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3-D Numerical Simulation of Turbulent Air Flow 

in and around Buildings Based on the k·E Model 

with Generalized Curvilinear Coordinates 

S. Murakami, Dr. Eng. S. Kato, Dr. Eng. 

ABSTRACT 

The air distribution in and around a building with a 
complicated configuration is well simulated by the finite 
difference method based on generalized curvilinear co­
ordinates. This paper follows preceding studies which 
were based on ordinary Cartesian coordinates (Murakami 
et al. 1987, 1988). · 

Numerical simulations of room airflow by the present 
method using the k-E model based on curvilinear coordi­
nates are conducted. Its validity and feasibility for applica­
tion to engineering problems are confirmed by comparing 
simulation results with ,the experimental results. 

INTRODUCTION 

In the numerical analysis of a flow field using thefinite 
difference method (FDM) or another discretization method, 
fitting the grid discretization to complicated boundary con­
figurations is one of the most important problems. While 
discretization based on Cartesian coordinates, which are 
composed solely ot..rectangular grids, can be applied only 
to simple configurations, it can be performed very easily 
and freely when generalized curvilinear coordinates are 
applied. The generalized curvilinear coordinates allow the 
grid system to fit the"shape of any physical region of interest 
very smoothly. Ca'rtesian coordinates are a particular case 
of the generalized curvilinear coordinates. 

Th~ authors have already submitted to ASHRAE 
Transactions three papers which evaluate the numerical 
simulation of room airflow based on the usual Cartesian 
coordin,ates (M.urakami et al. 1987, 1988; Kato e.t al. 1988). 
This paper is the fourth in this series and: is concerned with 
the method of numerical simulation of air distribution ' 
in and around a building with complicated boundary 
config'l..1 rations. · 

Numerical analysis of flow fields using generalized 
curvilinear coordinates is popular in aeronautical engineer­
ing (e.g ., Rizk 1985; Thompson et al. 1985). However, there 
are few_ studies using generalized curvilinear coordinates 
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in which the transport equations for statistical turbulence 
properties, for example, the k-1: model equations (Yeung 
and Kot 1985; Murakami et al. 1988), are included. This 
may be partly because the method for numerical analysis, 
which includes the turbu lence statistical variables as 
unknowns, meets with some difficulty in determining the 
boundary conditions in the case of generalized curvilinear 
coordinates. Now a computer program based on the cur­
vilinear coordinate system has been developed which 
deals with those difficulties. 

In this paper, three-dimensional turbulence flows are 
analyzed with the k-e model equations based on general­
ized curvilinear coordinates. Three examples of numerical 
simulations are presented. · 

First, to confirm the applicability of the present method, 
numerical simulations of the room airflow are conducted. 
The room space is cubic. The simulations are then com" 
pared with results obtained by the existing numerical 
method, which is based on Cartesian coordinates using a 
staggered grid system, as well as with the experimental 
results. Good agreement is shown in these comparisons. 

Second, a simulation of airflow in a gymnasium, which 
has a complicated globular boundary configuration, is 
performed. The results clearly.demonstrate the practica­
bility of the present method based on the ·curvilinear co­
ordinate system. It gives reasonable airflow distributions for 
a three-dimensional non-rectangular space. 

Finally, airflow distributions around a.two-dimensional 
building model are presented. A separation at the upwind 
corner of the model and a wake behind it are reproduced 
with reasonable accuracy. This example shows the 
possibility of three-dimensional simulations of external 
airflow distributiorts around arbitrarily shaped buildings. 

In the a·ppendices the authors illustrate the proce­
dures for transforming the k-e model equations from Car­
tesian coordinates to a general curvilinear coordinate 
system, the method of discretization, the method of im­
posing boundary conditions, and the time marching pro-
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(a) Section of an auditorium with a complicated 
boundary configuration 
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(b) Grid discretization using the usual 
rectangular grid system (discretization 
is not matched to the boundary) 

Transformation from 

physical coordinates to 

curv~ I inaa1· coordinates 

(c) Grid discretization for a physical region based 
on generalized curvilinear coordinates (dis­
cretization is well matched to the boundary) 

(d) Computational grid transformed from 
generalized curvilinear coordinates 

Figure 1 Utilization of generalized curvilinear coordinates for airflow analysis of a room with a complicated boundary configuration 

cedure used to obtain steady-state solutions. The new 
conservative expression of the partial derivatives, highly 
recommended in order to ensure accuracy of the numeri­
cal integrations, is achieved here. Discretization of depen­
dent variables (u. v, w. p, k, and E) using the control volume 
method and formulations of the boundary conditions (i .e., 
wall law or wall function) are proposed. The Poisson equa­
tion for pressure is formulated , where the second-order 
derivatives of the pressure are integrated conservatfvely 
over each control volume. The pressure at the boundary 
is solved as an unknown. Errors related to the continuity 
condition of the control volumes adjacent to the boundary 
are thus markedly reduced. 

We impose the effect of the wall boundary on the 
governing equations using the wall law or the wall function. 
Thus, we reset the imaginary computational boundary just 
inside of the physical region, leaving a small distance 
between the computational region and the physical region. 
In this way, we can formulate the imposition of boundary 
conditions on three-dimensional curved surfaces by 
means of a simple expression. 

A fully implicit scheme is applied to the governing 
equations for the time marching procedure to obtain the 
steady-state solution . The utilization of a fully implicit 
scheme requires that the following equations be relaxed 
simultaneously: momentum equations; the Poisson equa-

tion for pressure; the transport equations of the turbulence 
kinetic energy, k; and the turbulence dissipation rate, E. We 
solve these equations simultaneously using the overrelax· 
ation method, which is very simple and converges well. 

GENERALIZED CURVILINEAR 
COORDINATE SYSTEM 

Architecture usually has a very complicated config­
uration, regardless of whether it is an indoor or an outdoor 
space. The usual rectangular grid discretization method is 
not good in matching the grid system to a complicated 
configuration, as shown in Figures 1a and 1b. A general­
ized curvilinear coordinate system makes it possible to 
form a very smooth curve-fitting discretization, as shown in 
Figure 1c. The complicated physical region of Figure 1c is 
transformed into a rectangular computational grid region 
by means of curvilinear coordinates, as shown in Figure 1d. 
Numerical computation is conducted on this simple rec­
tangular grid system. 

Three-dimensional governing equations of the k-E 
model with generalized curvilinear coordinates are pro­
posed with the conservative expressions of each transport 
term. The computational program is developed by this 
method. The transformation procedures and the method 
of numerical analysis are described in detail in the appen-



TABLE 1 
Governing Equations of the k-e Model with Generalized Curvilinear Coordinates 

CONTINUITY EQUATION 

u,.+vy+w,. 

• [{J(f,.u+fyv+f,.w)},+{J(~.u+~Yv+~.w)}.+{J(f.u+fyv+t.w)}c]/J 

.. {(JU),+(JV).+(JW)c}/J•O 

Transformation Relations between the Contravariant Vector and 

the Usual Vector of Velocity 

MOMENTUM EQUATIONS 

u"+HX•-p.+FX 

w"+HZ .. -p .. +FZ 

Convection Terms of the Momentum Equations 

HX•(uu),.+(uv)y+(uw),. 

"' { ( JUu) 1 + ( JVu), + ( JWu) c} I J 

HY•(uv).+(vv)y+(vw),. 

•{(JUv),+(JVv),+(JWv)c}/J 

HZ•(uw),.+(vw)y+(ww). 

