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3-D Numerical Simulation of Turbulent Air Flow
in and around Buildings Based on the k-c Model
with Generalized Curvilinear Coordinates

S. Murakami, Dr. Eng.

ABSTRACT

The air distribution in and around a building with a
complicated configuration is well simulated by the finite
difference method based on generalized curvilinear co-
ordinates. This paper follows preceding studies which
were based on ordinary Cartesian coordinates (Murakami
et al. 1987, 1988).

Numerical simulations of room airflow by the present
method using the k-e model based on curvilinear coordi-
nates are conducted. Its validity and feasibility for applica-
tion to engineering problems are confirmed by comparing
simulation results with the experimental results.

INTRODUCTION

Inthe numerical analysis of a flow field using the finite
difference method (FDM) or another discretization method,
fitting the grid discretization to complicated boundary con-
figurations is one of the most important problems. While
discretization based on Cartesian coordinates, which are
composed solely of.rectangular grids, can be applied only
to simple configurations, it can be performed very easily
and freely when generalized curvilinear coordinates are
applied. The generalized curvilinear coordinates allow the
grid system to fit the' shape of any physical region of interest
very smoothly. Cartesian coordinates are a particular case
of the generalizéd curvilinear coordinates.

The authors have already submitted to ASHRAE
Transactions three papers which evaluate the numerical
simulation of room airflow based on the usual Cartesian
coordinates (Murakami et al. 1987, 1988; Kato ef al. 1988).
This paperis the fourth in this series and-is concerned with
the method of numerical simulation of air distribution
in and around a building with complicated boundary
configurations.

Numerical analysis of flow fields using generalized
curvilinear coordinates is popular in aeronautical engineer-
ing (eg., Rizk 1985; Thompson et al. 1985). However, there
arefew studles using generalized curvilinear coordinates
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in which the transport equations for statistical turbulence
properties, for example, the k-e model equations (Yeung
and Kot 1985; Murakami et al. 1988), are included. This
may be partly because the method for numerical analysis,
which includes the turbulence statistical variables as
unknowns, meets with some difficulty in determining the
boundary conditions in the case of generalized curvilinear
coordinates. Now a computer program based on the cur-
vilinear coordinate system has been developed which
deals with those difficulties. -

Inthis paper, three-dimensional turbulence flows are
analyzed with the k-e model equations based on general-
ized curvilinear coordinates. Three examples of numencal
simulations are presented.

First, to confirm the applicability of the present method,
numerical simulations of the room airflow are conducted.
The room space is cubic. The simulations are then com-
pared with results obtained by the existing numerical
method, which is based on Cartesian coordinates using a
staggered grid system, as well as with the experimental
results. Good agreement is shown in these comparisons.

Second, a simulation of airflow in a gymnasium, which
has a complicated globular boundary configuration, is
performed. The results clearly-demonstrate the practica-
bility of the present method based on the curvilinear co-
ordinate system. It gives reasonable airflow distributions for

_ athree-dimensional non-rectangular space.

Finally, airflow distributions around a two-dimensional .
building model are presented. A separation at the upwind

. corner of the model and a wake behind it are reproduced

with reasonable accuracy. This example shows the
possibility of three-dimensional simulations of external
airflow distributiorts around arbitrarily shaped buildings.

In the appendices the authors illustrate the proce-
dures for transforming the k-e model equations from Car-
tesian coordinates to a general curvilinear coordinate
system, the method of discretization, the method of im-

posing boundary conditions, and the time marching pro-
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(a) Section of an auditorium with a complicated
boundary configuration
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(c) Grid discretization for a physical region based
on generalized curvilinear coordinates (dis-
cretization is well matched to the boundary)
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(b) Grid discretization using the usual
rectangular grid system (discretization
is not matched to the boundary)

(d) Computational grid transformed from
generalized curvilinear coordinates

Figure 1 Utilization of generalized curvilinear coordinates for airflow analysis of a room with a complicated boundary configuration

cedure used to obtain steady-state solutions. The new
conservative expression of the partial derivatives, highly
recommended in order to ensure accuracy of the numeri-
cal integrations, is achieved here. Discretization of depen-
dent variables (u, v, w, p, k, and €) using the control volume
method and formulations of the boundary conditions (i.e.,
wall law or wall function) are proposed. The Poisson equa-
tion for pressure is formulated, where the second-order
derivatives of the pressure are integrated conservatively
over each control volume. The pressure at the boundary
is solved as an unknown. Errors related to the continuity
condition of the control volumes adjacent to the boundary
are thus markedly reduced.

We impose the effect of the wall boundary on the
governing equations using the wall law or the wall function.
Thus, we reset the imaginary computational boundary just
inside of the physical region, leaving a small distance
between the computational region and the physical region.
In this way, we can formulate the imposition of boundary
conditions on three-dimensional curved surfaces by
means of a simple expression.

A fully implicit scheme is applied to the governing
equations for the time marching procedure to obtain the
steady-state solution. The utilization of a fully implicit
scheme requires that the following equations be relaxed
simultaneously: momentum equations; the Poisson equa-
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tion for pressure; the transport equations of the turbulence
kinetic energy, k; and the turbulence dissipation rate, e. We
solve these equations simultaneously using the overrelax-
ation method, which is very simple and converges well.

