{2}^{*} A_{3}^{*}$.

Sulistitute:

$$
z=-D+i H K\}=-2
$$

and $\quad z=D+i h, \xi=2$
into equation (8), we have two equations:
$-D+i H=c\left[\cosh ^{-1}(-2)+\frac{-6}{\sqrt{3}}\right]+c_{1}$
$\begin{aligned} & (9) \\ & D \\ & (10)\end{aligned}+i H=c\left[\cosh ^{-1}(2)+\frac{6}{\sqrt{3}}\right]+c_{1}$
Solve these simultaneous equations:

Suppose:

$A=\frac{4[2 \sqrt{3}+\ln (2+\sqrt{3})] D}{[4 \sqrt{3}+2 \ln (2+\sqrt{3})]^{2}+\pi^{2}}$
(11)

$$
\underset{(12)}{B}=\frac{2 D \pi}{[4 \sqrt{3}+2 \ln (2+\sqrt{3})]^{2}+\pi^{2}}
$$

thus, c and c_{1} can be written as

$$
c=A+i B
$$

(13)
$c_{1}=\frac{\pi}{2} B+i\left(H-\frac{\pi}{2} A\right)$
(14)

Substitute c and c_{1} into equation (8), then:
$z=(A+i B)\left[\cosh ^{-1}(\xi)+\frac{3 \xi}{\left(\xi^{2}-1\right)^{1 / 2}}\right]+\frac{\pi}{2} B+i\left(H-\frac{\pi}{2} A\right)$
(15)
2) Find $w_{1}(\xi)$ and $w_{1}(z)$

Suppose at point A_{1} on plane z, there is a flow volume $2 D U$ flowed into area. On the basis of symmetric principle, flow volume DU is flowed into point A, and point A separately.

Correspondingly, there is confluence of flow volume Dil at poimt $A_{\text {* }}^{*}$ and point $A_{\text {: }}^{*}$ separately on plane ξ. Therefore, the complex potential on plane ξ can be expressed as:
$W_{1}(\xi)=-\frac{2 D U}{2} \ln (\xi+1)+\frac{-2 D U}{2} \ln \ln (\xi-1)=-\frac{D U}{\pi} \ln \left(\xi^{2}-1\right)$
(16)

Meanwhile; the complex potential on plane z can be written as follows:
$\underset{(17)}{W_{1}}(z)=-\frac{D U}{\pi} \ln \left(\xi^{2}-1\right)$
The relationship between z and ξ is conformable to equation (15).
3) Find $W_{2}(\xi)$ and $W_{t}(z)$

There is a flow volume HV flowed into the area at point A_{8} on plane z.Correspondingly, there is a source of flow volume HV at point A_{1}^{*} on plane ξ. And so, the complex potential $W_{t}(\xi)$ on plane ξ can be expressed:
$W_{2}(\xi)=\frac{2 H V}{2 \pi} \ln (\xi+1)=\frac{H V}{\pi} \ln (\xi+1)$
(18)

The complex potential on plane z is:
$W_{2}(z)=\frac{H V}{\pi} \ln (\xi+1)$
(19)

The relationship between z and ξ is conformable to equation (15).
4) Find $W_{1}(\xi)$ and $W_{1}(z)$

Using the superposition principle
$W_{3}(\xi)=-\frac{D U}{\pi} \cdot \ln \left(\xi^{2}-1\right)+\frac{H V}{\pi} \ln (\xi+1)$
(20)

Meanwhile
$W_{3}(z)=-\frac{D U}{\pi} \ln \left(\xi^{2}-1\right)+\frac{H V}{\pi} \ln (\xi+1)$
(21)

The retationship between z and ξ conforms to equation (15)...
5) Find $W_{1}\left(z^{\circ}\right)$ and $W_{3}\left(z^{\prime}\right)$

The obstacle in the flow field on plane z can be simplified as a circle, see figure 0.

The radius is a . The height measured from ground is h.

