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SUMMARY 

This paper discusses aspects of vectorizing a recently developed calculation procedure for multidimensional 
recirculating fluid flows. The solution algorithm uses a coupled Gauss- Seidel relaxation operator in 
conjunction with the multigrid technique. The vectoriza tion is performed on a CRAY X-MP.'48 using a 
single processor. In this paper. the vecto rization techn iques used and the observed speed-ups are presented 
for a model problem of laminar fl ow in a two-dimensional square cavity. Large scale calculations with up to 
one quarter of a million finite difference cells (512 x 512) have been made in 45s of CPU time. 

KEY WORDS 

1. INTRODUCTION 

The development of supercomputers, such as the CRAY-1, CRAY X-MP and CYBER 205, 
provides new avenues for obtaining significant reductions in CPU time in the numerical 
calculation of steady and time-dependent multidimensional fluid flows. Apart from the significan
tly faster clock times, these computers are built on new architectures exploiting the concepts of 
vector and parallel processing. However, in order to use the complete benefits provided by the 
machines, it is necessary that the algorithms underlying the solution of the equations be adaptable 
to such architectures. Otherwise, the computer program will run essentially at the scalar speed 
and significant idling and overhead on the parallel processors can result. Exploiting fully and 
intelligently the machine architecture can provide significant speed-up of the calculations, 
sometimes much more than that provided by improvements to the algorithm, and with much 
less effort. 

In this paper, we discuss the aspects of vectorization of a recently developed 1.
2 finite difference 

calculation procedure for steady, multidimensional recirculating flows. The algorithm, BLIMM 
(for block-implicit multigrid method) is based on a coupled solution of the multidimensional 
momentum and continuity equations in primitive variables using the multigrid technique of 
Brandt. 3 The relaxation of the equations is done simultaneously by a symmetrical coupled 
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Gauss:-Seidel operator as described in Reference 1. A staggered mesh arrangement of the velocities 
. and pressures is used and the equations an~ relaxed node by node. At each finite difference cell, 

,, four (or six) velocities on the faces of the cell and the pressure are simultaneously updated by 
solving the relevent momentum equations and the continuity equation. Such a coupJed update 
used in conjunction with the multigrid technique is observed to provide rapid solutions to the 
finite diffe~ence equationsi. 2 ·

4
·5 in a variety of flows of practical importance. 

--~=-· .. __ .. Since the development and availability of vectpr ,computers, several studies have been reported 
in. ,which linear algebra algorit~ms and :fluid flow calculations have been vectorized. A recent 
deta iled review of such studies is given' by Ortega and. Voigt. 6 .For th~ fluid flow equations, 
\\ec~·orizeo calcula tions have been reported for example, by Shan g et al. 7 Redhed et al} Cruma 
apd Johnson9 and Smith and Picts. 10 A majority of these studies have been concerned with the 
s-olu rion of the equa tions by some.variant o'f the· McCormack s scheme. A two-step time marching 

fl. ' 

.' J ·~. 

scheme is used and the variables are updated in an explicit manner with the right-hand side 
terms .cr~aluated .at the previous step. In compa:risop. with these studies. te(fhniques based on 
fully Implicit formulations are more complex t.o vectorize~ The complexfty'. results from the 

r ) , • • '; 

.. necessity of using someJorm of matri~ factorization using Gaussian elimination. Fully implicit 
formulations, however, are very attractive when , the interest is only in the final steady-state 
solution rather than in the d~e evolution of the flow. Such formulations are equ.ivaient to taking 

. an infinitely large time step ano. iterating at that time step. This presents new difficulties in the 
vectorization. 6 · 

The present algorithm is a fully implicit method. In addition, it uses a. staggered mesh 
arrangement, coupled upd&te and the multigrid technique. These features infroduce further 
difficulties a~d constraints to the vectorization process. one such being the preservation of 
adequate vector lengths on th~ coarse grids. Barkai and B,randt 11 and Holter12