•{(JUw),+(JVw),+(JWw)c}/J 

Pressure Gradients of the Momentum Equations 

p,."' { ( J E ,.p), + ( J q .p), + (Jr .p) c} I J 

(1.1) 

(1.2) 

(1 .3) 

(1.4) 

(1.5) 

(1.6) 

(1 .7) 

(1.8) 

(1.9) 

(1.10) 



TABLE 1 (Continued) 
Governing Equations of the k-E Model with Generalized Curvilinear Coordinates 

py•{(Jfyp),+(J~yp),+(J,YP)c}/J 

Pz•{{Jfzp),+(J~zP).+(J,zP)c}/J 

Diffusion Terms of the Momentum Equations 

FX•{it(2ux)}x+{~t(Uy+vx)}y+{it(uz+wx)}. 

•{it(ux-vy-wz)}x+{it{Uy+vx)}y+{vt(uz+wx)}z 

• (J , t { ( GG ) u, + (GE ) u, + ( GC) u r - ( z cl J ) v. + ( z .I J ) v c + ( yr I J) w. - ( y .I J ) w r }I ,/ J 

+ [J v t {(GE) u, +(EE)u, + (EC)ur +(zc /J)v,-(z,/J)vr-(YclJ)w, + (y,/J)wr}) • /J 

+ I J , t { ( GC) u, + (EC) u. + (cc) u c - ( z, I J ) v, + ( z ,/ J) v. + ( y. I J) w, - ( y ,/ J) w. } I r I J 

here, GG, GE, GC, etc. are defined in Equation (1-23) 

FY•{it(Uy+vx)}x+{it(2vy)}y+{vt(vz+wy)}z 

•{it(Uy+vx)}x+{it(vy-ux-w.)}y+(it(v.+wy)}z 

• [Ji t {(GG) v 1 + (GE)v, +(GC)vr +(zc /J) u, -(z.f J)ur-(Xr /J)-w, + (x, /J)wc}) ,/J 

+ (Ji t { (GE) v 1 + (EE)v, + (EC)vc-(zclJ )u, +(z,/J)ur + (xc /J)w 1 -(x,/J)wr}) , /J 

+ [J ~ t { ( GC)v, + (EC)v, + (CC)vr+ (z, /J )u 1 -(z,/J)u, -(x, /J)w, +(x 1 /J)w,}) clJ 

FZ•{vt(wx+uz)}x+{it(wy+vz)}y+{it(2w_)}z 

•{~t(wx+uz)}x+{it(wy+vz}}y+{vt(wz-ux-vy}}z 

• I J ~ t {( GG ) w, + (GE) w. + ( GC) w r - ( y cl J) u. + ( y .I J) u r + ( x r I J) v, - ( x. I J) v c} ) ,/ J 

+ (Jit {(GE)w 1 +(EE)w.+(EC)wr+(yc/J)u,-(y,/J)ur-(Xc/J)v,+(x,/J)vr}] .fJ 

+ (Ji t { ( GC) w 1 + ( EC)w, + (CC)wr-(Y, /J )u, + (y ,/J)u, + (x.f J)v, -(x,/ J)v •}) r /J 

TURBULENCE ENERGY k 

Transport Equation of k 

Convection Term of k 

(1 .11) 

(1.12) 

(1 .13) 

(1.14) 

(1.15) 

(1 16) 



TABLE 1 (Continued) 
Governing Equations of the k-E Model with Generalized Curvilinear Coordinates 

HK•(ku)x+(kv)y+(kw). 

•{(JUk) 1 +(JVk),+(JWk)c}/J 

Diffusion Term of k 

• [J v t {( GG) k 1 + (GE) k, + ( GC} kc) lo 1] ,/ J 

+ [Jv t { (GE)k 1 +(EE)k, +(EC)kr} lo d ,/J 

+ [ J v t { ( GC ) k 1 + ( EC) k • + ( CC} k r} lo d r / J 

Production Term 

• 2 v t I { (Ji x u) I + ( J ~ >< u) • + ( J t >< u) r} I J) 2 

+2~t [{(Ji yv) 1 +(Jhv),+(Jtyv)r}/J) 2 

+2 ~ t I { ( J E - w) I+ ( J h w) • + ( J t - w) r} I J) 2 

+vt [{(J(yu+Jf_v),+(J~yu+Jn .. v),+(Jtyu+Jtxv)c}/J) 2 

+ v t [ {(Ji .. w+ Ji - u) 1 + ( J ~ .. w+ J ~ • u) • + ( J t .. w+ J t.., u) r) I JJ 2 

+~t [{(J(.v+Jfyw) 1 +(J~.v+J~yw),+(Jt.v+Jtyw)r}/J) 2 

DISSIPATION RATE i 

Transportation Equation of 1 

Convection Term of 1 

(1.17) 

(1.18) 

(1 .19) 

(1 .20) 



TABLE 1 (Concluded) 
Governing Equation' of the k-e Model with Generalized Curvilinear Coordinates 

HE•(iu) .. +(iv)y+(iw) .. 

• {(JU1 ) 1 +(JV1 ),+(JWi ).}/J 

Diffusion Term of 1 

• (Ji t { ( GG) I I + (GE) ! • + ( GC) ! r} I 0 2) ,/ J 

+ I J h { (GE) ! I + (EE) I • + (EC) I r} lo 2) • I J 

+ I J ~ t { ( GC ) I I + ( EC) I • + (cc) I r} I 0 2) cl J 

where 

z 1 z, Zc t .. CY tz t .. • (y,z,-y,z 1 )/J, ty•-(x 1 z,-x,z 1 )/J, tz• (x 1 y,-x,y,)/J, 

DEFINITION OF ~t 

it•k 1
/

2 l•c 0 k 2 /1 

EMPIRICAL CONSTANTS 

x,• J(ht .. -Cyq,.,), x,•-J(IYC .. -tyl .. ). Xe• J(ly~z-hlz), 

y,•-J(q .. C .. -t .. ~ .. ). y,• J(l .. t .. -t .. f .. ), Yc•-J(l .. ~ .. -q .. / .. ), 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

(1.26) 



TABLE 2 
Boundary Conditions of Velocity and Turbulence Properties 

Constant I Surface 

Velocity Gradients at Wall 

Based on the Power Law Distribution of Tangential Velocity near Wall 

( Uf I ' ) l • J. k 

• { ( m/h) ( ut 1 ' ) , • J. k) I ( GG) 1 
/

2
- { (GE) ( u; 1 ' ) , • J. k + ( GC) ( uf 1 ' ) , • J. k} I (GG) (2 1) 

'" 

( uf I r ) • . J. k 

• { ( m/h) ( ut 1 r ) , . J. k} I ( GG) 1 
/

2
- { (GE) ( u; 1 r ) , . J. k + ( GC) ( uf 1 r ) 1 • J. k} I ( GG) (2.2) 

(u 1 )1.J.k 

+ J E .. ( C1 ) 1 • J . k} I {J { GG)} (2 3) 

(v 1 )1,J,k 

+JI y (Cl ). . J . k} I {J ( GG ) } (2.4) 

(w 1 )t.J.k 

+JI .., ( Cl ) , . J . k} I { J ( GG )} (2.5) 

(2.6) 

Free Slip Condition of k 

(2.7) 



TABLE 2 (Continued) 
Boundary Conditions of Velocity and Turbulence Properties 

where N is a normal distance measured from the physical boundary surface, h is a normal 

distance between the physical surface and the computational one end ( ls the Karmen 

constant, 0.4. 