Now shift the X axis a distance h upper, called it X^{\prime} axis. Meanwhile, called y
axis as y^{\prime} axis. Then in the new coordinate system, the complex potential $W_{1}\left(z^{\prime}\right)$ can be written as:

$$
z=z^{\prime}+i h
$$

(22)

$$
W_{4}\left(z^{\prime}\right)=W_{3}\left(z^{\prime}+i h\right)
$$

(23)

Considering the circular obstacle, suppose the complex potential in the new coordinate system is $W_{3}\left(z^{\prime}\right)$.

Using circle theorem:

fig. 9

$$
W_{5}\left(z^{\prime}\right)=W_{4}\left(z^{\prime}\right)+\bar{W}_{4}\left(\frac{a^{2}}{z^{\top}}\right)=W_{3}\left(z^{\prime}+i h\right)+\bar{W}_{3}\left(\frac{a^{2}}{z^{\prime}+i h}\right)
$$

(24)

Here:

$$
W_{1}\left(z^{\prime}+i h\right)=-\frac{D U}{\pi} \ln \left(\xi^{2}-1\right)+\frac{H V}{\pi} \ln (\xi+1)
$$

The relationship between z^{\prime} and ξ is:

$$
z^{\prime}+i h=(\Lambda+i B)\left[\cosh ^{-1}(\xi)+\frac{3 \xi}{\left(\xi^{2}-1\right)^{1 / 2}}\right]+\frac{\pi}{2} B+i\left(H-\frac{\pi}{2} A\right)
$$

(25)

$$
\bar{W}\left(\frac{a^{2}}{z^{T}+i h}\right)=-\frac{D U}{\pi} \ln \left(\xi^{2}-1\right)+\frac{H V}{\pi} \ln (\xi+1)
$$

The relationship between z^{\prime} and ξ is:

$$
\frac{a^{2}}{z^{1}+i h}=(A+i B)\left[\cosh ^{-1}(\xi)+\frac{3 \xi}{\left(\xi^{2}-1\right)^{1 / 2}}\right]+\frac{\pi}{2} B+i\left(H-\frac{\pi}{2} A\right)
$$

Flow Field of Ventilation and Aircondition in Drawisg oul Mode

This problem can be reduced to find the complex potential of the flow field in figure 10. " u "is the speed of the drawing wind. " v " is the speed of the disturbing airstrean.

Solution:

1) Determine the form of $z=f(\xi)$

Using formula(5)

$$
\frac{d z}{d \xi}=c\left(\xi-a_{1}\right)^{\alpha_{1}-i}\left(\xi-a_{2}\right)^{\alpha_{2}-i} \ldots\left(\xi-a_{n}\right)^{\alpha_{n}-1}
$$

The relationship of all correspond points can be taken as follows:

k	α_{k}	a_{k}
1	-1	∞
2	$3-2$	-1
3	0	0
4	$3 / 2$	0

According to the symetric property; we have
$\mathrm{m}=1$
(27)

fig. 10

fig. 11

Thus the formula (5) can be written as follows:

$$
\begin{aligned}
& \frac{d z}{\alpha \xi}=c(\xi+1)^{1 / 2} \cdot \xi^{-1} \cdot(\xi-1)^{1 / 2}=c \frac{\left(\xi^{2}-1\right)^{1 / 2}}{\xi} \\
& \text { (28) } \\
& \text { Integrate it: } \\
& z=c \int \frac{\sqrt{\xi^{2}-1}}{\xi} d \xi+c_{1}=c\left(\sqrt{\xi^{2}-1}-\operatorname{arcsec} \xi\right)+c_{1} \\
& \text { (2g) }
\end{aligned}
$$

Here c, c_{1} are complex number, they can be determined by using the correspond boundary condition of $A_{2} A_{1}$, and A_{2}, A_{1}^{*}.