' have recently 
presented techniques. to vectorize the muligrid solution of the Poisson equation on the Cyber 
205 machin~. A poirii Gauss-Seid~! method with red-black colouring was used and the discrete 
variables were stored in two long vectors corresponding to each colour. Because of the five-point 
stencil and the colouring, the variables are updated by adequate offsets to the arrays. However, 

. such collapsing of the variables into two arrays is not possible for the present algorithm because 
· of the coupled symmetrical solution of the velociti_es. · · · · 

In this paper, we describe the steps followed in vectorizing the block-implicit multignd technique 

1 and present the ob erved reductions _in CPU time due to vectorizat ion. T he subsequent sections 
._,-, a re orga nized as fo.llow~. In sectiop 2 the algo rithm a .d the da ta strucm res are described. 

Emphasis is given to the specific relaxation p rocedure used and. no t to the general concept of 
the multigrid technique, because this is by now very well documented. 3 The details of the 
vectorization, including the colouring strategy, are given in section 3. In section 4 the details of 

, the convergence anq the required CPU times for calculations of flow in a driven cavity are 
presented. Three Reynolds numbers and several finite clifference grids are considered. Section 5 
provides a summary of the present contribution: 

2. SOLUTION ALGORITHM 

Ot'eral/ features 

The solution algorithm discussed here sol~es the fully elliptic two- (and three-) dimensional 
Na vier-Stokes equations in primitive variables. Currently only steady incompressible flows have 
been considered. However, the procedure is equ~lly applicable to time-varying flows when fully 
implicit algorithms are advantageotrs, and to compressible flows at high subsonic Mach numbers. 
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The concepts of the algorithm-are also being used to calculate ttitbulent and-chemically reacting 
fluid ·nows such as those In gas tu'rbine'-:arrd ramjet toi:nbustors. The two ini'porinnt concepts in 
the sofutl'on algorithm· are 'the coupled solution of the;·equations and the mtiltigrid technique of 
Brandt.3'The cbupled solution, with the cominui'ty eiquat iorl· expressed in its primitive form. 
elimin£tes' th~ iieeH for a pressurlor pressure-correcti'on equation that i ·commonly used. The 
coupled relaxa'{io'n' of the equationf is rapid I)\ con~1ergent ana' i ''advoca1~c'l-o n the ba is of re ulls 

.... - of recent 'experiences.• 3-is The: 'aetail ~ of the-multl!!rid cdnC'epts a~e re{·iewed b\' Brandt 3 and 
the present irlcorpordrron is des~ribeci'by Yank-TI. 1.2 Therefore. onl): tl~ose'tdlures o·rtfre algorithm 

., '.. , that are riechsary for desc'~i_bing the ectorizatioo will be gi,·en hete. ~l :·. ! 

;r ' ···• The COh
1

cept of usfog multiple grids is that traditional iterativ·e sclreii1es su-c11 '!J.s Jacobi point 
11

' ~Gauss- Sei
0

del. AOL etc . .'~re rapidly convergen t for err61: wavelengtl1s of th~· slze .nf the mesh 
--. • :~· width. but" are very slow to converge fpr low-frequerfoy component . 1-lowe\1er. low frequencies 

' I on one .!t,ricf can be made large by solvrng che appropriate fine grid equat ions on a'·coarser grid 
~ •.. .,,.f'Jl"':t • • ,. · - . • • c . .. . I':. 

• 1, 

and forfec tin2 the finJ{ erid ·ollitioh. Se\'eral levels of coar e erids can be con 1deted and the 
•. - ...... • - t , .... • ... ; , 1'1 

solution' is cycled bet<veen the' finest grid and · the coar e' grids. ln this wd.y. the· asymptotic 
conver~ence on the' finest grid is 1a"s' rapid ~s iii ·the 'initiaffrerations and on inocfel problems it 

.:· i· sho~vn: to .be i~.var·iarlt J~1 it!1 o~esh size. Several varianis ''of the cycling 'are p-6 s~bie. including 

. v~'cycl~. W-cycle aHd t~;~ ad,a~tlveJull multigrid m~thod ( FMG ). Th~ c~t1~ ~s~~ - i~ .o~~ algorithm 
· · · is The adaptive (ull multigrid 'method, which i appro-prUJ.le for non-ltn~ r prol;>lem .' 