Constant ~ Surface 

Velocity Gradients at Well 

Based on the Power Law Distribution of Tangential Velocity near Well 

(u;• 1 h.J.1c. 

• { ( m/h) ( ut. I ) l • .J .... } I (EE) t /
2

- { (GE) ( ur. I ). • .J .... + (EC) ( uf. I ). • .J .... } I (EE) (2.8) 

(u;•')1,J.1c. 

• {(m/h) (ut• r) 1 • .J .... } /(EE) t/ 2 -{(GE}(u}'' c).. J, ... +(EC) (uf• r) 1 .J, ... } /(EE) (2.9) 

( u,) l. J. k 

+J~x(C•)1.J,1c.}/{J(EE)} (2. 10) 

(y.)1.J,k 

+Jh(C•) i. J. 1c.} I {J(EE)} (2. 11) 

(w.)1,.J,k 

+J~_,(C• )1.J,1c.}/{J(EE)} (2.12) 

(2 .13) 

Free Slip Condition of k 

(2.14) 



TABLE 2 (Concluded) 
Boundary Conditions of Velocity and Turbulence Properties 

Constant i Surf ace 

Velocity Gradients at Wall 

Based on the Power Law Distribution of Tangential Velocity near Wall 

(ufCl)1,J,k 

• {(m/h) (u"c 1 ) 1 . J . .._}/(EE) 1
/

2 -{(GC) (urc 1 )i. J . .._+(EC) (u;r 1) 1 • J . .._}/(EE) (2.15) 

( uf r ' ) i • J . .._ 

• { ( m/h) ( u" c ' ) I • J . .._}I (cc) l /
2

- { ( GC) ( ur t ' ) l • J. k + (EC) ( u; r • ) l • J . .._}I (cc) (2.16) 

... •.. (Uc ) 1 , J ~ k 

(2.17) 

(2.18) 

(2 19) 

(2.20) 

Free Slip Condition of k 

Wall Law of 1 

E 1 • J . .._• {c0
3

/
4

/ (th)} k 1 • J . .._3
/

2 (2.22) 

here, t • von Karman constant, i•0.4 

\ 



TABLE3 
' Poisson Equation and Generation Term 

POISSON EQUATION OF PRESSURE 

L2({J(GG)}1+1/2.J,k(P1•1.J.k-p1.J.k)+{J(GE)}1+1,J.k(P1•1.J•1.k-P1+1.J-1.k)/4 

+{J(GE)}1.J.k{P1.J+1,k-P1.J-1,k)/4+{J(GC)}1+1.J.k(P1•1.J.k•1-P1+1.J,k-1}/4 

+{J(GC)}1.J.k(P1.J.k+1 - P1.J.k- 1)/4J 

- L 1 I { J ( GG)} l - 1 /2. J . k ( p 1 . J . k -p I -1 . J . k) + (J (GE)} 1 -1 . J . k ( p 1 - 1 . J ... 1 . k -p 1 -1 . J- 1 . k) I 4 

+ {J (GE)} 1'. J. k (p 1 . J• 1. k-p •. .J -1 . k) /4+ {J ( GC)} 1-1 . J. k (Pt -1. J. k• i -p 1-1 . J. k-1 ) /4 

+ {J (GC)} 1. J . k(P1 . J . k•1-P1. J. k- i)/4) 

+~4({J(GE)}1.J•1.k(P1•1.J•1.k-Pt-1.J+1.k)/4+{J(GE)}1 . J . k(P1+1,J.k-P1-1 . .J. k}/4 

+{J(EE))1.J•1/2.k(P1.J+1.k-P1.J.k)+{J(EC)}1.J•1.k(P1.J+1,k•t-P1.J•1.k-1}/4 

+{J(EC)}1.J.k(P1.J.k•1-P1.J , k-1}/4] 

-L3({J(GE)}1.J-1.k(P1+1.J-1.k-P1-1.J-1,k}/4+{J(GE)}1 , J.k(P1+1.J.k-P1-1.J.k)/4 

+{J(EE)}1.J-1/2.k(P1.J.k-P1.J-1.k)+{J(EC)}1.J-1.k(P1.J-1,k+1-P1.J-1.k-1}/4 

+ {J (EC)} 1. J. k(P1. J. k•1 -p •. J, k-t}/4) 

+Le[{J(GC)}1.J,k+1(P1+1,J.k•1-P1-1,J.k+1)/4+{J(GC))1.J.k(P1 • 1. J.k-P1-1 . .J .k)/4 

+{J(EC)}1.J.k+1(P1.J•1.k•1-P1.J-1.k+1)/4+{J(EC)}1.J.k(P1.J +1.k-P1.J-1.k)/4 

+{J(CC)}1.J,k•t/2(P1.J.k•1-P1.J.k)J 

-L5({J(GC)1.J,k-1(P1•1.J.k-1-P1-1,J.k-1)/4+{J(GC}}1.J,k(P1•1 . .J. k-P1 - 1. 4 .k)/4 

+ {J (EC)} 1 . J. k-1 (Pt. J+1. k-1 -p •. J-1. k-1) /4+ {J (EC)} 1, J. k( P1. J•1. k-p1. J-1. k)/4 

+J(CC)1.J.k-1/2(P1.J.k-P1.J.k-1)) 

where underlined terms vanish when all of L1 _ 8 equals unity. 

Generation Term 

D•-J st {JU} d~ dt +/ s2 {JU}d~ dt-/ s3 {JV} df dt+/ s4{JV} dEdt-/ s5 {JW} df d~+/ se {JW} did~ 

Discrete Expression for Full Control Volume 

\0 

(3.1) 

(3.2) 



TABLE 3 (Concluded) 
Poisson Equation and Generation Term 

Discrete Expression for One-half Control Volume 

Definition of Lt 

L1•I1(l 3 +l4)(l5+le)/4, L2•l2(l3+l4)(l5+ le)/4, L3•l3(l1+I2)(l5+le)/4, 

L4•l4(l1+l2)(l5+ le)/4, L5•I5(l1+I2)(l3+l4)/4, Le•le(I1+I2)(l3+ 13)/4, 

I, •O: if the surface S, coincides with the boundary, 

•l: if the surface S, does not coincide with the boundary. 

Definitions of U, V, and W 

If each surface of the control volume does not coincide with the boundary, 

U•((x, fy, f,.)· {(u,v,w)"+At(-HX+FX,-HY+FY,-HZ+FZ )" ... 1 } (constant surface), 

V·(~x•~Y'~"')· {(u,v,w)"+6t(-HX+FX,-HY+FY,-HZ+FZ )" ... 1
} (constant surface), 

W•(i,..iy•i,.)· {(u,v,w)"+6t(-HX+FX,-HY+FY,-HZ+FZ )" ... 1
} (constant surface) . 

If each surface of the control volume coincides with the boundary, respectively, 

U•U(constant surface), 

V•V(constant ~ surface), 

W•W(constant surface). 