Substitute: $Z=B, \quad\{=1 ; \quad Z=-B, \quad \xi=-1$. into equation (29), we have
$\underset{(30)}{B}=c\left(\sqrt{1^{2}-1}-\operatorname{arcsec} 1\right)+c_{1}$
$-B=c\left[\sqrt{(-1)^{2}-1}-\operatorname{arcsec}(-1)\right]+c_{1}$
(31)

Solve these simultaneous equation, we have: $c_{1}=B, c=\frac{2}{\pi} B$. Substitute c and c_{1} into equation (2g), it can be expressed:
$\underset{(32)}{z}=\frac{2}{\pi} \mathrm{~B}\left(\sqrt{\xi^{3}-1}-\operatorname{arcsec} \xi\right)+B$
2) Find $W_{1}(\xi)$ and $W_{(}(z)$

On plane z, there is a flow volume $Q=2 B U$ flowed into section $A_{1}-A_{1}$. Correspondingly, on plane ε, there is a flow volume $Q=2 B U$ flowed into point A_{1}^{*}. This is equivalent to a confluence of strength $4 B U$ on point A_{*}^{*}. Thus the complex potential on plane ξ is:

$$
\left.\underset{(33)}{W_{1}(\xi)}=-\frac{4 B U}{2 \pi} \ln \right\}=-\frac{2 B U}{\pi} \ln \xi
$$

And the complex potential on plane z is:
$W_{1}(z)=-\frac{2 B U}{\pi} \ln \xi$
(34)

The relationship between z and ξ is conformable to equation (32).
3) Find $W_{t}(\xi)$ and $W_{2}(z)$

The disturbing airstream v on plane z, is equivalent to a uniform flow field on plane ξ. Therefore, the complex potential on plane ξ is:
$W_{i}(\xi)=V \xi$
(35)

While the complex potential on plane z is:
$W_{2}(z)=V \xi$
(36)

The relationship between z and ξ conforms to equation (32).
4) Find $W_{1}(\xi)$ and $W_{1}(z)$

For the same reason, using the superposition principle
$W_{1}(\xi)=-\frac{2 B U}{\pi} \ln \xi+V \xi$
(37)

Thus
$\left.W_{3}(z)=-\frac{2 B U}{\pi} \ln \right\}+V \xi$
(38)

The relationship between z and ξ is conformable to equation(32).
5) Find $W_{1}\left(z^{\prime}\right)$ and $W_{3}\left(z^{\prime}\right)$

The obstacle in the flow field on
plane 2 , can be simplified as a circle, see figure 12. The radius is a. The height measured from ground is h.

Now shift the X axis a distance h upper, called X^{\prime} axis. Meanwhile call the y axis as y^{\prime} axis. Then in the new coordinate system, the complex potential $w_{1}\left(z^{\prime}\right)$ can be written as: $z=z^{\prime}+i h$
(39)
$W_{1}\left(z^{\prime}\right)=W_{1}\left(z^{\prime}+i h\right)$
(40)

Considering the circular obstacle, suppose
the complex potential of the flow field in the new

fig. 12 coordinate system is $W_{3}\left(z^{t}\right)$.

Using circle theorem:
$W_{5}\left(z^{\prime}\right)=W_{4}\left(z^{\prime}\right)+\bar{W}_{4}\left(\frac{a^{2}}{z^{T}}\right)=W_{3}\left(z^{\prime}+i h\right)+\bar{W}_{3}\left(\frac{a^{2}}{z^{1}+i h}\right)$
(41)

Here:
$\left.\left.W_{3}\left(z^{\prime}+1 h\right)=-\frac{2 B U}{\pi} \ln \right\}+V\right\}$
(42)

The velationship between z^{\prime} and ξ can be expressed as:
$z^{\prime}+i h=\frac{2}{\pi} B\left(\sqrt{\xi^{2}-1}-\operatorname{arcsec} \xi\right)+B$
(43)
$\left.\bar{W}_{3}\left(\frac{a^{2}}{z^{1}+i h}\right)=-\frac{2 B U}{\pi} 1 n \xi+i v\right\}$
(44)

The relationship between z^{\prime} and can be written as follows:

$$
\frac{a^{2}}{z^{\top}+i h}=\frac{2}{\pi} B\left(\sqrt{\xi^{2}-1}-\operatorname{arcsec} \xi\right)+B
$$

(45)

Flow Field of Ventilation and Aircondition in Mixed Mode.