The three main components in the technique are (i) the relaxation procedure.llil the restriction 
fr~et~tor an !iii) th'e prolongatio.i1 m'ethod: 'A substantia.l ·amou nt {abour.85 per cent) of the 
C-PU time is spent"in the relaxation process on the coarie'-£nd fine grids. t-hus vectorization of 
the relaxati<;m procedure and consequent design of the data structure{'is of great importance. 

~ The -restricifons take ibolH 0 per ·cent of"th . time antfthe remainder is spent' in prolongations 
a'~d bther overheads. The three calculati6n 'step{ ate' no\\· explained in 'detail. - . 

j '·J . . • I . r ! 

Refa.x(/tion proced;ure .1· 

Tli~multigtid technique caH be used in conjunctiotiwith all conventional relaxation procedures 
such as SOR. ADI. conjugate gradient meth:6ds. etc. The extensions'of these to coupled relaxation 
leads:

110 a block·l~Hructu red operator· "'ittt .<{ 1'tock size equal to the number 6r ·equations (three 
. for twa"dimensro'nal Oows'and four (o~ ' three-difn'ensfonal ·nows) . . The opcim~l procedure depends 
on the·ellipticittof the'iproblem:~md' the degree «Sr anisotrop5'. il'i. che coefficients. In the present 
algorithm; ii point Gali-ss-Seidel sche-me is u ed:'beca'use ot its srria!I' 'op~ration count. However, 
at"anv-'cell, velocities oh aiY the faces of the cell are -solved simultaneouslv. 
Th~ fi~ite ditfe~ence equations are derived fr9.m.the differential equa'tiohs by a control volume 

approach, but'' are subsequ~.~tly wtitten in terms' of uni( volume (()r easy use in the multigrid 
con text.' A staggered niesh' s:ystem is used: in· locating the vefodtie;s and pressures on the finite 
difference grid. Thus velocities are stdred on; the cell faces; and pressure is situated at the cell 
centres. The resulting finite difference equations at a cell (i,j) of a two-dimensional grid can be 
written as ,. , - ' 1 . 

- I 

(A(.);•12.jll;+1 · 2 .j=(A~);+1 ·2.jt1;+L2 .j+1 +(A~);+u2.jt1;+1 :2.j-1 +(AEli+12.jt1;+32.j 

1 ":.~ ' , ; ' + (~~d1· 1 , ··ll·.:. 1 ', · + (.p . . · . ..,..:·P·+ 1· .);lpl>x + S'-'.-1 ' " (1) 
· - .) I - .) 1,j I .J • . I . - .J 

• t I . I! r; <.: J ~-' : i .i . ' ( · I .' ~ t -. ! · · ·: ~) f :· ;·· ...,, ; - ' i ': I _ , _ ; 

. it :. ; ~t{c .l;.T 1 Jj'; - 1 2 4:::=. (t'l~)ir 1 wP~ ;:; ~ ~:i,.· l ,+ (ds};- 1 o. .. jvi - 1 2.j- 1 + <AE), - 1 1.ju1 .. 1 2.j 

'..· '.-r:;, · , _ ,. , ,. ,,,, r ' '.ii,; ~ ·+(At\\· );-'-rd'.1t1·;-32.j+(P;'-'-r.r.!...Pt)1pl>x+S~'-i1.j· (2) 
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(Ac''·). ·+ 112 V· ·+ l '' = (A'N'·)· ·+ 1.'2 L" ·+ 312 +(As")· ·+ l '' V· ·-1 ·2 '1,J l,j ,.. L l.J ', '·1 . ·' .1.J ,_ I,) I 

+ (ADi.j+ 1/2V;+1,j+ 1/2 + (Aw)i,j+ 1/2 L';-1.j+ 1/2 

+ (Pi,j - Pi,j+ 1)/ p {Jy +SL+ 1/2 

(Ac);,j-1/2 L';,j-1/2 = (AN)i.j-1/2 L\,j+ 1/2 + (A~)i.j-1/2 vi,j- 3/2 

+ (Af.);,j- 1/2 V; + 1.J- 112 + (A\v );,j- 112 V;- i.j- 112 

+ (Pi,j-1 - P;.)/ p fJy + SL-112' 