,, 

(3.3) 

(3.5) 

(3.6) 

(3 .7) 



TABLE4 
Relaxation Equations 

RELAXATION EQUATIONS FOR VELOCITY COMPONENTS 

Correction Values 

Error Values of Contravariant Vector Components 

Error Values of Velocity Vector Components 

eu•-'u"+1+u"+(6t/J)/v{-'Px"+1_1HX"+1+'FX"+'}dV 

e~E-1yn+t+v"+(6t/J)/v{-'pyn+1_1Hyn+1+1Fyn+l}dV 

Definition of I', IJ, and Ik 

If a surface of the control volume coincides with the boundary: 

1'•0 (constant surface), 

JJ•O (constant surface), 

I k., 0 (constant surface), 

If a surface of the control volume does not coincide with the boundary: 

I '• 1 (constant 

IJ•t (constant 

I k• 1 (constant 

surface), 

surface), 

surface), 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 



TABLE4 
Relaxation Equations (Concluded) 

Pivot Value of Relaxation 

: Diagonal Term of Coefficient Matrices of Simultaneous Equations for u, v, w, k, and 1 

PVT•. J. k 

• ( { J ~ " ( GG)} • . J . k + {J v " ( GG)} • ... 1 . J . kl I 1 
... 

1 / 2 /2 

+ ( ( J v " ( GG ) } 1 . J . k + { J v t ( GG)} , - 1 . J . kl I 1 - 1 " 2 /2 

+ ( {Jv "(EE)} 1. J. k+ {Jv t (EE)} 1. J•1. kl IJ• 1/ 2/2 

+ ({Jv"(EE)}1.J,k+(Jv.{EE)} 1 .J-1.J IJ-1" 2/2 

+ I {J v t (cc)} l • J. k + {J v t (cc)} l • J. k+ ii I k+ l "
2 /2 

+ I {J v t (cc)} l • J. k + {Jv., (CC)} l. J . k-1) I k-l "
2/2 

lf{(i-1/2).GT.O .and. (i+l/2).LT.i •• ,,J 11'°' 1/ 2•1 

lf{(i-1/2).LT.O} 11- 1/ 2•0. 

If { ( i + 1 /2) . GT. i m ... } I • ... 1 / 2 • O. 

Same conditions are applied to IJ±t/2 and Ik± 1" 2 . 

RELAXATION EQUATION FOR k 

RELAXATION EQUATION FOR c 

+At { C 1 I ( n+ 1 t Vt n+ l sn+ l /I kn+ l -c2 { I ! n+ l ) 2 /I kn+ l} I 1 • J. k 

I [ 1 -A t ( c 1 I v t n+ 1 s ., ... 1 I I k ., ... 1 -c2 I ! n+ 1 I I kn+ l } + ( At I J l • J . k) (PVT l • J . k/ a 2) I 

RELAXATION EQUATION FOR PRESSURE 

where wu,wk,w•,wP are over/under relaxation factors. 

The equation of PVP can be derived by substituting the unity value of Vt into 

Equation 4.8. 

(4.8) 

(4 .9) 

(4.10) 

(4.11) 
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Figure 2 Room model 

dices. The governing equations of the k-E model with the 
generalized curvilinear coordinates are expressed in Table 
1. Boundary conditions of velocity and turbulence proper­
ties are shown in Table 2. The discretized Poisson equation 
and its generation term are represented in Table 3. The 
relaxation equations are shown in Table 4 and its proce­
dure is illustrated in Figure 23. 

APPLICATION TO ROOM AIRFLOW 

Comparison of Numerical to Experimental Results 
Based on Cubic-Shaped Room Model 

The authors compare the results of the present 
numerical method, based on the generalized curvilinear 
system, with the preceding ordinary numerical study in 
order to confirm the applicability of this method. The latter 
results are not based on the generalized curvilinear 
coordinates. 

In an earlier study (Nomura et al. 1980), the room 
airflow in a cubic-shaped room was precisely measured 
three-dimensionally and a numerical simulation based on 
the k-E model with Cartesian coordinates was conducted 
using a 20 x 20 x 20 staggered grid system of the MAC 
(marker and cell) method (Harlow et al. 1965); these were 
the prototypes for our latest numerical method (Murakami 
et al. 1987). The room model used for both the experi­
mental and the numerical studies is shown in Figure 2. The 
model scale is normalized by the width of the square outlet. 
The velocity is normaiized by the supply outlet velocity. 

We conducted a simulation by means of the k-E model 
based on the present method using two types of grid 
discretizations: type 1 (20 x 20 x 20), which is shown in 
Figure 3, and type 2 (28 x 19 x 29), which is shown in 
Figures 4a, 4b, and 4c. The boundary conditions are 
described in detail in Table 5. 

Figure 5 shows the distribution of the velocity vectors 
at the symmetrical plane, namely the ri-t plane or the x-y 
plane. The results of the present method, shown in Figures 
5c and 5d, agree well with the authors' experimental results 
of Figures 5a and with the numerical results based on the 
ordinary rectangular grid of Figure 5b. Figure 5e is an 
enlargement of the distribution of the velocity vectors 
around the vicinity of the exhaust inlet. The flow pattern is 
very smooth. The numerical instability, often observed in 
preceding studies, does not appear because of the fine 
grid discretization given by the generalized curvilinear 
coordinate system. 

The turbulence kinetic energy, k, the turbulence 
dissipation rate, E, and eddy viscosity, v1 are shown in 
Figure 6. The effect of the coarseness of the discretization 
does not seem to be great, but some difference appears 
at the right-hand side of the supply jet region. it is observed 
that the gradients of k, E, and v1 are steeper at the jet 
region in Figure 6b (type 2) than those in Figure 6a (type 
1). This difference is due to the fact that simulation with the 
finer grid can reproduce the velocity gradients more 

The definition of the open area in the case of grid Type 
is illustrated here. There is a small difference between 
the inflow rate of grid Type 1 and that of experiment. 
Detail are described in Table 5. 

I I I 4 I I t I I l I I I (I I j I I 
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(a) Grid system (b) Enlargement of 
supply outlet 

(c) Velocity distribution 
of supply outlet 

Figure 3 Grid discretization of Type 1 (length scale and velocity scale are normalized by the width of the supply opening and the supply velocity, 
respectively) 
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TABLES 
Boundary Condition of Cubic-shaped Room Model 

Supply outlet u"•l.O, ut•O.O, k•0.005, !•0.1 

Exhaust inlet u"•l.O, ut,k,i: free-slip 

here, u" ls velocity component normal to outlet or inlet, and 

ut is velocity component tangential to outlet or inlet. 

Wall boundary ( wa 11 ) : m• 1 /7 

(eight vertexes of the cubic room) 

Time increment (grid type 1) : At•0.1 

Time increment (grid type 2) : At•0.05 

Distance between physical wall and computational boundary 

Relaxation factors (in the vicinity of the exhaust inlet) 

(grid type 1) 

(grid type 2) 

Relaxation factors (in the other region) 

(grid type 1) 

(grid type 2) 

h•0.02 

* Representative values for normalization supply velocity, Uo•l.O m/sec, 

width of supply outlet, L0 •l.O m 

Note: Figure 3 b shows the definition of the open area at supply outlet of type 1. As 

for the definition of the inflow rate, there is a small difference between the regular 

grid system here and the staggered one of the preceding study. The inflow velocity 

distribution of grid type 1 at the supply opening is shown in Figure 3 c with a broken 

line. The distribution of the normal velocity component at the exhaust opening is 

similar to that at the supply opening. Due to the uniform grid arrangement, the open 

area of the supply outlet or the exhaust inlet does not agree with that of the 

experimental model 1.0xl.O. They are assumed here to be 1.5X0.75 for grid type 1 and 

1.0xt.O in experiment, as shown in Figure 3 b. But the velocity value ls the same as the 

experimental value. The small d,ifference in inflow rate has little influence on the 

entire flow field. Therefore, it may be regarded that same inflow condition is imposed 

on both simulation of grid type 1 and experiment. 