This problem can be reduced to find the complex potential of the flow field in figure 13. " u " is the speed of the blowing wind, " v "is the speed of the drawing wind. " p " is the speed of the disturbing airstream.

Solution:

1) Determine the form of $z=f(\xi)$, using formula (5)

The relationship of all correspond points can be taken as follows:

k	α_{k}	a_{k}
1	0	∞
2	2	$-N$
3	$-1 / 2$	-1
4	$3 / 2$	$-M$
5	0	0
6	$3 / 2$	M
7	$-1 / 2$	1
8	2	N

On the basis of the symmetric property, the symmetric points will be mapped as symmetric ones still. Thus, suppose $A_{4}^{*}=-N, A_{4}^{*}=-M$, Hence; $A_{-}^{*} M, A_{3}^{*} N$. Therefore formula (5) can be expressed as:

$$
\frac{d z}{d \xi}=c(\xi+N)(\xi+1)^{-\frac{3}{2}}(\xi+M)^{\frac{1}{2}} \cdot \xi \cdot(\xi-M)^{\frac{1}{2}}(\xi-1)^{-\frac{3}{2}}(\xi-N)=c \frac{\left(\xi^{2}-N^{2}\right)\left(\xi^{2}-M^{2}\right)^{\frac{1}{2}}}{1 \xi\left(\xi^{2}-1\right)^{1 / 2}}
$$

(46)

Integrate it:

$$
z=c \int \frac{\left(\xi^{2}-N H^{2}\right)\left(\xi^{2}-M^{2}\right)^{1 / 2}}{\xi \cdot\left(\xi^{2}-1\right)^{3 / 2}} d \xi+c_{1}
$$

fig. 13

fig. 14

Here, C, C_{1} are complex number, M, N are real constants. By integrating, we have:

$$
z=c\left[\left(N^{2}-1\right) \frac{\sqrt{\xi^{2}-M^{2}}}{\sqrt{\xi^{2}-1}}+\ln \left(\sqrt{\xi^{2}-1}+\sqrt{\zeta^{2}-M^{2}}\right)+\frac{M N^{2}}{2} \ln \frac{\sqrt{\xi^{2}-M^{2}-M \sqrt{\xi^{2}-1}}}{\sqrt{\xi^{2}-M^{2}}+M \sqrt{\xi^{2}-1}}\right]+c
$$

Now, determine $c, c_{y} N$ and M. First, determine c and N by using flow condition. On plane ξ, there is a flow volume $\mathbb{Q}=2 E V$ flowed into section A_{3}^{*}. This is equivalent to a confluence of strength 4 EV . Thus the complex potential on plane $\boldsymbol{\xi}$ is:

$$
\begin{equation*}
\left.W_{1}(\xi)=-\frac{4 \mathrm{EV}}{2 \pi} \ln \xi=-\frac{2 \mathrm{EV}}{\pi} \ln \right\} \tag{49}
\end{equation*}
$$

As a reault:

$$
\frac{d W}{d z}=\frac{d W}{d \xi} \cdot \frac{d \xi}{d z}
$$

(50)

$$
=-\frac{2 E V}{\pi} \cdot \frac{1}{\xi} \cdot \frac{\xi \cdot\left(\xi^{2}-1\right)^{3 / 2}}{c\left(\xi^{2}-N^{2}\right)\left(\xi^{2}-M^{2}\right)^{1 / 2}}=-\frac{2 E V}{\pi c} \cdot \frac{\left(\xi^{2}-1\right)^{1 / 2}}{\left(\xi^{2}-N^{2}\right)\left(\xi^{2}-M^{2}\right)^{1 / 2}}
$$