GENERALIZED CURVILINEAR
COORDINATE SYSTEM

Architecture usually has a very complicated config-
uration, regardless of whether it is an indoor or an outdoor
space. The usual rectangular grid discretization method is
not good in matching the grid system to a complicated
configuration, as shown in Figures 1a and 1b. A general-
ized curvilinear coordinate system makes it possible to
form a very smooth curve-fitting discretization, as shownin
Figure 1c. The complicated physical region of Figure 1cis
transformed into a rectangular computational grid region
by means of curvilinear coordinates, as shownin Figure 1d.
Numerical computation is conducted on this simple rec-
tangular grid system.

Three-dimensional governing equations of the k-¢
model with generalized curvilinear coordinates are pro-
posed with the conservative expressions of each transport
term. The computational program is developed by this
method. The transformation procedures and the method
of numerical analysis are described in detail inthe appen-



TABLE 1
Governing Equations of the k-« Model with Generalized Curvilinear Coordinates

CONTINUITY EQUATION
u,tvy,tw,
= [(J(fautb o vrEaw))  + (J(nsutnyvipaw))  H I (Lautl v aw)) (] /J

= {(JU) (+(JV), +(JW),}/J=0

Transformation Relations between the Contravariant Vector and

the Usual Vector of Velocity

Us¢,utt vt ow, Vep utyp vipow, We{ ut{ v+{_w

u=x,U+x, Vtx, W, v=y, Uty Vty W, w=z, Utz V+z W

MOMENTUM EQUATIONS

U tHX=—p +FX
vetHY=—p_ +FY
WetHZe—p_+FZ

Convection Terms of the Momentum Equations

HX= (uu) .+ (uv) o+ (uw) -

= {(JUu)  +(JVu),+(JIWu), )} /J
HY= (uv) .+ (vv) g+ (vw) .

= {((JUv)  +(JVv), +(JWv),} /J
HZ= (uw) ot (V) y+ (ww) o

= {(JUw)  +(JVw),+(IWw) .} /J

Pressure Gradients of the Momentum Equations

P> {(JEsP) e ¥ (J15P) , + (Il P) ¢ } /I

(1.1)

(12

(1.3)

(1.4)
(15)

(1.6)

(1.7)

(1.8)

(1.9

(1.10)



TABLE 1 (Continued)
Governing Equations of the k- Model with Generalized Curvilinear Coordinates

Py= {(JEsP) e+ (J15P), +(JlspP) e} /J (1.11)
P=={(Jt=P) ¢ *(J1=p),+(Jl=p)¢}/J (1.12)

Diffusion Terms of the Momentum Equations

FX= (v e (20s)) st (e (U +vae) } o (v o (untwac) )
= (e (U vymwa ) ot (1 (UpHvie) } ot {1 o (uatwil) ) 2
= Uy« {(GG)u, +(GE)u, +(GC)u, = (2 /J) v, *+(z,/J)ve+(ye /I)w, = (y,/I)we}] /I
* ve ((GE)u,+(EE)u, +(EC)u +(2, /J)ve=(2, /) Ve~ (ye /I)we+(y o /I)we )],/
* v« {(GC)u, +(EC)u, +(CCu,~(z,/J) Ve +(2 /I)V, (¥, /I) W= (v /I)W, )} o /I (1.13)
here, GG, GE, GC, etc. are defined in Equation (1-23)

FY= 0 e (v ) ot (e (293 )) 5 (e (Vatvy )} 2
= (e (uptvi) ot (e (Vomthemwa ) byt (v e (Vatvy ) ) 2
= Dy« {(GG) v +(GE) v, +(GC) ve +(2z¢ /J)u, = (2, /I)ur = (xc /)W, + (X, /I )we )] o/
* [y e ((GE) v +(EE) v, +(EC)ve = (2 /J)u, +(2 /I)up (X, /) We= (% /) We )], /d
+ 3y« {(GC) v, +(EC) v, +(CC) v, +(z, /J)u, = (2, /I)u, = (X, /I)we+(x, /)W, )} ]| ¢ /I (1.14)

FZ= {1 o (Wocttz) } et (1 e (Wytva) )} ot (1 e (2Wa) ) 2
= () e (Watur)} ot (re(wytve)), + (Vt(wz_“x-vy))z
= [Jv« ((GG)w, +(GE)w, +(GC)w, = (y . /J)u, *(y,/J)u +(x, /J)v,=(x,/I)v}] /I

+[Jy,((GE)wf+(EE)W"+(EC)W,*(yt/J)u,'(y,/J)u,—(x,/J)vf+(x;/J)v()]”/J
Uy« ((GC)w, +(EC)w, +(CC)w, = (y, /J)u, +(y, /I)u, +(x, /J) V= (%, /I)V,}] + /J (1.19)

TURBULENCE ENERGY k

Transport Equation of k

ke +HK=FK+), .S-¢ (1.16)

Convection Term of k



TABLE 1 (Continued) . .
Governing Equations of the k-¢ Model with Generalized Curvilinear Coordinates

HK= (ku), +(kv),+(kw).
= {(JUK),+(JVk),+(JWk),}/J

Diffusion Term of k

FK= (v eko/ 01 )5t (1 eky/01 )3+ (1 eka/01) =
= [Jve {(GG)k,+(GE)k,+(GC)k;} /a1] ¢/J
*[Jve ((GE)k, +(EE)k,+(EC)k;} /04] ,/J
+ [Jye {((GC)k, +(EC)k,+(CC)k¢} /a1] /J

Production Term

b eS= 1 ¢ (ZUZH2VEF2WRH (Uy+V,e ) 2 (Watun ) 2+ (Vatw, ) 2)