(3) 

(4) 

(U;+ 1/2,j - U;-112.)/ fJx + (vi.j+ 1/2 - V;,j-1/2)/ {Jy = 0. (5) 

The nomenclature for the variables is given in an Appendix. The fractional indices refer to locations 
of the cell faces. The first four equations given above refer to the four velocities on the cell faces and 
the fifth equation expresses the mass continuity. · 

At any given cell, these five equations are solved simultaneously. This gives a matrix of the 
structure 

011 

0 
0 
0 

G51 

where 

0 0 0 015 X1 f1 

022 ·o 0 G25 X2 
,.. 

2 

0 a33 0 035 X3 = ,. 
3 

0 0 a44 045 X4 ,. 
4 

as2 as3 a54 0 X5 ,. 
5 

a 11 = (A(:);- 1/2,j• a 22 = (A(:);+ 112.i' 

a33 = (Ac);,j-112, 044 = (Ac);,j+ 112 

d15 = -1/pfJx, 0 25 = 1/pfJx, etc. 

X1 = u;_112.j• X2 = u;+112.j• 

X3=v;,j-1/2• X4=v;,j+l/2• X5=p;,j . 

(6) 
,• , 

(7) 

r 1,r2 etc. are residuals in the corresponding equations (i.e. differences between the right- and left
hand sides) and u', v' and p' are corrections to the velocities and pressure. In FORTRAN 
convention, the velocities updated at a node (I,J) are indexed as U(I-1,J), U(l,J) V(I,J-1) and 
V (I, J). One relaxation sweep includes visits to all the cells and solution of nodal equations such as 
equation (6). The matrix is inverted analytically with explicit expressions written for b1 to b5 • 

The symmetrical solution at each node differs from a coupled solution in which only one-side 
velocities and the pressure are updated. Such an unsymmetrical update is observed to have a poor 
convergence behaviour. 1 The coupled relaxation differs from relaxation procedures such as the 
distti'butive Gauss- Seidel proposed by Brandt3 and used by Fuchs and Zhao. 16 The coupled 
relaxation is advantageous when the pressure field plays an important role in now development. 
Tradfrio·nally, internal fi0w calculations have been observed to be quite sensitive to the man.ner in 
which the pressure field is evaluated. 15 Consequently a coupled relaxation is currently used and 
advocated for internal flows. ·· · · · 

Restriction operator 

'Restriction' is used for the proces~' of interpolating values on a fine grid to a subsequent coarser 
ghd. In the F AS-FMG niultigricl prbcedure, restriction of the solutiod a:s well as the residuals is 
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necessary. For a staggered mesh, restriction of the variables involves an averaging of neighbour 
values. The averaging refations are different for the two velocities and the pressure. With 
u(i + 1/2,j) denoted as u(i,j), and superscripts c and f denoting coarse and fine grid values, 
respectively, the relation for restricting the u-velocity solution (and residual) is 

u0 (ic,jc) =Htl(if,jf) + ur(if,jf-1)]. (8) 

Similarly, for ~he v-velocity (an,d: its residual) the relation is 

v0 (ic,jc) =Hrr(if,jf) + vr(if-1,jf)]. (9) 

The pressure is averaged with four values, as follows: 

· p0 (ic,jc) = Hl (if,jf) + l (if - 1,jf) +pr (if,jf - 1) + l (if - l,jf - 1 )] , (10) 

whe~~ if ~·2(ic) - 1 and jf = 2(jc) - 1 

,. ·~ . . 
Prolongation 

A bilinear prolongation;operator is used in this study to extrapolate coarse grid values to a finer 
grid. For three-dimensional flows, a trilinear relation is used. The prolongation process 
extrapolates correction.s (and solutions) to the fine grid from values on the adjacent coarse grid. 
Four coarse grid values are used to derive four fine grid values. Fo.r the u-velocity, the relations are 
as follows: 
Let 

then 

. wher~. 
I ... . ... ;::.• j . 