I~ the discretization of type 2, the grid size for the open area can be adjusted to 

agree with that of the experimental model. 
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(b) Schematic view of the sliced section of the gymnasium and 
positions of the supply outlets and the exhaust inlets 

Figure 6 Turbulence properties based on simulation with curvilinear coordinates 
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Figure 7 Arrangement of supply and exhaust openings of Tokyo gymnasium 

accurately. Therefore, fine grid discretization is required at 
the area where steep gradients of dependent variables 
appear. 

3-0 Numerical Simulation of Air Distribution in a 
Gymnasium 

The air distribution of the Tokyo Gymnasium, which is 
now under construction, is simulated (Kato et al. 1988). The 
k-E model with no buoyancy effect is used. The gymnasium 

is divided into four parts by the two orthogonal center lines 
and one quarter is selected for simulation purposes (see 
Figures ?a and 7b) since this gymnasium space is sym­
metrical on both sides of either center line. We applied the 
three-dimensional analysis proposed in the appendices to 
this space. Since it has a very complicated configuration, 
the advantage of the present method over the preceding 
one based on Cartesian coordinates is confirmed. 

Figure 7b is a schematic view of the section of the 
model near the center line. The model has two lines of 

\'b 



'TABLE6 
Boundary Condition of Gymnasium Model 

Supply outlet un• l. 7' ut•0.0, k•0.043, t•0.08 

Supply outlet 2 un•l.8, ut•0.0, k•0.049, t•0.12 

Supply outlet 3 un•2.2, ut•O.O, k•0.073, t•0.12 

Exhaust inlet un•0 . 1, ut,k,c: free-slip 

Exhaust inlet 2 u .. •0 . 1, ut,k,1: free-slip 

Exhaust inlet un•0.54, ut,k, ! : free-slip 

Wall boundary (wall, seats, floor, celling) : m2 1/7 

Imaginary boundary 

(two cut-out sides of the quarter portion of the space) free-slip 

Time increment (grid type 1) : &t•0.1 

Distance between physical wall and computational boundary h•0.02 

Relaxation factors (in the vicinity of the exhaust inlet) QI P• (J) u• 0. 5, (J) "-• (J) ' • 1 • 0 

Relaxation factors (in the other region) 

* Representative values for normalization 

supply slot outlets at the wall (No. 1, No. 2) and one line of 
the supply slot outlets at the ceiling (No. 3) . There are two 
lines of exhaust inlets at the wall (No. 1, No. 2) and one line 
of exhaust inlets at the top of the ceiling (No. 3) . Velocity 
values and turbulence properties are normalized by the 
characteristic velocity of 1.0 m/s and the characteristic 
length of 1.0 m, respectively. The time increment is also 
normalized by these characteristics. The boundary condi­
tions are described in detail in Table 6. 

Figure 8 Is a grid layout of an x-y plane at the center 
line (z = 0) , which is generated by an algebraic grid 
generation method. The grid is not required to be ortho­
gonal. We divide the width of a quarter of the z-direction 
into 10 segments. The pattern of the discretization of the 
x-y plane at each value of z is nearly equal to that at the 
center (z = 0). 

The distribution of the velocity vectors at the center 
(z = 0) is shown in Figure 9. The air flows along the ceil­
ing, although the direction of the outlet jet (No. 3) is aimed 
slightly downward. A similar distribution appears along the 
arena, where a jet is directed upward at outlet No. 1. These 
results seem reasonable on the basis of experimental 
results (Kato et al. 1988). Figure 10 is a flow visualization of 
this experiment. 

Figure 11 shows a 3-0 view of the trajection lines of 
small marker particles that compose streaklines. It must be 
noted that the trajection of the marker is calculated from the 
averaged flow field, not from the instantaneous turbulent 
flow field. The simulation results of the one-quarter model 
are then combined to form the flow field of the full space. 

L .. 
Figure 8 Grid layout of x - y section (z = O, center line) 
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Figure 9 Veloctiy vectors (u + v) (z = O, center line) 



Figure 10 Flow visualization 

The full space results combined by a computer graphics 
system satisfy the symmetrical condition with respect to the 
center lines. The emission of marker particles from three 
supply outlets begins at time 0. Figure 11a shows streak­
lines at time 95, (b) at time 300, and (c) at time 2500. Figure 
11c shows the steady state of marker movement. Markers 
emitted from the left and right sides of the space are trans­
ported along the seats and the floor. They collide at the 
center of the arena at around time 300. Then markers are 
transported toward the ceiling, where the air is exhausted. 
Some three-dimensional standing vortices are observed 
in Figure 11c. One can comprehend precisely three-dimen­
sional appearances of the flow field through a perspective 
view of 3-D simulation results by applying a computer 
graphics technique. 

On the basis of the above results, the present method 
can be considered to be sufficiently practical and con­
venient for application to engineering problems. 

Numerical Simulation of Air Distribution around a 
Two-dimensional Building Model 

The air distribution around a two-dimensional square 
building model was simulated using the k-E model. The 
numerical analysis of the external flow distribution around 
a building that has right-angled corners is very difficult 
because of the spatial singularity of these corners. The 
present simulation is a first step toward the three-dimen­
sional simulation of external airflow distribution around 
arbitrarily shaped buildings. 

The grid discretization of the entire computational 
domain around the building model is shown in Figure 12a. 
The enlarged one around the model is shown in Figure 
12b. The grid lines of one curvilinear coordinate-constant 
r lines-radiate straight from the surface of the model and 
the grid lines of the other coordinate-constant lines-run 
across the former ones to form rectangular shapes that 
surround the model. All physical lengths are normalized 
by dividing by the length of one side of the square. The 
velocity and turbulence properties are normalized using 
the wind velocity of the height of the building model at the 
upwind inflow boundary. The time increment is also nor­
malized by these characteristics. One side of the surface 
of the model is divided into 32 pieces. The sizes of the grid 
at the surface are 1/32 in wide and 1/20 in high in nondi­
mensional length. 

(a) 95 seconds after emission of marker started 

(b) 300 seconds 

(c) 2500 seconds 

Figure 11 Time-serial streaklines based on averaged f/owfield (full space) 

At the boundary of the upwind inflow side (left side 
in Figure 13) and downwind outflow side of the region, 
velocity distributions are imposed by the power law. For 
velocity wall boundary conditions, the power law distribu­
tions are also assumed at the ground surface and the 
obstacle surface. The detail is illustrated in Table 7. 

Figure 13 shows the simulation result of the stream 
lines of the entire region. The velocity vectors around the 
building model are shown in Figure 14. A backward flow 
is observed at the area in front of the model. A flow sepa­
ration is generated at the front corner at the roof. A large 
wake is reproduced behind the model. Figure 15 shows the 
visualized flow field by the technique of a laser light sheet. 
The simulation result and the experimental one are similar. 

Figure 16 shows the pressure distributions. A large 
pressure gradient is generated at the upwind corner of the 
obstacle. These distributions agree with expectations 
based on experience in wind engineering. 

Figure 17 illustrates the distributions of the turbulence 
kinetic energy, k. Large values of k are observed at the 
upwind corner of the model. The values of k become 
smaller behind the model. Compared to the 3-D experi­
mental results, the distribution pattern of k is close to the 
experimental one, but the values of k are larger than those 
of the 3-D experimental model. 
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(a) Entire region for computation (b) Enlarged region around building model 

Figure 12 Grid discretization 
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Figure 15 Flow visualization by LLS Figure 16 Distribution of p around building model 
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Figure 18 shows the distribution of the kinematic 
viscosity, vt. The values of vt become small at the region 
near the model, which is the most important part of the 
entire region. This is a reasonable tendency. The value vt 
near the model depends on the value of h (distance be­
tween physical wall and computational boundary) because 
it is given by Equation 1.25 in Table 1 using values of the 
turbulence dissipation rate, E, in Equation 2.22 in Table 2. 
Thus the value of h must be chosen carefully. 