=2y e [{(Jfstt) ¢+ (Jnscu) ,+(Jfou),}/J] 2

Y20 [{(JEsv) et (Jnyv), + (It v) )} /J] 2

20 e [{((JE2w)  H(Jnaw), +(Jlaw) )} /J] 2
+vt[k(JEyu+JExV)a+(Jnyu+JnxV)n+(Jtyu+J!xV)e)/Jl2
tre [{(JfsewtItnu)  +(Jnawtdyou) , + (LWt 2u) ) /J] 2
tre [{((JE=vdt,w)  H(Jnavidyyw), (vt w) )} /J] 2

DISSIPATION RATE

Transportation Equation of

t e tHE=FE+c, ¢y .S/k-ca¢ 2/k

Convection Term of

1.17)

(1.18)

(1.19)

(1.20)



TABLE 1 (Concluded)

Governing Equations of the k-« Model with Generalized Curvilinear Coordinates

HE= (¢t u).t(ev)yt(cw)=

= {(JUe ), +(IVe ), *+(IWe),}/J (1.21)

Diffusion Term of

FE=(1ets/02)sut (vety/02)yt (1eta/02)=
= [Jy < {(GG) e +(GE)e,+(GC) e} /02l ¢/J
+[Jv« {(GE) ¢ ,+(EE)¢,+(EC) ¢} /02] ,/J
+ [Jy e {(GC) e, +(EC)¢,+(CC) e} /02] o /J (1.22)

where

GG=tZ+ES+E 2,

EE=2+y3+,2,

CC-{§+(3+(§. GE'Exﬂx"'Ey’ly"’fzﬂzv
GC=t sttty EC= 1ol sctnsyl{stn=l= (1.23)
Xe X, X¢ fee by f=|™' o™ (¥o2ZemYe2Z, )/ b= (X, 2,7%,2,)/d, b= (X,y:7%cY,)/J,

J=lye ¥o Ye|= |05 1y 1=

Z, 2, 2, ‘zx Zy [z

DEFINITION OF .

ye=k172l=cpk?®/¢

EMPIRICAL CONSTANTS

11=1.0, 915=1.3, cp=0.09,

1= (YeZe=YeZe ) /Jo 1™ (XeZp=%c2¢ ) /J0 1= (Xeye %y ) /I,
U (YeZ, 7Y, 2e ) /J0 Lom=(%02,7%,2¢ ) /J) L2 (XY, 7%,y )/J,
xp= Jyl="ly1=)r X, = J(fsl="lst=)s Xe= J(fsr2"15E=),
Yeu I sl =octm) s ¥o= Jlfscl=lab=)s Yem~J(fsenz1sef=).

Ze® J(nsl s laelsy )y Zp= I (Esed s ack ) Ze™ J(toany™nsets)
(1.24)

(1.25)

c1=1.44, cp=1.92 (1.26)




TABLE 2 N
Boundary Conditions of Velocity and Turbulence Properties

Constant { Surface

Velocity Gradients at Wall

Based on the Power Law Distribution of Tangential Velocity near Wall

(UF* " ).y n

= {(m/h)(u®f" )y, 4.4}/ (GG)*”?={(GE) (uT*")s.,.u*(GC)(uF¢" ). .}/ (GG) 21)

(VEF ).y

={(m/h) (=4 ). 4.} /(GG)* 72~ {(GE) (u7 ¥ ). 5. 4*{GC) (uF¢¥ )y, 4.} /(GG) 22)

(Ue )i,y
=y b=z, b ) (XPHYTH2R) V2 (UF 7 )a L gt (Ve b2 by ) (X2HYy2422) 172 (uFtE ), 4

+JE(Cf)uLy. )/ {J(GG)) 23

(Ve)i.y.ae
= (X =72, £5) (XPHYTHZT) V72 (UF 7 ) u L g (X w2y ) (X24y2422) 172 (ubt 8 ),

+JE5(CH) a5k} / (J(GG)) @4

(We)i g

=X by n o) (XBHYEHZE) V72 (uF " )a gt (Xe by foe) (XTHYZH22) 172 (U0 ),

+J¢2(Cf)u. 4. )/ {(J(GG)} (2.5)
C,-_(7)xuv+”yv'l+7)2wn+txu(+(yvf+{=wf) (26)
Free Slip Condition of k
[sa [{Ive(fukattykyttka)} /oa] drdt=fss [{Jye(F2+E2+£2)*72(0k/IN)} /0 1] dyd{=0 @7)

2



TABLE 2 (Continued)
Boundary Conditions of Velocity and Turbulence Properties

where N is a normal distance measured from the physical boundary surface, h is a normal

distance between the physical surface and the computetional one and ¢ is the Karman

constant, 0.4.

Constant jp Surface

Velocity Gradients at Wall

Based on the Power Law Distribution of Tangential Velocity near Wall

(U5 ),y n

={(m/h)(u="¢), 4, &}/(EE)*/2={(GE) (uf"*)1. 4.t (EC)(uf"*)s.,4.x}/(EE)

(U3 ), u.

={(n/h) (u=" )y, 4.2} /(EE)*72-((GE) (uF"* ) s, 5. u+ (EC) (uF" )4, 4.}/ (EE)

(u»)l.J.k
={ (Yer==ze15) (XPHYT+2T) 72 (U707 ) 5w (Ve n=2Ze 0y ) (XFHYFH2T) 72 (U516 )0 y.ne

+J15(C” ) 1. 4.}/ {(J(EE))

(le)l.J.k
={ (X 1272 1) (XTHY?H2T) V72 (uT7 ) oL g wt (Xe 1272 15) (XFHYEF2T) 172 (U8 )y 5k

+J15(C7)r 5.}/ {J(EE))

(Wo)i.g.s
={ (Xeny™Yens) (XPHY?H2R) P2 (Ul 8 ) 1L 5w (Xe 157V e 10) (XFHYFH2ZE) V72 (UE" ¢ )y .k

+J1=(C" )1, 4.}/ {J(EE)}
Crm—{t.cu,+t, v, Howetlu vt o)
Free Slip Condition of k

[sa [{Jre(nakatrykytraka)) /o) drdi=)s: [(Jve (1Z+13+12) 72 (3k/IN)} /0 1] dfd} =0

?

