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Abstract — By applving a finite volume approach to a finite element mesh, the ASTEC computer code
allows three-dimensional incompressible fluid flow and heat transfer in complex geometries to be sim-
ulated realistically, without making excessive demands on computing resources. The methods used in
the code are described, and examples of the application of the code are presented.

I. INTRODUCTION

The use of computer codes for modeling three-
dimensional, incompressible, single-phase fluid flow
and heat transfer is now well established. However,
only finite difference/finite volume codes have proved
sufficiently economical in their use of computer time
and storage to tackle large three-dimensional prob-
lems. These codes employ rectilinear meshes, and al-
though coordinate transformations can be used to
good effect on some simple problems, accurate repre-
sentation of the geometry is generally not possible.
The finite element method provides the required geo-
metrical flexibility, but it has proved difficult to pro-
duce an economical three-dimensional finite element
fluid flow code. Standard Galerkin techniques devel-
oped for two-dimensional problems may be very ex-
pensive when applied without modifications to three
dimensions, so that only small meshes can be em-
ployed. Gresho et al.! and others have modified the
finite element method 1o produce transient three-di-
mensional codes which, although more expensive than
the standard finite difference codes, can be used for
realistic applications. However, there are problems
with these codes. First, the explicit time differencing
introduces a Courant stability restriction on the time-
step size, which will make some calculations very ex-
pensive. Second, the mesh arrangement is susceptible
to spurious pressure checkerboard modes, which can
destroy the solution.

This paper describes how a simple finite volume
approach has been applied to a finite element mesh,
hoping to combine the economy of the former with the
geometrical flexibility of the latter in the ASTEC code.
Implicit time differencing removes the Courant stabil-
ity restriction on the time-step size, and, by using a
special interpolation procedure on a nonstaggered
mesh, pressure checkerboarding is avoided.

A problem to be faced in all fluid flow codes is
the representation of the advection terms, since the
simplest schemes can produce severe false diffusion in
certain circumstances. A skew upwind scheme is em-
ployed in ASTEC, which greatly reduces this false
diffusion without producing unphysical spatial oscil-
lations in the solution.

The applicability of the code will be discussed, and
results from several simulations will be presented.

I1. DESCRIPTION

I1I.LA. The Equations

The ASTEC code solves the transient, three-
dimensional equations for incompressible fluid: flow
and heat transfer in a porous medium. The porous
medium approximation allows distributed solid struc-
ture, such as a rod bundle, which is on too fine a scale
for the mesh, to be represented as a continuum with
properties of porosity and permeability.> A full tensor



representation of the permeability is employed to pro-
vide flexibility: For example a tube bundle can be
modeled without requiring the tubes to be aligned with
one of the coordinate axes.?

By applying the laws of conservation of mass,
momenrum, and energy to*a control volume’in the
porous medium, we can.derive equations for the fluid
velocity, pressure, a.nd temperature (see Nomenclature
on p. Xxx):
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assuming the fluid incompressible.

The volume flux density Ku reduces to the fluid
velocity ‘win open regions (no porous medxum), where
v =1 and' K is the identity matrix I. .

Equation (1) expresses the fact that there shou]d be
no net gain/loss of fluid in the control volume.

The left side of Eq. (2) is the rate of gain of.

momentum within the fluid in the control volume,
with the terms on the right side representing, respec-

tively; advection through the control volume surface, -

the acceleration due 1o a:pressure gradient, diffusion
through the surface, drag-due to the solid:structure

" forming the porous medium, and buoyancy forces .

(using the Boussinesq approximation).

‘Equation (3) balances the rate:of gain of heat in .
the fluid within the control volume, against advection

and diffusion through the surface of the control vol-

ume, and the heat gamed from thc sohd structure of.

the perous medium. a

- WithK=L~y=1;R=0,Q0= 0 these equauons
reduce
fluid, with rio porous medium. For turbulent flow in
such open-regions, ASTEC employs a two equation
turbulence transport model, namely, the k-¢ model,
with wall functions for modeling solid boundaries.*

When using this turbulence. model, transport equations-

» for & and ¢ must be sol\ ed in addmon to Egs. (1), (2),
-and (3). : z

those for laminar flow of an incompressible - -

II.B. The Mesh

We wish to construct, and then solve, equations
for the variables u, p, T, k, and ¢ at a finite number
of nodal positions. Each node must be surrounded by
a control volume, to which we can apply an approxi-
mation of Egs. (1), (2), and (3) in order to provide
equations for the discrete nodal values of the variables.
Thus, our first step is to construct these nodal control
volumes.