Substituting:

$$
\begin{equation*}
\xi_{(51)}^{\xi} \longrightarrow 0, \quad \frac{d w}{d z}=-V i \tag{51}
\end{equation*}
$$

$$
\xi \longrightarrow \infty, \quad \frac{d w}{d Z}=-u i
$$

(52)
into equation (50), we have

$$
\begin{equation*}
c=-\frac{2 E V}{u \pi} i \tag{53}
\end{equation*}
$$

$$
N^{2}=\frac{U}{M V}
$$

(54)

Substituting c and N^{2} into equation (48), we have

$$
z=-\frac{2 E V}{u \pi} i \cdot\left[\left(\frac{u}{M V}-1\right) \frac{\sqrt{\xi^{2}-M^{2}}}{\sqrt{\xi^{2}-1}}+\ln \left(\sqrt{\xi^{2}-1}+\sqrt{\xi^{2}-M^{2}}\right)+\frac{u}{2 V^{2}} \ln \frac{\sqrt{\xi^{2}-M^{2}}-M \sqrt{\xi^{2}-1}}{\sqrt{\xi^{2}-M^{2}}+M \sqrt{\xi^{2}-1}}\right]+c_{1}
$$

(55)

Now, c_{1} and M can be determind by using boundary condition. Substituting: $z=E, M$ into equation (55), we have

$$
E=-\frac{2 E V}{u \pi} i\left[1 n \sqrt{M^{2}-1}+\frac{u}{2 V} \ln (-1)\right]+c_{1}
$$

(56)

Because $0<M<1$, thus above equation can be written as follow:

$$
\underset{(57)}{E}=-\frac{2 E V}{u \pi} i\left[\ln \sqrt{\frac{1-M^{2}}{-l}}+\frac{u}{2 V} \ln (-1)\right]+c_{1}
$$

Solving equation (5.7) for c_{1} :

$$
\begin{aligned}
& C_{4}=\frac{E V}{U}+i \frac{E V}{U \pi} \ln \left(1-M_{1}^{2}\right) \\
& (5)
\end{aligned}
$$

Substitute c_{1} into equation (55):

$$
\begin{aligned}
z= & -\frac{2 E V}{u \pi} i\left[\left(\frac{u}{M V}-1\right) \frac{\sqrt{\xi^{2}-M^{2}}}{\sqrt{\xi^{2}-1}}+\ln \left(\sqrt{\xi^{2}-1}+\sqrt{\xi^{2}-M^{2}}\right)\right. \\
& \left.+\frac{u}{2 V} \ln \frac{\sqrt{\xi^{2}-M^{2}}-M \sqrt{\xi^{2}-1}}{\sqrt{\xi^{2}-M^{2}}+M \sqrt{\xi^{2}-1}}\right]+\frac{E V}{u}+i \frac{E V}{u \pi} \ln \left(1-M^{2}\right)
\end{aligned}
$$

Now, Substituting $z=D+i H, \xi=N$ into equation (59), we have

$$
\begin{aligned}
D+i l I= & -\frac{2 E V}{u \pi} i\left[\left(\frac{u}{M V}-1\right) \frac{\sqrt{N^{2}-M^{2}}}{\sqrt{N^{2}-1}}+\ln \left(\sqrt{N^{2}-1}+\sqrt{N^{2}-M^{2}}\right)\right. \\
& \left.+\frac{u}{2 V} \ln \frac{\sqrt{N^{2}-M^{2}}-M \sqrt{N^{2}-1}}{\sqrt{N^{2}-M^{2}}+M \sqrt{N^{2}-1}}\right]+\frac{E V}{u}+i \frac{E V}{u \pi} \ln \left(1-M^{2}\right)
\end{aligned}
$$

(60)