(2.8)

(2.9)

(2.10)

2.11)

2.12)

(2.13)

(2.14)



TABLE 2 (Concluded)
Boundary Conditions of Velocity and Turbulence Properties

Constant { Surface

Velocity Gradients at Wall

Based on the Power Law Distribution of Tangential Velocity near Wall

(U ) s, g.n

={(n/h) (u®f )y 4.} /(EE)*72={(GC) (uF** )1, 4. u*(EC) (u5* )y, 4. u}/(EE)

(UF " ).y n

={(m/h) (u=f" )y 4.} /(CC) 2= {(GC) (uFf" ). 4.t (EC) (u7f ")y, 5.4}/ (CC)

(ue )i g
= (Yol =2z ) (XTHYTH2T) V72 (uF )y s P (Y L=, Uy ) (XPHYTHZT) V72 (uFE " )y Ly

+J05(CF)y. g}/ {J(CC)}

(Ve)r.g. x
= (X {22 {o) (XTHYTH2T) V72 (U ) a L g w (X L =mZ, {oe) (XFHYFHZT) V72 (uE " )i Ly x

=

L (CF )y} / {J(CC))

(Wedi.oos
=X by e o) (XTHYTH2T) V72 (UE ) a5t (X, 5™y, L) (XBHYTH2T) V72 (UEf " ) a5

+J=(CF)a.y.a} /{J(CC))

Com={foctp HioVvetfaw o, 5 v, +12v, )

Free Slip Condition of k

Iss [{Jye(fackoct kot 2ka))} /o] drdl=]sq [{Jye({-2H+] 24 2%)272(§k/IN)} /01] d{dy=0

Wall Law of ¢

E1.J.k'(CDs/a/(lh))kl.J.kalz

here, r = von Karman constant, (=0.4

(2.15)

(2.16)

2.17)

(2.18)

(2.19)

(2.20)

2.21)

2.22)




TABLE 3
* Poisson Equation and Generation Term

POISSON EQUATION OF PRESSURE

L2 [{(J(GG)} s«1/2. 5. w(Prv1. 5.7 Pr. 5. k)Y {J(GE)} 1o1. 5. w(Prer. ye1 . Praa. y-1.x) /4
+{J(GE)}s.y.u(Ps.gv1.%Ps.g-1.x)/4{J(GC)} 1v1. 5. x(Prer. 5. we1™Pra1. g 1) /4
+{J(GC)}s.y.x(Ps.ys.%s1"P1.y.%—1)/4]

<Ly [{(J(GG)}i-1 2. 5. k(Pr .y Pr-1. 4. x)F{J(GE)} s —a . 5. w(Pr—s. ge1. ™ Pro1. y—1.2) /%
+{J(GE)} 1. 5. w(Ps.y+1.67P1. g=1.1)/4+ {(J(GC)} 11, 5. w(P1-1. 5. ke1"Pr-1. 5. %-1)/%
+{J(GC))} 1. y.%(Ps.y.ser1"Ps.y.5~1)/4]

tha [{J(GE)} 1. ye1.0(Prer.ys1. .k Pa1.ge1. &) /4t {J(GE)} s . 4. w(Prer.y. % Pi—1.3.x)/4
+{J(EE)} 1. s+1/2. (P g1, Pi. 5. k) FJ(EC)} s yas  sedPr.yrr e 1 ™Pr L ger 1 ) /4
TAIEC) 1. g s(Pr.y.wer™Pr. g, u=1)/4]

“La [{J(GE)} 1. y-1.u(Pi+1.9-1. % Pr-1.3-1,x)/4+{J(GE)} s . 4. u(Prsr.g.x"Pr1-1.4.x)/%
H{J(EE)} 1. 5-1/2.(Pr.g.xPr.g—1. &) {J(EC)} 1 y—1 . w(Pr.y—1.%e1"Pr . y—1. 1) /4
+{J(EC)}s.y.x(P1.y.x+17P1.3.x-1)/4]

+tLe [{J(GC)} 1. 5. w1 (Prvt. g ev17Pro1. g 2w ) /4 {J(GC) )} 4 5. s (Pres. g 1 Pr—1.y.u)/4
H{I(EC)} 1. 5. nw1(Pr.gwr.ses17Pr.g=1.3+1 ) /AT {J(EC)} s . 5. w(Pr.y+1. %Py . y—1.%)/4%
+{J(CC)} 1.y . wr1,2(Pi. g ke17P1. g k)]

“Las [{J(GC) 1.y . x—1(Pr+1. 5. %=1"P1-1. 3. %=1 )/4+{J(GC)} s, 4. 0(Prvs.g. x"Pr-1.4.1)/%
+H{J(EC)} 1. 5. -1 (Pr.yv1.k-1"P1.g—1.x=1) /4 {(J(EC)} s . 5. w(Pi.y+1.1"Pr.y—1.1)/%

+J(CC)y. 4. k=1,2(P1.5.x"P1.3.1x~-1)]

=D/st,

where underlined terms vanish when all of L,_s equals unity.