, . ' 

if= 2(ic) - 1, jf =2(jc) - 1. 

ur [if,jf) = !(3ui + u2), 

ur(if,jf + 1) = t(3u2 + ui), 

uf (i~ + 1,jf) = i(3ui + u2 + 3u3 + u4), 

ur (if+ l,jf + .1) = i(3u2 + ui + 3u4 + u3), 
i' 

. ' ·"· .... ;, ~i ,;,u(ic,j9);;u2~.~.(ic,j~+ 1), : •. 

-u3 = u(ic + l,jc), :u4 = u(ic + 1,jc + .f): ' 
(_ I ... 111 , ,. . 1 '" • I •' • ' ' r"f l !.. 

Simifar' tetati.00$ can ~lso be de.rjvep for three-di.mensjonal flows. : . ' . . . . ,,. . -.. t,'• ·t· 

.. · 3. VECTORIZATION 

(11) 

(12) 

(13) 

(14) 

(15) 

. Jn this section th.t:. d·~tails .~f ~·ecto~zing ~h~ ~1k·orithm are ~xpjaiq~~ ,._Much o.f-t~,e ·~ ~tention is given 
, ·; o thi; relaxatiori .~p,erator b·ec~use of fh~ . .associ~ced special diffic,,~lties and its ir(iportance with 

r . r9gaJd to, a CP,U time ci:iterioi:i~ Vectcm.Zil'lg Jh~ . i;estri~tion and p.rolon'ga~io.n phases is . 
· _ ~: b :}~ra jghtfo(»'ar? .~~ :.it on/Y. req.uii:es ass<::J?_bli~g ~p'propriate/.e~id~~ls a~d·avera~ging. :e~hniques 

such as colouring and special boundary md1ces are not pecessary for the restnct1on and 
prolongation routines. 

Data structures 
' • 'J · ,.. . r .. , · ( ( ~ . r· , · ···r !/. · · 1 '· · •- . ' ' '•· • ·· 

·,J~ ,91e #iuhigri~· ffaJiiework, it' is c.onye*ient' io ~to~c::,~ll v~riables in one-q1merisiorial ar,rays and 
j .... ~ 1-.. ·. ' . •.. ' - ·- • . . _.. "" • ' - .. . ..... -. • ·. 
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access them with appropriate offsets. This is because the size of a variable array for each grid is 
different. Thus the values corresponding to the finest and all coarse grids are packed in single arrays 
U. V and P. The residuals that are transferred from one grid to the other must be stored only for the 
coarse grids and they too are stored in one-dimensional arrays RESU, RESV and RESC. These 
represent the major arrays. Other arrays include a local array PHI for the restricted variable (used 
in the prolongation stage) and several short arrays inside the vectorized loop. A lexicographic 
storage convention is used. Thus variables are stored with increasing I index for each J. The 
coarsest grid is stored first in the total array. 

Colouri11g the nodes 

The aspect of colouring the nodes and visiting them in sequence represents the main technique in 
the vectorization process. Because dependency relations cannot exist in a vectorizable loop, it is 
necessary to solve. at any time. only those nodes which are completely independent from each 
other. This separation of the nodes depends on the finite ditTerence stencil used. Several colouring 
schemes have been discussed by O'Leary. 1 ~ For the Poss ion equation. the five-point stencil is easily 
isolated into two colours (red-black) and efficient data structures with long vector lengths are 
achieved. For the relaxation operator used here, because of the symmetrical update (i .e. solving 
velocities on both faces of the cells), a two-colour system does not remove the dependency. This can 
be seen in Figure ·1, where it is seen that calculation of t1 1 depends on u3 , which is solved at a cell of 
the same colour. For complete independence. the SCGS operator requires eight colours, as shown 
in Figure 2. Alternatively sixteen. colours can be used for convenience in programming and 
reduction in storage for the terrworary arrays. . 

