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This paper describes a numerical solution procedure which uses the finite 

volume method and the k -£ turbulence model for predicting the flow of 
isothermal and non-isothermal wall jets. This was used to predict the velocity 
and temperature profiles of the jets. The procedure is also extended to predict 
the flow of two and three-dimensional wall jets over a surf ace-mounted 
obstacle. The numerical predictions arc corroborated by experimental results. 

1. INJRODUCTION 

Most air jets used in room ventilation arc supplied over a surf ace or ultimately become 

attached to a surf ace due to the Coanda cff ect. An air jet that is bound by a flat surf ace on 

one side is normally known as a "wall jct". After discharge from the supply opening, the 

initial flow of a jct (usually referred to as the primary air) has a major influence on the air 

motion in the room. To achieve efficient mixing of the jet with room air it is necessary to 

know not only the initial condition of the air supply and its position in the room but also 

its aerodyn~mic .characteristics up to the throw length (ie. the distance from the supply 

where the maximum jet velocity decays to a specified value such as 0.25 or 0.5 m/s). For 

the purpose of air distribution design, the characteristics of isothermal jets may be 

-....._ obtained from air diffusion standards and handbooks ( 1 ), (2) and (3) or from nomograms 

provided by air diffusion equipment suppliers. In most instances such information is 

only available for isothermal wall jets over a smooth surface. However, information on 

the diffusion of non-isothermal wall jets and wall jets affected by physical barriers or by 

other jets is, until recently, obtained from experimental measurements in special test 

facilities. Because of the low velocity and high turbulence associated with ventilation jets 

such measurements arc often difficult to carry out accurately and at best do not provide 

sufficient detail of the flow. 

As a result of recent advances in computational fluid dynamics it is now possible to 

predict, with reasonable accuracy, the diffusion of air jets and the air movement in 

ventilated rooms. Awbi and Setrak (4) and (5) have developed a numerical procedure 

using the finite volume method to predict the diffusion of isothermal and non-isothermal 

plane (two-dimensional) wall jets. The effect of surface-mounted rectangular obstacles 

and surf ace roughness elements on the diffusion of a two-dimensional wall jet was also 

well predicted. In this paper, the finite volume solution procedure has been extended to 

predict the flow of three-dimensional wall jets. The predicted results arc compared with 
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flow of two and three-dimensional air jets over a surf ace-mounted obstacle was also 

predicted using the same numerical procedure and the results are compared with 

experimental measurements. 

2. NUMERICAL SOLUTION 

The steady, incompressible and turbulent flow of a jet, in which the fluctuating velocities 

and heat fluxes are described by a turbulence model may be represented by the general 

equation: 

~ ( u "') = ~ (r ~ ) + s. 
ax. p i 'I' ax. • ox. 

I I I 

(1) 

where Ui is the mean velocity component in the direction Xi, cl> is the de.Pendent variable, 

r cl> is the diffusion coefficient for cj>, and Scj> represents the source terms for cp. In the 

equations for continuity, momentum (Navier-Stokes) and thermal energy, the variable cl> 

acquire.s respectively the values 1, Uj (ie. mean velocity in direction Xj) and the mean 

temperature T. The turbulence model used in this investigation is a two-equation model 

representing the kinetic energy, k, and its rate of dissipation, E (ie. k - E turbulence 

model). Therefore, two additional transport equations with k and E as the dependent 

variables need to be solved. These two equations include in their source terms 

expressions for the effect of buoyancy on the turbulence energy which are used in the 

solution of non-isothermal jets. Detailed description of the transport equations and the 

turbulence model used is given by Awbi (6). 

Using a rectangular finite difference grid for the flow domain, equation (1) may be 

discretised by integration (summation) over an element in a control volume or cell to yield 

an algabraic equation of the form: 

(Eai-Sp)cl>p = I,(aicl>i) + Su (2) 

which relates nodal values of the variable at node p, cl>p• to values at six neighbouring 

nodes, fi, (ie. N,S,E,W,R,L). The coefficient ai in the finite difference equation (2) 

links the convective and diffusive terms of the differential equation between cell P and cell 

i. In equation (2) Su and Sp are the source and sink terms of cell p and the term (Su+ Sp 

cl>p) is integrated over the cell. This method of solution is known as the SIMPLE 

algorithm which is described by Patankar (7) and used by many investigators. The 

method does not employ equations for pressure, instead the pressure in each cell is 

"linked" to the velocities of the surrounding cells so that continuity is always observed. 

This solution procedure requires the use of a staggered grid where the scalar quantities 

(P,T,k,E) are located at a grind point P and the velocity components U,V and W are 

located at intermediate locations between grid points. In this investigation the interest lies 

in the flow close to the wall and around surface-mounted obstacles hence a non-uniform 
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grid was chosen for x-and-y directions (axial and vertical respectively) and a uniform grid 

was used for the z-direction (lateral). A grid size of 41 x 27 was used for two

dimensional flows and 20 x 20 x 11 for three-dimensional flows. 