CONCLUSIONS 

Figure 19 Transformation from Cartesian coordinates to curvilinear 
coordinates 

Three examples of numerical simulation that show 
good agreement with the experimental data are illustrated. 
First, the correctness of the present method is confirmed 
by comparing the present results of room airflow simula-

1J 7J 

+l 

' + l 

k +1 

k +l 
j -1 

(a) Full control volume (b) One-half control volume 

Broken line rectangle expresses control volumes. 
S; means an area for surface integration. 
( • = nodal point, O = midpoint of surface) 

Figure 20 Definition of control volume and surface for integration 

TABLE 7 
Boundary Condition of Two-dimensional Building Model 

Upwind inflow side : un•(z) i / 4
, ut•O, k•0.025, t•l.l8(z) 1

/
4 

I • 

Downwind outflow side : un•(z) 1
/

4
, ut•O, k,1: free-slip 

Ground and building surfaces : ut : power-law (m•l/4), k : free-slip, 1 

Imaginary boundary (upper side of the region) : ut,k,1 : free-slip 

Front and rear corners at the roof : u•v•O 
Time increment : 6t•0.003 
qistance between physical wall and computational bounda~y 

Relaxation factors : ruP•ruu•0.9,ruk•ru'•l.O 

* Representative values for normalization 

L0 , height of building 

h•0.005 

U0 , wind velocity at the level of building height 

i +l 

wall-law 
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Figure 21 Types of control volumes, full, one-half, one-fourth, and 

one-eighth (defined in relation to boundary) 

tion with results obtained from the existing numerical 
method, as well as with experimental results. 

Second, the practicability of the present method is 
demonstrated by simulating the airflow in a gymnasium 
that has a complicated boundary configuration. 

Finally, airflow distributions around a two-dimensional 
building model are presented. This example shows the 
possibility of three-dimensional simulations of external 
airflow distributions around arbitrarily shaped buildings. 

These practical analyses confirm the present method 
as excellent for analyzing flow fields with complex-shaped 
boundaries. 

In the appendices the authors show the method by 
which the k-E model equations expressed by the Cartesian 
coordinates are transformed to those expressed by the 
generalized curvilinear system. Discrete equations using 
a regular grid system are deduced based on the control 
volume method. A new type of formulation for boundary 
conditions is also proposed. The relaxation method for the 
momentum equations using the contravariant vector and 
for the Poisson equation is expressed, as well as the relax­
ation equations of the transport equations of k and E. 

NOMENCLATURE 

x, y, z 
t 'f/, r. 
U, V, W 

U, V, W 

p 

k 

"c e 

= physical or Cartesian coordinates 
= computational coordinates or generalized cur­

vilinear coordinates 
= x, y, z components of the velocity vector 
= components of the contravariant vector of velocity 

(cf. Equation C-2) 
= kinematic total mean pressure (usually defined as 

[pip + (2/3)k] where pis density) 
= turbulence kinetic energy 
= turbulence dissipation rate 
= eddy kinematic viscosity 
= length scale of turbulence 

h 

U tE~=utE? (N/h)m I, J, k 

Wa 11 

Physical 
Boundary lY-llL.L-.L-1-..1-...L-'-,._""="'_._L......L..-'--'---'-''---N-T 

f=i 

Computational 
Boundary 
(constant ~ ) 

(a) Distribution of the velocity component, u1~~ 
parallel to the computational boundary wall of a constant~ 

t =k 

(b) Definition of the velocity components u1~~ and d<i: 
parallel to the boundary with a constant~ 

Figure 22 Boundary condition of the velocity given by the power law 

0 1<1
1 = tangential velocity component parallel to the con-

stant ~ surface in the direction of the .("-curve 
(namely, tangential component parallel to a curve 
with constant ~and constant'/'/) 

h = distance between computational and physical 
boundary surfaces 

Subscripts and Superscripts 

D;. i. k = discrete value at the nodal point (i, j, k) with respect 
to generalized curvilinear coordinates~ = i, 11 = j, 
t= k 

on = value at time step, n 
c 0 = value at iteration time, f, of the relaxation 

calculation 
0 1 = partial derivative with respect to the time, t 
0., Dy. D, = partial derivatives with respect to the Cartesian 

coordinates, namely with respect to x, y, z, 
respectively 

O<, O~, 0 1 = partial derivatives with respect to the generalized 
curvilinear coordinates, namely with respect tot 
11. or t, respectively 

(0, 0, 0) = expression of a vector in the physical region , 
namely in the Cartesian coordinates 
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of momentum eqs. 
cf. eqs. (I. 7 )- (I. 9). (I. 13 )- ( 1. 15) 

Generation term of Poisson eq . 
cf. eqs. (3 . 2), (3. 6), (3. 7) 

Relaxation of u,v,w and p 
cf. eqs.(4.1)-(4.6),(4.12) 

Diffusion term end convection term 
of k end £ eqs. 
cf. eq s. ( I . I 7) , (I . 18) , ( I . 21 ) , ( 1 . 22) 

Relaxation of k and r 
cf. eqs.(4.10),(4.11) 
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END 

Figure 23 Flow chart of time marching procedure 
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APPENDIX A 
TRANSFORMATION RELATIONS 
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coordinates (x, y, z) by transformation equations, as shown in 
Equation A-1. 

l•l(x,y,z). ~·~(x,y,z), t•t(x,y,z) (A-1) 

A relation between the curvilinear coordinates and the Carte­
sian coordinates is illustrated in Figure 19. No orthogonality con­
ditions are imposed on the curvilinear coordinates here. 

Next the Jacobian is defined as 

X1 X, Xr 

J• YI Yo Yr • ~ >< ~ y ~ z 

Z1 z, Zr (A-2) 

The metric elements and metric coefficients are connected 
by the following relations: 

Ix'" (y,zc-YrZ, )/J, (y•-(x,zr-xrz, )/J, (,., 

• (x,yr-XrY, )/J, 

~""=-(y1zr-YrZ1 )/J, ~Y· (x1zr-xrz1 )/J, ~"' 

•-(x,yr-XrY1)/J 

tx'" (y 1 z,-y,z1 )/J, ty•-(x 1 z,-x,z1 )/J, t,., 
" (x1y,-x,y 1 )/J (A-3) 

Metric coefficients defined by x~ . x~. xr, y,, y~, Yr, Zi;, z~, and 
zr are calculated using a central dillerence with respect to the 
physical coordinates; an example is shown in Equation A-4. 

The value of the space increments in the computational 
region '1~, '111 , and <ltis set as unity. Metric elements defined by 
~x· ~ Y ' ~z • 11x, 11y• 11,, t x• ty. and t, can be calculated using the 
above relations (A-3). 
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APPENDIX B 
TRANSFORMATION FORMULAS FOR 

DIFFERENTIALS AND INTEGRALS 

Equations B-1, B-2, and B-3 show the general conservative 
expression based on the curvilinear coordinates for a partial 
derivative f., fy , and f, for function f, where f(x, y, z) is f { x(~, 11 , t), ' 
y(t 11, t), z(t 11, t)}. . . 