In this study, two different schemes of colouring are used. In the first.~ combination of two and 
sixteen colours. is used. Two colours are used on the first few grids in order to preserve adequate 
vector lengths. Because the two-colour ordering does not remove the dependencies completely, old 
values are used for values calculated further down in the loop. This means that some of the terms in 
the convective fluxes are evaluated at the previous iteration (the convergence of the algorithm 
appears not to be affected much by this practice). On finer grids (greater than 32 x 32 nodes) sixteen 

.. 

2 . I 2 I 

I 2 I 2 

-

2 - U3 I 2 I .. 
I 

u, -·. 2 -~2 I 2 

Figute 1. Two-colOur ordering system 
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:- colours are used. In this way. a compromise between storage for temporary arrays (to store the 
results of one colour) and vector lengths is.achieved. In the second system. a two-colour ordering is 
used. but the nodes are processed .line by line. Thus, each line ('say of constant J.) is processed in 
sequence. For each line. the nodes are processed in red and black colour o~dering. On the first few 
coarser grids, the whole domain red-black ordering can be used to preserve adequate vector 
lengths. but this .was not done in, this system because of the relatively smaller time spent on these 
grids. Thus on 4 x 4 grids. the vector ~ength was only two. becoming 4 and 8 on the next t\VO grids. 

The first system of colouring introduces indirect addressing during the load stage of the arrays. 
The indirect addressing results because the loop index is the node number. and for each node, the I 
and J indices are computed. Thus the programming for the loading of arrays look~ like 

DO 11NC=1.NCT 
I= lB(NC) 
J =JB(NC) _, 

. IJ =I+ (J :__!)*IMAX +_IOFF 

' ·.· 
Ul(NC} = U(IJ) . 

·' 

n CONTINUE 

', \vh~~e NCT is total number of cells arranged in red-black ordering and IB. JB give the column and 
row numbers. The offset for grids is den~ted by IOFF. A subseq~ent loop then uses the loaded 
arrays for assembling the finite difference coefficients and solving the equations. 

The line-by-line processing removes the indirect addressing. In this way. the above loop becomes 

DO n 1 J = 2, JMAX - 1 
IB=O 

- IJF = (J - !)*IMAX+ IOFF 
DO 11 2 I= IFST, IMAX - 1, 2 

7 

. 

3 

5 
U3 

-~-

u, 
I -~ 

8 5 6 

4 I 2 

6 7 8 

2 
Uz 

-~· 3 4 

t' Figure 2. Eight-colour ordering system 
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IB=IB+l 
Ul(IB) = U(I + IJF) 

n2 CONTINUE 
n1 CONTINUE 

S. P. VANKA AND K. P. MISEGADES 

where IFST gives the first cell at any line J and IMAX, JMAX the total numbers of grid nodes in 
each direction. Programmed in this way, the n2 loop fully vectorizes and runs faster than the earlier 
version, resulting in approximately 25 per cent reduction in total CPU time. Because of this speed
up, the second system is advocated. 

Boundary indices and conditional IFS 

Normally, for scalar equations on a non-staggered mesh, the equations range only over the 
interior nodes and no special treatment for boundary conditions is necessary. For a staggered mesh 
with coupled processing of the two (or three) velocities and the pressure, conditional Ifs are 
necessary to eliminate the updating of the velocity on the boundary. This inhibits vectorization. To 
remove the conditional arrays some indices (0 and 1 vectors) for the boundary nodes are created. 
All nodes are processed in the same loop, but the appropriate residuals and the equations are later 
masked by the boundary indices. In this way, a few computations are wasted, but the overall loop 
vectorizes. Another place where IF statements are encountered is in the absence of the addition of 
restricted residuals to the fine grid equations. To eliminate a conditional jump to a different 
statement, a separate subroutine for the fine grid solution is used. This routine is identical to the 
other solve subroutine in all places except where restricted residuals are added to the right-hand 
sides of t~e equations. . , 