Generation Term

D==/s1 {(JU)dyd{+/s= (JU) d1dl—[sa (JV) dtdl+]sa (JV) didl—[ss(JW}did)+]se (JW)didy

Discrete Expression for Full Control Volume

{0

(3.1)

(R



TABLE 3 (Concluded)
Poisson Equation and Generation Term

6-((Jﬁ)l+l.J.k-(JU)l—l.J.k+(Jv)l-J*l.k-(Jv)l.J—l-k+(JW)l.J.k*l_(Jw)l-J-k—l)/z

Discrete Expression for One—half Control Volume

5-((JG)1+1.J.k_(Jﬁ)l-J.k)/2+((Jv)l-J*l-k_(Jv)l-J—l-k+(Jw)l.J-k*l_(Jw)l.J.k—l)/4

Definition of L,

L1'11(13+14)(15+15)/4- Lz'lz([a"'la)(ls"' le)/‘h L3'13(11+Iz)(15+le)/4.
La=la(l1+12) (1a* la)/4, Ls=ls(litlz)(latla)/4, Le=ls(l +12)(lat 14)/4,
I, =0: if the surface S, coincides with the boundary,

=1 :if the surface S, does not coincide with the boundary.

~ ~

Definitions of U, V, and W

If each surface of the control volume does not coincide with the boundary,

G-(Ex.fy.fz)-((u.v,w)"+At(-HX+FX.-HY+FY.-HZ+FZ )m*1} (constant { surface),
V-(ﬂx.ny.nz)-((u.v.w)“+At(-HX+FX,-HY+FY.-HZ+FZ )™*'} (constant j surface),

W-(;x.{y.fz)-((u.v,w)"+At(-HX+FX,—HY+FY.-HZ+FZ )™*'} (constant [ surface).

I[f each surface of the control volume coincides with the boundary, respectively,
G-U(constant ¢t surface),
V-V(constant 1 surface),

W-W(constant { surface).

(3.3)

(34)

3.5

(3.6)




TABLE 4
Relaxation Equations

RELAXATION EQUATIONS FOR VELOCITY COMPONENTS

l-O-lul.J.kn*l-lul'J'kn+l+wucu (41)
l+lvl'J'kn+l-lv"J.kn*l.’.wucv (42)
l+1wl ‘J"kn-&l-lwl ‘J'kn+l+mucw (4 3)

Correction Values

cum (x,0V ] +x, oVIJdtx,oWI*) /(1+(At/Jy, 5. u)PVTy, 5. 4)
cV=(y,e"lt+y,eVIdty, eWl% )/ {1+(8t/Js, 5.2 )PVTy 5.}

cv=(z,0"]'+z,eV]3+z, 0%I*)/ (1+(At/Jy, 5. )PVTy, 4. ) (4.9)

Error Values of Contravariant Vector Components

elsf e tf eVt oY, eVmy, ekt eVt ev, eWml eut[ vVi{ oV (4.5)

Error Values of Velocity Vector Components

ou==tun*t1hur+ (§£/J) [y (=t P I tHX T+ FXP 1) dV
eve=tymtlbyrt (§t/J) [y (—' py - tHYP T4 FY 1) AV
ova=twrt eyt (At/J) [y (- pot - tHZP 1+ FZ 1) dV

(.6)

Definition of I', 1Y, and I*

If a surface of the control volume coincides with the boundary:
1*=0 (constant { surface),
[4=0 (constant ; surface),

[“=0 (constant | surface),

[f a surface of the control volume does not coincide with the boundary:
I'=1 (constant { surface),
1Y=1 (constant j; surface),

I*=] (constant { surface), 4.7)
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TABLE 4
Relaxation Equations (Concluded)

Pivot Value of Relaxation

: Diagonal Term of Coefficient Matrices of Simultaneous Equations for u, v, w, k, and

PVT, 4. u

= [{(Jve(GG)} 5. 5.6t {(Jre(GG)} xua. 5.0) 1'*172/2

+[{J1e(GG)}s.y. 0t {Ive(GG)}a—n.y.5] 1'7172/2

Iy (EE)} s 5 st {(Jv e (EE)} 4, you o] 1971 72/2

+[{(Jre(EE)} 1. 5wt (v (EE)} 4, y—1.a] 1977 72/2

+[{Jr=(CCY} 1.y wt {(Jre(CC)}y. y.sews] IX¥172/2

+[{Jye(CC)} 1. 5. ut {(Jre(CC)}a.y.sema] I7172/2 (4.8)
1£{(1~1/2).GT.0 .and. (1+1/2).LT.inax) 1'*1/2a]

[f{(i-1/2).LT.0)} 1'—1/2=0,

1f ((i+1/2).GT. ey} 1'*1/2=0. (4.9)

Same conditions are applied to [4%*'/2 and [%*'/2,

RELAXATION EQUATION FOR k

!*lk‘ .J.kn*l-‘kl ‘J.kn*l.‘.mk [_lkn+l+kn+(At/J)lv(_lHKn*-l.‘.lFKn*l)dV

it (ty et ST et M L/ (1 (/T 5 k) (PYVT L 5w/ 00)) (4.10)

RELAXATION EQUATION FOR ¢

R It LSRN ["'s"+‘+c"+(At/J)fv{-'HE"*“'"FE“*‘)CW
At {Cy et by m* Sn*l/!kn*l_cz(l‘n*l)2/!kn+l)]l.J.k

T R e STV T AN (' Ry | @1
RELAXATION EQUATION FOR PRESSURE

¢ ‘lpl «+Jd. kn+l=l Pi.4g. kn*1+”p ”V(pxxn-.-l"'pyyn*l"'pzzn* l—(ux+vy+w=)n/’At

= (~HX,c~HY,.~HZ +FX, +FY_+FZ_)"**}dV] . 5. /PVPy 4.4 (4.12)

where y“,u*,v*,¢® are over/under relaxation factors.