Let us considet-the two- dlmensmnal sxtuanon We
divide the region we. wish to model into arbitrary
quadrilaterals, called elements, the corners of which
will be our nodal positions (Fig. 1). Joining the mid-
points of opposite sides in every element defines a
control volume around each node. Moving to three
dimensions, we split our region into eight-node blocks.
Within each block (element) we specify points at the
midpoint of each edge, at the center of gravity of the
four nodes on each face, and at the center of gravity
of the eight nodes forming the element (this last point
is denoted by an ellipse containing a cross in Fig. 2).
These points are joined, as illustrated in Fig. 2, to con-
struct a control surface around each node, which
encloses the nodal control volume. The four points
that define each face of the control surface need not
be coplanar; the face s constructed from two mangles

® Nodes

""" Control surfaces
ﬂ Nodal control volume

" Fig. 1. A two-dimensional mesh ‘of quadrilateral ele-
ments.
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* Nodes
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Fig. 2. An eight- node elcmcm used for three-dimen-
sional meshes.

when the surface is not planar Althou0h each element
must have eight nodes note that there is'no restriction
regarding the number of elements to which a particular
node belongs.

Having defined the control volumes, we must con-
struct a discrete representation for each of the terms
in Egs. (1), (2), and (3).

II.C. Discretization
All variables are stored at the nodes. The differ-
ence scheme is implicit in time, i.e., latest values are

used for all variables in the nontransient terms. Vol-: -

ume integrals in Egs. (2) and (;3) are approximated by
assuming that the mean value of the variable over the
control volume equals the nodal value. However, the
pressure gradient term is converted to a surface imnte-
gral of pressure using Gauss’s divergence theorem. .
' Now the surface integrals in Egs. (1), (2), and (3)
are evaluated by summing over the faces of the con-
trol surfade shown in Fig. 2. On each face, we must
approxjmate the pressure, and advective and diffusive:
fluxes, in terms;of nodal values of the variables. Then+
the'scalar product of this flux with the véctdr area d4

of the face provides us with the contribution to the -

surface integral from this face of the control surface.

For the pressure. we simply assume the pressure on
the face to be the mean of the pressures at the twor
nodes whose control volumes are separated by the
face.

Each face lies wuhm an elemem and only nodes
belonging-to that element are.used when calculating
the flux through the face. For the diffusive flux, the

gradient of the variable is estimated from the nodal
values around the element containing that face. When
calculating the-advective flux through a face, central
differencing is used for low mesh Peclet numbers (<2),
with a proportion of upwinding employed when mesh
Peclet numbers exceed two. A form, of streamline
upwinding is used to reduce false diffusion when the
flow lies at an angle to the mesh. The flow through the
face is estimated from the adjacent nodal velocities by
employing the interpolation procedure of Rhie and
Chow.’ This allows both pressures and velocity com-
ponents to be stored at the nodes, with mass conser-
vation satisfied in the nodal control volumes and with
no pressure checkerboarding problems.

The procedure for solving the discrete equations is
iterative and based on the SIMPLE method.® Each
iteration consists of one sweep through the velocity,
temperature, and turbulence equations followed by the
calculation of pressure and velocity corregtions re-
quired 1o satisfy mass conservation. A preconditioned
conjugate gradient algorithm is used to calculate these
pressure corrections. Iterations are performed until
changes in the variables are small enough to satisfy
prescribed convergence criteria, at which stage we
move on to the next time step in a transient calcula-
tion, or finish in the case of a steady-state calculation.

I11. APPLICATIONS

. III.A. Discussion

The ASTEC code combines many desirable fea-
tures, making it suitable: for a variety of industrial
apphcanons LA

' The finite element mesh allows great geometrical
flexibility, so-that complex geometries can be modeled
rwith relative-ease. Distributed sqlid structure, such as

:a .rod ‘bundle;. can be represented by means of the
. porous rnedium:approximation; a tensor permeability

. is"employed-to allow: greater. flexibility. -

Thetransient equations are solved using an implicit
differencing scheme; so avoiding Courant stability
restrictions on the time-step-size. Athybrid skew up-
wmdmg scheme greatly reduces' the false dlffuswn aris-
ing from the advective terms.