4. PERFORMANCE 

The vectorized code is used to repeat earlier calculations 1 made on a scalar (IBM3033) machine for 
the laminar flow in a square cavity problem. At this stage only the two-dimensional code is 
vectorized, but the concepts discussed above are equally valid for three-dimensional situations. 
Calculations on the CRAY X-MP are made by using only one processor. The CFT 1·15 compiler 
with CRAY operating system COS 1·14 at Mendota Heights is used. Calculations have been made 
for several finite difference grids up to 512 x 512 nodes and for three different Reynolds numbers 
(uwd/v) of 100, 400, and 1000. The calculations are made for an error tolerance criterion of 10- 3 on 
the norm of residual. 1 For each calculation, detailed statistics are provided on the overall speed
ups due to vectorizations and the percentage contributions by each grid. 

First, the convergence history with lexicographic ordering and red-black ordering is compared 
for three selected sets of calculations (Figures 3-5). It is seen that the red-black ordering converges 
somewhat faster than the lexicographic ordering. However, because of other complexities such as 
non-linearity, coupling, anisotropic coefficients and the mixing of colouring strategies, the 
smoothing factor is not reduced as much as in the case oflinear Poisson or Laplace equations with 
constant coeffidients. 

Table I gives the CPU times and the ·speed-ups due to vectorization. It is seen that a maximum 
speed·~~p ·of 29 is achieved for Re::!::: 400 on the 256 x 256 grid. For other sets, the speed-up is 
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Table I. CPU times (s) for scalar and vector versions on CRAY X-M P 
for Re= 100 

Grid 
Calculation 64 x 64 128 x 128 256 x 256 512 x 512 

Re= 100 
Scalar CRAY 1-47 7·05 34·00 
Vector CRAY 0·64 2·05 7·79 

Re= 400 
Scalar CRAY 1·95 9·35 40·20 
Vector CRAY 1·33 2·65 8·12 

Re= 1000 
Scalar CRAY 4·60 16·40 55·40 
Vector CRAY 2-18 6-02 17.34 

Table II. Percentage time spent and speed-up* for 
Re= 100 

Grid 

150·20 
41·47 

222·6 
38·95 

227-40 
46-01 

Subgrid 64 x 64 128 x 128 256 x 256 

4x4 9·37 3·15 0·91 
(5.01) (5·0l) (4·90) 

8 x 8 7·52 2·77 0·88 
(8·6) (8·65) (8-48) 

16 x 16 10-24 4·22 1·46 
(14·30) (14·26) (13-83) 

32 x 32 20·24 8·72 3·05 
(20·50) (20·50) (19·01) 

64 x 64 38·54 20·05 7·53 
(25·12) (25·95) (24·31) 

128 x 128 46-07 20·93 
(28·18) (27·61) 

256 x 256 49·90 
(27·70) 

Prolongation 7·08 8·09 8·33 
(7-67) (8·18) (8·48) 

Restriction 7·00 6-93 6-99 
(19·01) (23·15) (23-40) 

* Based on veetor timings and IBM 3033 computer 

smaller because of the short vector lengths on the coarse grids. In Tables II-IV, more detailed 
statistics of the speed-up are given. Here, the percentage time spent on each grid and the speed-up 
on each grid in comparison with the IBM 3033 calculation (with vectorized version) are tabulated. 
From these tables, it is seen that on the coarsest (4 x 4) grid, the speed-up is purely due to 
different scalar speeds on the two machines. For this grid, the vector length is two. The speed-up 
ratio is seen to increase on fincer grids with an eventual speed-· up of roughly 28 on grids of size 
128 x 128 (vector length equal to 64) and larger. The restrictions and prolongations, which take 
roughly eight per ceril uf the time each, have speed-ups of around 18 and 8, respectively. Again, 
the suboptimal vector lengths on the coarse grids are the cause of this decreased efficiency. 