• { (JI ,..f ) 1 + ( J ~ ,..f), + ( J t ,..f) r} I J. (B-1) 

(B-2) 

(B-3) 

The integration form with respect to a control volume Vin cur-
vilinear coordinates is expressed as: · 

/vf(x,y,z)dV•/:~J~~J:~f(x,y,z)dxdydz 

I r 2/ '2/ 1 2 { ( • r• ,1 1 1f x f,q,t),y(f,q,C) 

,z((,~,f )}Jd(d~df (B-4) 

APPENDIXC 
TRANSFORMATION OF GOVERNING EQUATIONS OF k-e MODEL 

The governing equations expressed with Cartesian coor­
dinates and the transformed expressions based on the curvilinear 
coordinates are shown in Table 1. In this section, "transformation 
relations" implies that the equations are being transformed from 
Cartesian coordinates to curvilinear coordinates. We express the 
transformation of the momentum equations as shown in Equa­
tions 1.4 through 1.15 in Table 1, where HX, HY, and HZ are the 
convection terms; Px· Pv· and p, are pressure gradient terms; 



and FX, FY, and FZ are diffusion terms of the momentum equa­
tions. The transformation relations of transport equations of the 
turbulence kinetic energy, k, and the turbulence dissipation rate, 
f, are shown in Equations 1.16 through 1.22 in Table 1. HK and 
HE are convection terms. FK and FE are diffusion terms. 

The continuity equation by the Cartesian coordinates and the 
conservative expression based on the curvilinear coordinates are 
shown in Table 1 as Equation 1.1. The continuity equation is 
transformed as below by referring to formulas B-1 through B-3. 

u .. +vy+w., • [{JU .. u+f yv+f ,.,w)}, 

+(J(~ .. u+~yv+~,.,w)}.+{J(C .. u+iyv+c,.,w)}c)/J•O 
(C-1) 

A new vector (U, V, W) defined by the following equation as 
the contravariant vector of the velocity vector (u, v, w) is 
introduced. 

(C-2) 

U is proportional to the velocity vector component normal to 
the constant~ curved surface, Vis proportional to the velocity vec­
tor component normal to the constant 'Y/ curved surface, and W 
is proportional to the velocity vector component normal to the con­
stant t curved surface. 

The following equations are obtained by solving Equation 
C-2 simultaneously in reference to Equations A-2 and A-3. 

(C-3) 

Next, the authors will explain the method by which the diffu­
sion term of the momentum equation of the x-direction is 
transformed from Cartesian coordinates to curvilinear coor­
dinates. As is shown in Equation 1.13 in Table 1, ux in the 
diagonal component of the strain rate tensor is changed by the 
continuity equation. This is also performed for Vy of Equation 1.14 
and w2 of Equation 1.15. Simple expressions are obtained by this 
substitution, as will be illustrated later. The following equations are 
derived by referring to formulas B-1, 8-2, and B-3. 

(C-4) 

Then, by substituting Ux = ~xu, + 'Y/xu~ + fxUr and likewise 
for the variables Uy, u2 , vx, Vy, etc .. into Equation C-4, the diffusion 
term is rearranged as below: 

The transformation relations for they-direction and z-direc­
tion diffusion terms are obtained in the same way. The pressure 
terms are changed simply by substituting pin Equations 8-1, 8-2, 
and B-3. The transformations of the transport equations of k and 
f, using a similar technique, are performed more easily than those 
of the momentum equations. 

Applying the above transformation procedures to the gov­
erning equations of the k-f model, one can introduce the trans­
formed expressions of the governing equations based on the 
curvilinear coordinates shown in Table 1, where the convection 
terms, the pressure gradient terms, and the diffusion terms are 
denoted conservatively. This conservative expression is very 
important since errors due to the numerical integration may be 
greatly reduced by this expression. 

APPENDIXD 
DISCRETIZATION 

Discretization by the Control Volume Method 

We use here the regular grid system in which all dependent 
variables are defined at the same nodal points in the discretized 
three-dimensional region, as shown in Figure 20. The discrete 
governing equations are obtained by integrating the governing 
equations with each control volume. Many shapes of the con­
trol volume appear to be related to the boundary, as shown in 
Figure 21. 

We can express the convection terms, diffusion terms, and 
pressure gradient terms of the governing equations in the same 
form as Equation D-1 because these terms, which are called 
transport terms, have been denoted conservatively with respect 
to the curvilinear coordinates, as shown in Table 1. 

F•(A,+B,+Cc)/J (D-1) 

A budget of flux through surfaces of a finite control volume 
is estimated by integrating each term within the control volume. 
By integrating Equation D-1, the following discretized expression 
is obtained: 

I Fdv /
k+l/2,J+l/2 l+l/2 

v • k-1/2 J-t/2/1-1/2FJdfd~dC 

~A(i+l/2,j,k)-A(i-1/2,j,k) 

+B(i,j+l/2,k)-B(i,j-1/2,k) 

+C(i,j,k+l/2)-C(i,j,k-1/2) (D-2) 

For the half-shaped control volume that coincides with the 
boundary at S1 , as shown in Figure 20b, the following discrete 

FX• (Jvt{(f .. 2 +fy2 +f.,2 )u,+(f .. ~ .. +f y~y+f ,.,~,.,)u.+(f .. i .. +fyCy+f.,C,.,)uc 

- ( Zc I J) v • + ( z, I J) v c + ( Y c I J) w • - ( Y •I J) w c} J ,/ J 

+(Jvt{(~ .. f .. +~yfy+~.f,.,)u,+(~ .. 2+~y2+~_,2 )u.+(~ .. r .. +~yiy+~_,i,.,)uc 
+(zc/J )v,-(z,/J)vc-(Yc /J )w, +(y,/J)wc} J. /J 

+(Jvt{(C .. f .. +Cyfy+i.f,.,)u,+(i .. ~ .. +iy~y+i,.,~,.,)u~+(i .. 2+iy2+C,.,2 )uc 

-(z./ J)v 1 +(z,/J)v. +(y • /J)w 1 -(y,/J)w.} J cl J (C-5) 



equation is obtained by integrating Equation D-1 with respect to 
the one-half control volume: 

~ A(l+l/2,j,k)-A(i,j,k) 

+{B(l,j+l/2,k)-B(l,J-1/2,k)}/2 

+{C(l,j,k+l/2)-C(i,J,k-1/2)}/2 (D-3) 

The integration area is changed similarly for the one-fourth­
shaped or one-eighth-shaped control volume, shown in Figure 
21. An integration for a term that cannot be expressed as the form 
of the surface integration is represented by the value at the nodal 
point, namely a value at the center of the control volume. For ex­
ample, the integration of the production term of the transport 
equation of k is expressed as follows: 

J Sdv /
k+l/2JJ+1/211+1/2 vit • k-1/2 J-1/2 1-1/2itSJdfd~d{ 

• (Ji ts) 1. J. k (D-4) 

After applying the above-approximated integration formulas 
(D-2 or D-3) to each governing equation, an algebraic equation 
of discrete dependent variables is obtained at each nodal point. 
These algebraic equations can be solved at all nodal points 
simultaneously using a relaxation method, which will be discuss­
ed in Appendix H. 