‘A two equation turbulence transport madel (in-
cluding buioyancy effects), which uses wall functions,
is available for modeling turbulent flow in open regions.

The comiputer storage requirements are propor-
tional to the mesh size, with-a mesh of 8000 nodes
requiring:1.7 megawords of memaory. L
. To give some idea of the speed, -the run time
required for a particular problem will be given. This
problem will be discussed in Sec. III.D and involves
calculating steady isothermat turbulent flow using the
k-¢ model on a mesh of ~8000 nodes. A converged
solution was obtained in 25 min on a CRAY-X-MP
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machine, which is not significantly slower than other
three-dimensional finite volume codes, which may be
restricted to rectilinear or cylindrical polar meshes.

The ASTEC code was originally developed to sim-
ulate natural convection in the primary tank of pool-
type liquid-metal fast breeder reactors—a problem that
demands a three-dimensional code capable of repre-
senung a highly complex geometry with:great varia-
tions in length scale."Work has started on applying the
code to this d1ff1cul£ problem.

I}I.'B. Benchmark Test

Before we can place any confidence in our com-
putational results, it is necessary to provide some vali-
dation of the code. Simple tests were carried out

during the development stage, but to ensure that the

differencing scheme produces acceptable accuracy,
ASTEC has been applied to a test problem involving
two-dimensional laminar flow in a smoothly expand-
ing plane channel for two values of the Reynolds num-
ber (Re = 10 and Re = 100) (Ref. 7). Figure 3 shows
the mesh used for the low Reynolds ntumber case.

Symmetry line

Outlet

Fig. 3. ASTEC mesh for the two-dimensional bench-
mark problem.
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Mesh-independent benchmark solutions, for both
values of the Reynolds number, were obtained by
Cliffe et al.® using a finite elément code with a very
fine mesh. The ASTEC results for wall vorticity and
wall pressure on a 21 X 21 mesh are compared with
this benchmark solution in Fig. 4, for the Re = 100
case, with the crosses representing the benchmark solu-
tion. Agreement is generally very good, considering
the coarseness of the mesh, with smularly satisfactory
results being observed for Re = 10. There is a singular-
ity in the pressure solution at the inlet, which is
responsible for the discrepancy in this region: The
same difficulty was encountered with other codes
applied to this problem.’

The successful results from this benchmark test
allow us to have some confidence in the differencing
scheéme.

111.C. The SONACO Experiment

The SONACO project aims to experimentally
mvesngate the free convection cooling of fast reactor
fuel pin assemblies that are blocked at the inlet or out-
let. A 37-pin electrlcally heated bundle is immersed in
liquid sodium within a-hexagonal wrapper, and a flow
of sodium outside this wrapper is used to take away
the heat (in the radial cqohng mode). Since no flow is
allowed through thé test section within the wrapper,
natural convection currents are set up that enhance
heat transfer from the pin bundle to the wrapper. Ref-
erence 9 contains details of the design of the exper-
iment. o

The ASTEC code has been apphed to one of the
SONACO experiments. Flgure 5 shows the mesh of
3465 elements, represeriting a 30-deg sector of the hex-
agonal test section, which is used for simulating radi-
ally symmetric heating modes. The porous medium
approximation is employed to represent the bundle,

Distance along wall

-0.05

-0.10

~0.15

Wall pressure

-0.20]

-0.25

Fig. 4. Comparison between ASTEC predictions and the bénchmark solution (the crosses).
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Fig. 5. The mesh for the SONACO simulation, com-
pressed axially by a factor of 5.

with appropriate flow resistances specified to account
for drag from the bundle and spacer grids. Cooling
flow outside the wrapper is modeled. by the outermost
line of nodes. T
Results will be presented from the simulation of
an experiment with 29.4 kW of uniform heating in
the bundle, and a cooling flow of 0.247 ¢/s outside
the wrapper. Figure 6 shows the velocity vectors and
temperature contours in the symmetry plane C-A (see
Fig. 5), with the axial scale compressed by a factor of
5 to make the plots clearer. As expected there is flow
up the center of the bundle, extending into a plenum

above the bundle, and flow down by.the wrapper, all

Flow

R -\-BWrapper

CiL C/L

Temperature
excess
(10°C isotherms)

~—Top of bundle

—~Grid M

d—Grid | Heated
1 region

Fig. 6. Flow vectors and isotherms on SONACO sym-
métry plane.