The equation of PVP can be derived by substituting the unity value of . into

Equation 4.8.
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Figure 2 Room mode!

dices. The governing equations of the k-e model with the
generalized curvilinear coordinates are expressed in Table
1. Boundary conditions of velocity and turbulence proper-
ties are shown in Table 2. The discretized Poisson equation
and its generation term are represented in Table 3. The
relaxation equations are shown in Table 4 and its proce-
dure is illustrated in Figure 23.

APPLICATION TO ROOM AIRFLOW

Comparison of Numerical to Experimental Results
Based on Cubic-Shaped Room Model

The authors compare the results of the present
numerical method, based on the generalized curvilinear
system, with the preceding ordinary numerical study in
order to confirm the applicability of this method. The latter
results are not based on the generalized curvilinear
coordinates.

In an earlier study (Nomura et al. 1980), the room
airflow in a cubic-shaped room was precisely measured
three-dimensionally and a numerical simulation based on
the k-e model with Cartesian coordinates was conducted
using a 20 x 20 x 20 staggered grid system of the MAC
(marker and cell) method (Harlow et al. 1965); these were
the prototypes for our latest numerical method (Murakami
et al. 1987). The room model used for both the experi-
mental and the numerical studies is shown in Figure 2. The
model scale is normalized by the width of the square outlet.
The velocity is normaiized by the supply outlet velocity.

We conducted a simulation by means of the k-e model
based on the present method using two types of grid
discretizations: type 1 (20 x 20 x 20), which is shown in
Figure 3, and type 2 (28 x 19 x 29), which is shown in
Figures 4a, 4b, and 4c. The boundary conditions are
described in detail in Table 5.

Figure 5 shows the distribution of the velocity vectors
at the symmetrical plane, namely the »-¢ plane or the x-y
plane. The results of the present method, shown in Figures
5c and 5d, agree well with the authors’ experimental results
of Figures 5a and with the numerical results based on the
ordinary rectangular grid of Figure 5b. Figure 5e is an
enlargement of the distribution of the velocity vectors
around the vicinity of the exhaust inlet. The flow patternis
very smooth. The numerical instability, often observed in
preceding studies, does not appear because of the fine
grid discretization given by the generalized curvilinear
coordinate system.

The turbulence kinetic energy, k, the turbulence
dissipation rate, e, and eddy viscosity, », are shown in
Figure 6. The effect of the coarseness of the discretization
does not seem to be great, but some difference appears
at the right-hand side of the supply jet region. it is observed
that the gradients of k, ¢, and », are steeper at the jet
region in Figure 6b (type 2) than those in Figure 6a (type
1). This difference is due to the fact that simulation with the
finer grid can reproduce the velocity gradients more

The definition of the open area in the case of grid Type |
is illustrated here. There is a small difference between
the inflow rate of grid Type | and that of experiment.

Detail are described in Table 5.

i
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|
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(a) Grid system

(b) Enlargement of
supply outiet

(c) Velocity distribution
of supply outlet

Figure 3 Grid discretization of Type 1 (length scale and velocity scale are normalized by the width of the supply opening and the supply velocity,

respectively)
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TABLE 5
Boundary Condition of Cubic-shaped Room Model

Supply outlet ¢ u™=1.0, u%*=0.0, k=0.005, [(=0.1
Exhaust {nlet P u=1.0, u®,k,¢! free-slip
here, u™ is velocity component normal to outlet or inlet, and
u® is velocity component tangential to outlet or inlet.
Wall boundary (wall) : m=1/7
(eight vertexes of the cublic room) : u=vews=Q

Time increment (grid type 1) : At=0.1

Time increment (grid type 2) : At=0.05
Distance between physical wall and computational boundary : h=0.02
Relaxation factors (in the vicinity of the exhaust inlet)
(grid type 1) : ¢P=yu=0.5, p*=p'=1.0
(grid type 2) : yP=yv=0.25,p*=p'~1.0
Relaxation factors (in the other region)
(grid type 1) : yP=y“=]1.0,p% =y =1.0

(grid type 2) : ¢P=y =0.5,p*=p*'=1.0

% Representative values for normalizetion ! supply velocity, Uo=1.0 m/sec,

width of supply outlet, Lo=1.0 m

Note: Figure 3 b shows the definition of the open area at supply outlet of type 1. As
for the definition of the inflow rate, there is a small difference between the regular
grid system here and the staggered one of the preceding study. The inflow velocity
distribution of grid type 1 at the supply opening is shown in Figure 3 c with a broken
line. The distribution of the normal velocity component at the exhaust opening is
similar to that at the supply opening. Due to the uniform grid arrangement, the open
area of the supply outlet or the exhaust inlet does not agree with that of the
experimental model 1.0x1.0. They are assumed here to be 1.5%0.75 for grid type 1 and
1.01.0 in experiment, as shown in Figure 3 b. But the velocity value is the same as the
exporimental value. The small difference in inflow rate has little influence on the
entire flow field. Therefore, it may be regarded that same inflow condition iIs imposed
on both simulation of grid type 1 and experiment.