QUICK Scheme 

The QUICK scheme is applied to the convection term of 
momentum equations (Leonard 1980; Murakami et al. 1987). 
When expressing the convection term as a form of Equation D-1, 
thetermsA(i-1/2, j, k) and A(i+ 1/2, j, k) in Equation D-2 mean the 
momentum flux through the surface with a constant~. The 
momentum flux is expressed as follows by the QUICK method: 

A ( 1-1 /2, j , k) • [ { (JU) 1 -1 . J . i.. + (JU) 1 . J . k} /2) 

{(u1-1,J.i..+u,,J,k)/2-CURVN/8} 

where CURVN/8 indicates the upwind effect, namely, 

ifU;_ 112.i.k>O 

CURVN=u1-2.J,k-2u1-1.J.k+u,,J,k 

or else, u,_,,2, j. k < 0 

(D-5) 

(D-6) 

(D-7) 

The QUICK scheme is applied to the convection terms of the 
transport equations of k and E in the same way as was describ­
ed above. 

APPENDIXE 
BOUNDARY CONDITIONS 

Here, the wall boundary condition is stated primarily because 
the inflow or the outflow boundary condition can be dealt with 
easily. In a curvilinear coordinate system, the boundary surface 
is to be treated as a curved surface with a constant value of~. TJ, 
or t. regardless of the boundary's degree of complexity. This pro­
perty of the computational boundary allows one to formulate the 
boundary conditions simply. 

In the present method, the imaginary computational bound­
ary is set just inside the physical region of the flow field. The com­
putational boundary surface is parallel to the physical boundary 
surface and separated from it by the small distance, h. Thus, the 
narrow area between the physical boundary and the computa­
tional boundary is not treated directly by the computation. With 

this positioning of the boundary, velocity components at the com­
putational boundary, as well as those within the inner flow region, 
may be calculated using the momentum equations. The physical 
boundary imposes its boundary conditions on the computational 
boundary, which is set just inside the physical surface, using the 
proper wall law or wall function. Consequently, simple expres­
sions for the boundary conditions are obtained, as will be men­
tioned below. 

Wall Boundary Condition of Velocity Components by Power Law 
Distribution 

Here, the authors deal with the constant~ boundary surface. 
It is assumed that the tangential velocity components parallel to 
the computational boundary surface, namely parallel to the 
physical surface with constant~. satisfy the power law in the 
TJ-direction and I-direction. Based on this assumption, partial 
derivatives for the velocity components at the wall, u<, v<, and w< 
are derived. These derivations are required to solve the momen­
tum equations at the wall boundary. 

The tangential velocity components are defined as u 1<~. 
which has the direction of the f-curve, and u1H, which has the 
direction of the TJ·Curve in Figure 22. Both u1<~ and u1H· are com­
ponents of the velocity parallel to the computational boundary 
surface with a constant~ . These tangential velocity components 
are expressed using the tangential unit vector at the nodal point 
(i, j, k) on the computational boundary surface as follows: 

ut t • • ( u, v, w) . (Xe , y c 'Zr ) I (Xe 2+y c 2+z, 2) '/2 
(E-1) 

utt '•(u,v,w)· (x,,y. ,z, )/(x, 2+y, 2 +z, 2 ) 1/ 2 

(E-2) 

It is assumed that both u 1<~ and u1<1· obey the power law, as 
illustrated in Figure 22. N is defined as a normal distance 
measured trom the physical surface. Then the power law is 
expressed as Equation E-3 and two normal derivatives of the 
tangential velocity components are derived trom differentiating 
Equation E-3 at the nodal point (i, j, k) (Equations E-4 and E-5). 

(E-3) 

(E-4) 

(E-5) 

The continuity equation is added with non-conservative form 
as follows: 
Ux+vy+Wz •fxU1+f yvf+fzw1+~xu,+~yv,+~zW, 
+{ ,.u,+{ yv,+{ zWc•O (E-6) 

Using the above equations (E-1, E-2, E-4, E-5, and E-6), through 
some complicated algebraic procedures one can get partial 
derivatives u<, v<, and w< for velocity components with respect 
to curvilinear coordinates, as shown in Table 2. 

Wall Boundary Condition of Turbulence Kinetic Energy k by Free. 
Slip Condition 

The gradient of k normal to the surface of the boundary 
vanishes under the tree-slip condition. The tree-slip condition of 
k can be expressed easily, as shown in Equations 2.7, 2.14, and 
2.21 in Table 2. 

Wall Boundary Condition of Turbulence Dissipation Rate by Wall 
Law 

The authors have located a nodal point (i, j, k) at the computa­
tional boundary normal to the wall and a small normal distance, 
h, from the physical boundary, as shown in Figure 22a. The value 
of the turbulence dissipation rate at this point can be calculated 
easily using Equation 2.22 in Table 2. 



APPENDIX F 
TIME INTEGRATION METHOD 

The momentum equations are approximated by means of a 
fully implicit scheme for the time integration as follows: 

(F-1) 

(F-2) 

(F-3) 

where ~t is the time increment. The computational stability 
through thetime marching procedure improves by applying the 
fully implicit scheme. Consequently a comparably larger time in­
crement, ~t. can be used. 

The continuity equation at the time step (n + 1) is express­
ed as follows: 

(F-4) 

The following Poisson equation is obtained after substituting 
Equations F-1, F-2, and F-3 into Equation F-4: 

Px><n+l+pyyn+l+p_zz"+t 

+ (FX,. ...... , +FY y ...... , +FZ"' ...... , ) (F-5) 

Here, we must solve Equation F-5 and the momentum equa­
tions (Equations F-1, F-2, and F-3) simultaneously because 
HXn+1 , HYn+1 , Hzn+1 , Fxn+1 , FYn+1 , and Fzn+1 are unknowns. 
We also apply the fully implicit scheme to the transport equations 
of k and E. 

APPENDIXG 
SOLVING POISSON EQUATION OF PRESSURE 

Formulation of Equation and Treatment at Boundary 

After transforming Equation F-5 into curvilinear coordinates, 
it is integrated with respect to a control volume. Then, the 

transformed Poisson equation is obtained as shown in Equations 
3.1 through ~.7 in Table 3. The superscript (n+1) of the pressure is 
neglected. D is the generation term of the Poisson equation. It 
comes from the control volume integration of the right-hand side 
of Equation F-5. L; is the coefficient that distinguishes whether or 
not the surface of the control volume cgingides wi!h the boundary, 
as shown in Equation 3.5 in Table 3. U, V, and Ware defined in 
Equations 3.6 and 3.7 in Table 3. 

A velocity component normal to the boundary surface is set 
at zero on the wall or it is given before as a fixed value at the supply 
outlet or the exhaust inlet. Using the above condition of the nor­
mal velocity component, the terms of the normal pressure gra­
dient can be eliminated from the integrated Poisson equation by 
substituting the momentum equations in the Poisson equation. 
L; in Equation 3.1 comes from this process of eliminating p. 

APPENDIX H 
RELAXATION METHOD 

The momentum equations and the transport equations of k 
and (' must be solved simultaneously by the relaxation method 
because they are formulated with the fully implicit scheme. The 
relaxation method-which is used for the turbulence kinetic energy, 
k, turbulence dissipation rate, t", and the pressure is an ordinary 
one, as is shown in Table 4. However, for the velocity components, 
a new method is proposed which imposes the Dirichlet-type 
boundary condition on the momentum equations automatically 
through the procedure of iterative calculations using contravariant 
vector components. The relaxation procedure of this method is 
shown in detail in Table 4. 

In the present method a fully implicit scheme is used, so 
velocity components, pressure, turbulence kinetic energy, and 
turbulence dissipation rate are relaxed simultaneously in the same 
iteration loop. A calculation procedure of the present method is 
illustrated in Figure 23. 