-

driven by buoyancy. The maximum temperatureé occurs
at the top of the heated region on the central axis of
the bundle. ¥ ’ , :

Figure 7 compares the ASTEC prediction for the
temperatures on this.central axis with the experimen-
tal results.!® The agreement is véry satisfactory. Un-
fortunately, there are no reliable velocity measurements
currently available from this particular experiment.

III.D. Turbulent Ventilated Box

1

To demonstrate the use of the turbulence model in
ASTEC, calculations were performed to simulate a
ventilated box experiment.!! This experiment involved
turbulent flow through a cuboidal box (Fig. 8) with a
square entrance in the center of one face and a larger
square exit in the center of the opposite face.

Using the mesh illustrated in Fig. 9, representing
one-quarter of the box with two symmetry planes, a
converged steady-state solution was obtained with
the k-¢ model and the skew upwind advection treat-
ment on all variables (including; ¥ and ¢) to mini-
mize false diffusion. Experimental results are available
for the mean axial velocity and the turbulence kinetic
energy k, at points along the central axis of the box.
In Fig. 10, we show our predictions for the axial veloc-
ity, and the turbulence velocity (2k/3)"*, compared
to the experimental values along this central axis.
Clearly, the code has overpredicted the rate of spread
of the jet. ‘

Previous experience.with other.codes in applying
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Fig. 7. Comparison between the predicted axial temper-
ature variation and experimental results (the crosses) from
SONACO. o A

‘Fig. 8. Geometrical configuration of the ventilaed box
experiment. Here, D = 100 mm, L/D = 3.0, two symmetry
planes; d,/D = 0.1, d./D = 0.2, mean inlet velocity = 18.5

-1 : e RS

the k-e¢ model to round jets has implied that the con-
stant ¢, in the e equation should be chahged from its
standard value, ¢, = 1.44, to ¢, = 1.6 for this situa-
tic)n.12 Using this new value for ¢, our results slightly
underpredict the rate of spread of the jet (Fig. 11).
Note that broadly similar results have been obtained
by workers using,other codes on this problem.!!:!2
The computational mesh is.probably too.coarse,

Outlet 8

Fig. 9. Mesh for the ventilated box. ._ .

Mean axial velocity

o " " Turbulence velocity
0.00 0.05 0.10 '0.15.0.20 0.25 0.3
) o Zm)

* ' Fig. 10.Comparison between ASTEC ;)‘rcdiétions and

. experimental results (dots) for mean ‘axial andthrbulence

velocities on the symmetry axis, with ¢, = 1.44. ©  '»

especially around the inlet, for us to have much con-
fidence in these results, and so this-carinot ‘be'viewed
as a rigorous test of the k-e.model. However, the avail-
ability of larger computers in the near future should
allow a much finer mesh to be used.near the inlet,
hopefully improving the reliability of the results.

T #

IV. CONCLUSION'
Finite volume methods have been applied on a
finite element mesh to produce ASTEC: A fluid flow
code with great geometrical flexibility, whi¢h is not

=
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Fig. 11. Comparison between ASTEC predicﬁ(;'ns and
experimental results (dots), with ¢, = 1.6.

prohibitively expensive on large, three-dimensional
problems. The finite element mesh allows complex
geometries to be reproduced accurately, with local
mesh refinement if required. The porous medium
approximation, with the full tensor representation of
permeability, can be used to represent any fine-scale
solid structure in the flow. A turbulence transport
modetl is available for turbulent flow in open regions.
The ASTEC code also uses a skew up"wmd treatment
for advection, which greatlv reduces'false diffusion.

Results presented in Sec.. 11l demqastrate the abil-
ity of the code to model comple\ geometries with
accurate results. '

The ASTEC:code should prove a valuable tool for
‘performmg three-dimensional thermal-hydraulic calcu-
lations in complex geometries. TN

NOMENCLATURE

c = flu1d SpQCiflC heat capacny
» dA e elemem of comrdl surface area r
dVi= elemenr of c@mrél olume

= gravnauonal accelerauon '

= permeabiljty tensor

g

K

k = turbulence kinetic energy densuv
p = pressure '

Q

= ‘heat SOUrce density

R = resistivity tensor
Re = Reynolds number
T = fluid temperature

! =time

u = fluid velocity

Greek

B = coefficient of volumetric expansivity

v = volume porosity

¢ = turbulence energy dissipation rate
k = thermal conductivity

u = dynamic viscosity

p . = density
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