To obtain a solution to the transport equations boundary conditions need to be specified. 

In this case, the bouhdary conditions are imposed at the jet inlet and exit, at the walls and 

the sutfaces of obstructions and at the free (entrainment) boundary. Across the jet inlet a 

uniform distribution of U,T,k and£ is assumed. The exist velocity and temperature is 

calculated using the continuity and energy balance equations respectively. At the walls 

and obstacle surf aces wall function expressions are used for the shear stresses and heat 

fluxes. At the free boundary of the jct the longitudinal velocity is taken zero and the 

vertical entrainment velocity is specified as: 

V =Cc Um (3) 

where Um is the maximum longitudinal velocity in a vertical plane across the jet and Ce is 

an entrainment coefficient taken as 0.035 for a two-dimensional wall jct and 0.03 for a 

three-dimensional wall jet (8). The temperature of the free boundary is also used as a 

boundary condition for the energy equation. 

Further details of the numerical solution procedure are found in references (6) and (8). 

3. RESULTS . 

3 .1 Wall Jet Bows 

The velocity and temperature profiles for a wall jct were predicted for different values of 

Reynolds number, Re, and Archimedes number, Ar, and the results were compared with 

experimental data. For a wall jet these non-dimensional parameters are defined as: 

Re= Uod/u, 
2 

Ar= pgd0o/U
0 

where U0 is the inlet velocity, 00 is the difference between the supply temperature and 

room temperature, P is the coefficient of thermal expansion and d is the size of the 

supply opening which is taken as the slot height, h, for two-dimensional jets or ..J A for 

three-dimensional jets where A is the effective area of the opening. For a range of Re 

between 1.2 x 103 to 3.5 x lo4 the normalised velocity profiles in the fully developed 

region of the jct were found to be indepdent of Re. Figures 1 and 2 show the predicted 

velocity and temperature profiles in the fully devefoped region of a two-dimensional wall 

jet compared with experimental data. Here, Urfllm is the ratio of the resultant velocity, 

Ur, at a point to the maximum jet velocity, Um, in a plane containing the point and YIY0.5 

is the ratio of the distance of a point from the surface to the distance of the point where U 

= 0.5 Um. The ratio 0/0m is the difference in temperature between a point in the jet and 

the supply temperature, e, to the difference between the maximum (or minimum) 

temperature across the jet and the supply temperature, qm. These plots show no definite 
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effect of Ar on the resultant velocity profiles and the agreement with experimental data is 

good. The lower velocities due to Albright and Scott (9) is attributed to the fact that only 

the U-component of velocity has been used in their profiles. The decay of the maximum 

velocity in the axial direction is shown in Fig. 3 for a rectangular opening of aspect ratio 

3.3. The predicted results arc compared favourably with the measured data and the 

experimental results of Rajaratnam ( 10). 

3.2 Wall Jets with Obstacles 

When an obstacle is placed in the path of a wall jet (such as a beam, a light fitting, 

furniture etc) the jet either separates from the surface completely or reattaches downstream 

of the obstacle. The course which the jct takes will depend on the distance of the obstacle 

from the supply opening, the geometry and size of the obstacle, the si~c of the supply 

opening, the Archimedes number etc. Sctrak (8) has shown that complete separation is 

more likely to occur in the case of an infinitely long obst~cle placed in the path of a two

dimensional wall jct when the distance of the obstacle from the supply is smaller than a 

minimum distance ~nown as the "critical distance". Complete separation is unlikely t<:> 

take place when a long obstacle is placed in the path of a three-dimensional wall jet or a 

finite length obstacle is placed in the path of a two-dimensional jet unless the Archimedes 

number exceeds 0.01. 

Figure 4 shows normalised velocity profiles for a three-dimensional wall jet in the 

presence of an infinitely long obstacle placed on the wall. The jet reattachment 

downstream of the obstacle ·produces a thicker boundary layer than would otherwise exit 

at the same position in the absence of the obstacle. The velocity profiles for a two

dimensional jet which separates due to the presence of a two-dimensional obstacle are 

shown in Fig. 5. The velocity profile downstream of the obstacle resembles that for a 

free jet where entrainment of the surrounding air now occurs at two free boundaries and 

the jet decays faster than a reattached jet. The predicted profiles in Figs. 4 and 5 are seen 

to be corroborated by the measured profiles using hot wire and hot film anemometers. 

Figure 6 shows predicted velocity vector and streamline plots for a two-dimensional wall 

jet separating from the surf ace due to the presence of a two-dimensional obstacle. The 

entrainment vortex can clearly be seen between the supply opening and the obstacle. 

4. CONCLUSIONS 

The numerical solution described in this paper is found to predict the diffusion of two-and 

three-dimensional wall jets with sufficient accuracy for most ventilation applications. This 

method has also accurately predicted the complex flows involving a wall jet and a surface

mounted obstacle where the jet either completely separates or reattaches to the surface. 

The same procedure may be applied to predict the air movement in enclosures and the 

dispersion of contaminants in a room. 
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