Considering equqation (54), solving these simultaneous equation; we have

$$
\left(\frac{u}{V M}-1\right) \frac{\sqrt{u-V M^{2}}}{\sqrt{u-V M}}+\ln \frac{\sqrt{u-V M}+\sqrt{u-V M^{3}}}{\sqrt{V M-V M^{2}}}+\frac{u}{2 V} \ln \frac{\sqrt{u-V M^{3}}-M \sqrt{u-V M}}{\sqrt{u-V M^{3}}+M \sqrt{u-V M}}+\frac{11 u \pi}{2 E V}=0
$$

(61)
therefore, $\quad z=f(\xi)$ is expressed by equation (59) exactly. Here, $f(M)=0$ is conformable to equation (61).
2) Find $W_{1}(\xi)$ and $W_{1}(z)$

The flow volume $Q=2 E V$ flowed into point A; ${ }^{*}$ on plane ξ, is equivalent to a confluence of strength $4 E V$ at point A \%. Thus the complex potential on plane ξ is:
$W_{1}(\xi)=-\frac{2 E V}{\pi} \ln \xi$
(62)
and the complex potential on plane z is:

$$
W_{1}(z)=-\frac{2 E V}{\pi} \ln \xi
$$

(63)

The relationship between z and ξ conforms to equation (59); here $f(M)=0$ is conformable 10 equation (61).
3) Find $W_{2}(\xi)$ and $W_{z}(z)$
 The srength of source is 2 PH . So the complex potential on plane ξ is:

$$
W_{2}(\xi)=\frac{P H}{\pi} \ln \xi
$$

(64)

The complex potential on plane z is:

$$
W_{2}(z)=\frac{P H}{\pi} \ln \xi
$$

(65)

The relationship between z and ξ conforms to equation (59), here $f(M)=0$ is conformable to equation (61).
4) Find $W_{1}(\xi)$ and $W_{1}(z)$

Using the superposition priaciple:

$$
W_{2}(\xi)=\frac{P H}{\pi} \ln \xi-\frac{2 E V}{\pi} \ln \xi
$$

Therefore:

$$
W_{1}(z)=\frac{P H}{\pi} \ln \xi-\frac{2 E V}{\pi} \ln \xi
$$

(67)

The relationship between z and ξ conforms to equation (59), and $f(M)=0$ is conformable to equation (61).
5) Find $W_{1}\left(z^{\prime}\right)$ and $W_{s}\left(z^{\prime}\right)$

The obstacle in the flow field on plane z, can be simplified as a circle, see figure 15. The radius is a, and the height measured from ground is h.

Shifting the axis, we have
$z=z^{\prime}+i h$
(68)
$W_{1}\left(z^{\prime}\right)=W_{1}\left(z^{\prime}+i h\right)$

fig. 15
(69)

Assume $W_{,}\left(z^{\prime}\right)$ is the complex potential in the flow field with a circular obstacle in the new coordinate system.

According to the circle theorem:

$$
\begin{equation*}
W_{5}\left(z^{\prime}\right)=W_{4}\left(z^{\prime}\right)+\bar{W}_{4}\left(\frac{a^{2}}{z^{\prime}}\right)=W_{3}\left(z^{\prime}+i h\right)=W_{3}\left(\frac{a^{2}}{z^{\prime}+i h}\right) \tag{70}
\end{equation*}
$$

Here

$$
W_{3}\left(z^{\prime}+i h\right)=\frac{P H}{\pi} \ln \xi-\frac{2 E V}{\pi} \ln \xi
$$

The relationship between z^{\prime} and ξ is:

$$
\begin{aligned}
z^{\prime}+i h= & -\frac{2 E V}{u \pi} i\left[\left(\frac{u}{M V}-1\right) \frac{\sqrt{\xi^{2}-M^{2}}}{\sqrt{\xi^{2}-1}}+\ln \left(\sqrt{\xi^{2}-1}+\sqrt{\xi^{2}-M^{2}}\right)\right. \\
& \left.+\frac{u}{2 V} \ln \frac{\sqrt{\xi^{2}-M^{2}}-M \sqrt{\xi^{2}-1}}{\sqrt{\xi^{2}-M^{2}}+M \sqrt{\xi^{2}-1}}\right]+\frac{E V}{u}+i \frac{E V}{u \pi} \ln \left(1-M^{2}\right)
\end{aligned}
$$