The calculated streamlines for the three Reynolds numbers are shown in Figures 6-8. 
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Table III. Percentage time-spent and speed-up* for . Re=400 

Grid 
Subgrid . 64 x 64 128 x 128 256 x 256 

4x4 14·93 7·76 2·65' 
(4·90) (4·94) (4·74) 

8 x 8 17·17 8·70 3-17 
(8·26) (8-47) (7-91) 

16 x 16 15·93 7·79 2·97 
(13·30) (14·37) (12·96) 

32 x 32 15·09 8·45 3·50 
(19·0) (19·22) (18·26) 

64 x 64 21·92 16-78 7-48 
(22·85) (24·21) (24·08) 

128 x 128 35·3 I 20·01 
(26-41) (26-38) 

256 x 256 44-46 
(25·67) 

P:,olongati'on 6-48 7·54 8-41 
-'' (7'06) (7-80) (8·29) 

Restrictip1f .. 8·48 7'68 7·37 

>, .• (14·68) (19·06) (21·56) 

*Based on vector timings and IBM 3033 computer 

., 
Table IV. Percentage time spent and speed-up* for 

Re= 1000 

Grid 
·· Subgrid 64 x 64 128 x 128 256 x 256 

' •),-------------------
.-"4 x 4 .. 

.J 8 x 8 

16 xJ6 

32 x 32 

~; 64 x'64 ' • 
ir· ,:: 

' :1:~8 ,.x 128; . 
,I • L • 

I 25'6 X 256 
4 m, -: .1 ~ 

Prolongation ' 

- 10·02 
(5·11) 
18·47 
(8·71) 

:;r 20!2J 
(14· l 1) 
16-75 

(20·62) 
ff52 ·~

(24·80) . 
. .. : ') .r-;-,, • ;' 

7-27·' 
, : ,· ·, i ,I ' . ,. 1 (7·24) 

.. Restriction . . J. ... . 9·70 ~ 
.. ps:51i . . 

,• I ~· 

6-67 
(5·01) 
12· I 1 
(8·49) 
13-47 

(13·70) 
12-66 

(19·77) 
"16-58 

(24·83) 
20·49 

(27·10) 

.8·21 
(7'65) 
9·80 

(18·04) 

3·29 
(4·70) 
6-68 

.. -(7-96) 
·8-40 

( 1.2-97) 
8·25 

(18·35) 
9·71 

(23·08) 
17-45 

(26-62) 
27·64 

(26-'29) 
8·97 

(8·07) 
9-65 

(19·63) 

*'Based on Tector:iimin'~s and IBM 3033 computer 
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Figure 6. Contours of stream function; Re= 100 Figure 7. Contours of stream function: R~ = 400 

Figure 8. Contours of stream function; Re= 1000 

5. CONCLUSIONS 

In this paper the performance of a vectorized multigrid based calculation procedure for steady, 
incompressible internal flows has been discussed. The algorithm has general applicability and can 
be used for calculation of a wide variety of engineering flows including those in gas turbine and 
Ramjet combustors, industrial furnaces; flows in cavities, etc. The algorithm is easily vectorizable 

. because of th.e use of a point relaxation scheme. The vectorization of the algorithm and the 
observed efficiencies are presented in this pa'per. It is observed that speed-ups of up to a factor of 29 
are possible in comparison with a scalar code run on the IBM 3033 machine. An average speed-up 
of 5 is obtained due to vectorization alone if adequate vector lengths can.be maintained. Typical 
time for a one million node lamina'!' flow calculation ' is- ~stimated to be three minutes. 
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NOMENCLATURE 

A Cen!ral ~oefl!cient in the finite difference equation 
bf· to ~~ Update values to the velocities and pressure 
d '·. · ·· ~Cavity depth 

. .• p. , . . Pressure 
-: r 1 to r~<:i: Residuals in the equations 

Re Reynolds oumber 
S -Additional source terms in the equations 
u, v Velocities in x and y directions 
x y - - -Co-ordi~ate directions -, .. ~ ' ' 
v .l. rKinematic ~iscosfry ' 
p Density 

Subscripts 

i,j 
c 
E 
N 
s 
w 

Along x and y directions, respectively 
Central value:', 
East value 
North value 
South value 
West value 

w Wall value 

Superscripts 

u, v u and v 'velocitie's , 
Correct~Qns , 

.... ·:·' 
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