In the discretization of type 2, the grid size for the open area can be adjusted to

agree with that of the experimental model.
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Figure 6 Turbulence properties based on simulation with curvilinear coordinates
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(b) Schematic view of the sliced section of the gymnasium
and positions of the supply outlets and the exhaust inlets

Figure 7 Arrangement of supply and exhaust openings of Tokyo gymnasium

accurately. Therefore, fine grid discretization is required at
the area where steep gradients of dependent variables
appear.

3-D Numerical Simulation of Air Distribution in a
Gymnasium

The air distribution of the Tokyo Gymnasium, which is
now under construction, is simulated (Kato et al. 1988). The
k-e model with no buoyancy effect is used. The gymnasium

is divided into four parts by the two orthogonal center lines
and one quarter is selected for simulation purposes (see
Figures 7a and 7b) since this gymnasium space is sym-
metrical on both sides of either center line. We applied the
three-dimensional analysis proposed in the appendices to
this space. Since it has a very complicated configuration,
the advantage of the present method over the preceding
one based on Cartesian coordinates is confirmed.
Figure 7b is a schematic view of the section of the
model near the center line. The model has two lines of

)



TABLE 6
Boundary Condition of Gymnasium Model

Supply outlet 1 : u~=1.7, u®=0.0, k=0.043, [=0.08
Supply outlet 2 : u~=1.8, u®*=0.0, k=0.049, [=0.12
Supply outlet 3 : u™=2.2, u*=0.0, k=0.073, 1!=0.12

Exhaust inlet 1 : u~=0.1, u®,k,¢: free-slip
Exhaust inlet 2 : u™=0.1, u®,k,¢: free-slip
Exhaust inlet 1 : u~=0.54, u®,k,¢: free-slip
Wall boundary (wall, seats, floor, ceiling) @ m=1/7
Imaginary boundary
(two cut-out sides of the quarter portion of the space) : free-slip
Time increment (grid type 1) : jt=0.1
Distance between physical wall and computational boundary : h=0.02
Relaxation factors (in the vicinity of the exhaust inlet) : yP=y“=0.5, y*=y'=1.0

Relaxation factors (in the other region) P gPempm],. 0,9 =y'=1.0

¥ Representative values for normalization : Uo=1.0 m/sec, Lo-l.b m/sec

supply slot outlets at the wall (No. 1, No. 2) and one line of
the supply slot outlets at the ceiling (No. 3). There are two
lines of exhaust inlets at the wall (No. 1, No. 2) and oneline
of exhaust inlets at the top of the ceiling (No. 3). Velocity
values and turbulence properties are normalized by the
characteristic velocity of 1.0 m/s and the characteristic
length of 1.0 m, respectively. The time increment is also
normalized by these characteristics. The boundary condi-
tions are described in detail in Table 6.

Figure 8 Is a grid layout of an x-y plane at the center
line (z=0), which is generated by an algebraic grid
generation method. The grid is not required to be ortho-
gonal. We divide the width of a quarter of the z-direction
into 10 segments. The pattern of the discretization of the
x-y plane at each value of z is nearly equal to that at the
center (z = Q).

The distribution of the velocity vectors at the center
(z=0) is shown in Figure 9. The air flows along the ceil-
ing, although the direction of the outlet jet (No. 3) is aimed
slightly downward. A similar distribution appears along the
arena, where a jet is directed upward at outlet No. 1. These
results seem reasonable on the basis of experimental
results (Kato et al. 1988). Figure 10is a flow visualization of
this experiment.

Figure 11 shows a 3-D view of the trajection lines of
small marker particles that compose streaklines. It must be
noted that the trajection of the marker is calculated from the
averaged flow field, not from the instantaneous turbulent
flow field. The simulation results of the one-quarter model
are then combined to form the flow field of the full space. Figure 9 Veloctiy vectors (u + v) (z = 0, center line)
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Figure 10 Flow visualization

The full space results combined by a computer graphics
system satisfy the symmetrical condition with respect to the
center lines. The emission of marker particles from three
supply outlets begins at time 0. Figure 11a shows streak-
lines at time 95, (b) at time 300, and (c) attime 2500. Figure
11c shows the steady state of marker movement. Markers
emitted from the left and right sides of the space are trans-
ported along the seats and the floor. They collide at the
center of the arena at around time 300. Then markers are
transported toward the ceiling, where the air is exhausted.
Some three-dimensional standing vortices are observed
in Figure 11c. One can comprehend precisely three-dimen-
sional appearances of the flow field through a perspective
view of 3-D simulation results by applying a computer
graphics technique.

Onthe basis of the above results, the present method
can be considered to be sufficiently practical and con-
venient for application to engineering problems.

Numerical Simulation of Air Distribution around a
Two-dimensional Building Model

The air distribution around a two-dimensional square
building model was simulated using the k-e model. The
numerical analysis of the external flow distribution around
a building that has right-angled corners is very difficult
because of the spatial singularity of these corners. The
present simulation is a first step toward the three-dimen-
sional simulation of external airflow distribution around
arbitrarily shaped buildings.

The grid discretization of the entire computational
domain around the building model is shown in Figure 12a.
The enlarged one around the model is shown in Figure
12b. The grid lines of one curvilinear coordinate—constant
¢ lines—radiate straight from the surface of the model and
the grid lines of the other coordinate—constant lines—run
across the former ones to form rectangular shapes that
surround the model. All physical lengths are normalized
by dividing by the length of one side of the square. The
velocity and turbulence properties are normalized using
the wind velocity of the height of the building model at the
upwind inflow boundary. The time increment is also nor-
malized by these characteristics. One side of the surface
of the model is divided into 32 pieces. The sizes of the grid
at the surface are 1/32 in wide and 1/20 in high in nondi-
mensional length.