(71)
here $f(M)=0$ is conformable to equation (61). The relationship between z^{\prime} and ξ is:

$$
\begin{aligned}
\frac{a^{2}}{z^{1}+i h} & =\frac{2 E V}{u \pi} i\left[\left(\frac{u}{M V}-1\right) \frac{\sqrt{\xi^{2}-M^{2}}}{\sqrt{\xi^{2}-1}}+\ln \left(\sqrt{\xi^{2}-1}+\sqrt{\xi^{2}-M^{2}}\right)\right. \\
& \left.+\frac{u}{2 V} \ln \frac{\sqrt{\xi^{2}-M^{2}}-M \sqrt{\xi^{2}-1}}{\sqrt{\xi^{2}-M^{2}}+M \sqrt{\xi^{2}-1}}\right]+\frac{E V}{u}-i \frac{E V}{u \pi^{2}} \ln \left(1-M^{2}\right)
\end{aligned}
$$

(72)
here $f(M)=0$ is conformable to equation (61).

Using Example

I, Print the flow stream of flow field.

There is a flow field of drawing out mode (see figure 10). U, V and B are given.
The target is to print out the flow stream of flow field.
-Solution:

1) Suppose,

$$
\begin{aligned}
& \eta_{1} \\
& y_{2}=\eta_{1}+h \\
& \vdots \stackrel{\vdots}{=} \eta_{1}+(i-1) h \\
& \eta_{i}=\eta_{1}+(n-1) h \\
& \eta_{n}
\end{aligned}
$$

Here, i is $1,2,3 ; \ldots . . \mathrm{n}$ natural number, h is the step which is given.
2) according to the formular (37)

$$
W_{3}(\xi)=-\frac{2 B U}{\pi} \ln \xi+V \xi
$$

It can be changed to be

$$
W_{(73)}^{W_{0}(\xi)}=\varphi(\xi, \eta)+i \psi(\xi, \eta)
$$

here

$$
\varphi(\xi, \eta)=-\frac{2 B U}{\pi}\left(\xi^{2}+\eta^{2}\right)+V \xi
$$

(74)

$$
\psi(\xi, \eta)=-\frac{2 B U}{\pi} \operatorname{arctg} \frac{\eta}{\zeta}+v \eta
$$

(75)
$\mu(\xi, y)$ is a flow function of the flow field.
3) Suppose: $\psi=\psi$
here the ψ_{1} is a constant.
So, the formula (75) became

$$
\xi=\frac{\eta}{\operatorname{tg}\left(-\frac{\pi \psi}{2 B U}-V \eta\right)}
$$

(76)

Using this formula, we can solve $\xi_{1}, \xi_{2}, \ldots \xi_{n}$.
4). Changing the formula (32) to
$x+i y=f_{1}(\xi, \eta)+i f_{2}(\xi, \eta)$
(77)

Here

$$
\begin{aligned}
f_{1}(\xi, \eta)= & \frac{\sqrt{2}}{\pi} B \sqrt{\left(\xi^{2}-\eta^{2}-1\right)^{2}+4 \xi^{2} \eta^{2}+\xi^{2}-\eta^{2}-1} \\
& \left.-\frac{2}{\pi} B \operatorname{arctg} \frac{\sqrt{\sqrt{\left(\xi^{2}-\eta^{2}-1\right)^{2}+4 \xi^{2} \eta^{2}}+\xi^{2}-\eta^{2}-1}}{\sqrt{2}-\sqrt{\sqrt{\left(\xi^{2}-\eta^{2}-1\right)^{2}+4 \xi^{2} \eta^{2}}-\left(\xi^{2}-\eta^{2}-1\right)}}-\operatorname{arctg} \frac{\eta}{\xi}\right]+B
\end{aligned}
$$

$\mathrm{E}_{2}(\xi, \eta)=\frac{\sqrt{2}}{\pi} \mathrm{~B} \sqrt{\left(\xi^{2}-\eta^{2}-1\right)^{2}+4 \xi^{2} \eta^{2}-\left(\xi^{2}-\eta^{2}-1\right)}-\frac{2}{\pi} B\left[1 n \sqrt{\xi^{2}+\eta^{2}}\right.$
(79)

$$
-\ln \left(1-\sqrt{2} \sqrt{\sqrt{\left(\xi^{2}-\eta^{2}-1\right)^{2}+4 \xi^{2} \eta^{2}}-\left(\xi^{2}-\eta^{2}-1\right)}+\sqrt{\left.\left(\xi^{2}-\eta^{2}-1\right)^{2}+4 \xi^{2} \eta^{2}\right)}\right]
$$

5) according to
$x=f_{1}(\xi, \eta)$
$y=f_{2}(\xi, \eta)$
and

$$
\begin{aligned}
& \eta_{1}, \eta_{2}, \cdots \cdots \eta_{n} \\
& \xi, \xi_{2}, \cdots \cdots \xi_{n}
\end{aligned}
$$

solving out $x_{1}, x_{2}, \ldots . . x_{n}$
$y_{1}, y_{2} \ldots \ldots y_{n}$
6) Link up the dots from the first dot $\left(x_{v}, y_{1}\right)$ to the next $\left(x_{1}, y_{i}\right) \ldots . . .\left(x_{n}, y_{n}\right)$ as a
curve, thus we have got the flow stream of $\psi=\psi_{1}$.

1) Set the $\psi=\psi_{2}, \psi=\psi_{3,}, \ldots$ we, can get a group of flow streams., Although this is a complicate process, but when a computer is used, the flow streams of flow field are easy to be printed out.

II, Solve the drawing out velocity
There is a flow field of drawing out mode (see figure 12). V, a, h, B is given. The control dot $Z o$ (Xo, Yo) is also given.

Target: Solve the drawing out velocity of flow field -u.
Solution:

1) Because X_{0}, Y_{0} is given, according to formula (43), solve the ξ_{1}, η_{1}.
2) Because X_{0}, Y_{0} is given, according to formula (45), solve the ξ_{2}, η_{2}.
3) The same: formula (37) can be changed to formula (73), formula (74) and formula (75).
so,
$\psi_{1}=f\left(\xi_{1}, \eta_{1}\right), \quad \psi_{2}=f\left(\xi_{2}, \eta_{2}\right)$
4) Change the formula (41) to $w_{5}(\xi)=\varphi_{1}+\varphi_{2}+\mathrm{i}\left(\psi_{1}+\psi_{2}\right)$
here, $\psi_{1}+\psi_{2}$ is the flow function of this flow field.
5) Set $X_{2}=B-\varepsilon_{;} Y_{1}=\varepsilon$.
here, ε is a very little positive number which is given. Redo the process. 1) to 4), then $\%$
$\psi_{b 1}=\left(\xi_{b 1}, \eta_{b 1}\right), \quad \psi_{b 2}=\left(\xi_{b 2}, \eta_{b 2}\right)$
6) Berause $20, z_{4}$ must in one line, so
$\psi_{1}\left(\xi_{1}, \eta_{1}\right)+\psi_{2}\left(\xi_{2}, \eta_{2}\right)=\psi_{b 1}\left(\xi_{b 1}, \eta_{b 1}\right)+\psi_{b 2}\left(\xi_{b 2}, \eta_{b 2}\right)$
Solve out the u.
This process is complicate, it is necessary to use computer for getting the solution. The program is omitted, because of the limited space.

$$
=
$$