20

(c) 2500 seconds

Figure 11  Time-serial streaklines based on averaged flowfield (full space)

At the boundary of the upwind inflow side (left side
in Figure 13) and downwind outflow side of the region,
velocity distributions are imposed by the power law. For
velocity wall boundary conditions, the power law distribu-
tions are also assumed at the ground surface and the
obstacle surface. The detail is illustrated in Table 7.

Figure 13 shows the simulation result of the stream
lines of the entire region. The velocity vectors around the
building model are shown in Figure 14. A backward flow
is observed at the area in front of the model. A flow sepa-
ration is generated at the front corner at the roof. A large
wake is reproduced behind the model. Figure 15 shows the
visualized flow field by the technique of a laser light sheet.
The simulation result and the experimental one are similar,

Figure 16 shows the pressure distributions. A large
pressure gradient is generated at the upwind corner of the
obstacle. These distributions agree with expectations
based on experience in wind engineering.

Figure 17 illustrates the distributions of the turbulence
kinetic energy, k. Large values of k are observed at the
upwind corner of the model. The values of k become
smaller behind the model. Compared to the 3-D experi-
mental results, the distribution pattern of k is close to the
experimental one, butthe values of k are larger than those
of the 3-D experimental model.
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Figure 17 Distribution of k



z Figure 18 shows the distribution of the kinematic
viscosity, »,. The values of », become small at the region
near the model, which is the most important part of the
entire region. This is a reasonable tendency. The value »,

= near the model depends on the value of h (distance be-

a tween physical wall and computational boundary) because
- i & it is given by Equation 1.25 in Table 1 using values of the
i turbulence dissipation rate, ¢, in Equation 2.22 in Table 2.

i 24

e
Lo

x H

7 Thus the value of h must be chosen carefully.

&) {4

CONCLUSIONS

A B . . 5
N // Three examples of numerical simulation that show
5 good agreement with the experimental data are illustrated.
First, the correctness of the present method is confirmed

Figure 19 Transformation from Cartesian coordinates to curvilinear by Comparing the present results of room airflow simula-
coordinates

7
Pd | S(.
(t .j k) O

fg;:“}i’\'

= == , + 1
§ =1 i & " !
¢
(a) Full controi volume (b) One-half control volume
Broken line rectangle expresses control volumes.
S; means an area for surface integration.
(® = nodal point, O = midpoint of surface)
Figure 20 Definition of control volume and surface for integration
TABLE 7
Boundary Condition of Two-dimensional Building Model
Upwind inflow side : u™=(z)'/%, u®=0, k=0.025, (=1.18(z)'/*
' )
Downwind outflow side : u™=(z)'/*, u®=0, k,:: free—slip
Ground and building surfaces : u® ! power-law (m=1/4), k : free—slip, ¢ : wall-law

Imaginary boundary (upper side of the region) : u®,k,¢ @ free-slip

Front and rear corners at the roof : usv=0
Time increment : jt=0.003
Distance between physical wall and computational boundary : h=0.005

Relaxation factors ! yP=¢“=0.9,¢%=y*=1.0

% Representative values for normalization

Lo, height of building
Uo, wind velocity at the level of building height

2



S o] one-half
¢ / ]
H i
e

L

e |
5S4 pal S

SRRy i , SSa TR
4 e ?ﬁ_one—aighth
ey’ |
! L Sa 7 P e T
) - 3 i
15is. Ve il o o
M A3 one-fourth P i
1 1 ]
> ¢ H !
—o— botes €
1 H 1
Sembnd e ainad
" ,'
-~ 4 J 1 -
i -
Vs -
Lo N e Ful ]
]

Figure 21 Types of control volumes, full, one-half, one-fourth, and
one-eighth (defined in relation to boundary)

tion with results obtained from the existing numerical
method, as well as with experimental results.

Second, the practicability of the present method is
demonstrated by simulating the airflow in a gymnasium
that has a complicated boundary configuration.

Finally, airflow distributions around a two-dimensional
building model are presented. This example shows the
possibility of three-dimensional simulations of external
airflow distributions around arbitrarily shaped buildings.

These practical analyses confirm the present method
as excellent for analyzing flow fields with complex-shaped
boundaries.

In the appendices the authors show the method by
which the k-e model equations expressed by the Cartesian
coordinates are transformed to those expressed by the
generalized curvilinear system. Discrete equations using
a regular grid system are deduced based on the control
volume method. A new type of formulation for boundary
conditions is also proposed. The relaxation method for the
momentum eqguations using the contravariant vector and
for the Poisson equation is expressed, as well as the relax-
ation equations of the transport equations of k and e.

NOMENCLATURE

X %z physical or Cartesian coordinates

I computational coordinates or generalized cur-
vilinear coordinates

u, v, w = X, ¥, zcomponents of the velocity vector

U V. W = components of the contravariant vector of velocity
(cf. Equation C-2)

p = kinematic total mean pressure (usually defined as
[plo + (2/3)k] where p is density)

k turbulence kinetic energy

turbulence dissipation rate
eddy kinematic viscosity
length scale of turbulence

m
{1 R A |

=3

uttr=uify, W (N/h)"

Wall
Physical
Boundary ' >
C1y )it
Computational
Boundary

E=1i

(a) Distribution of the velocity component, utén
parallel to the computational boundary walil of a constant ¢

(constant ¢ )

(b) Definition of the velocity components o™ and ut¢
parallel to the boundary with a constant ¢

Figure 22 Boundary condition of the velocity given by the power law

]t = tangential velocity component parallel to the con-
stant £ surface in the direction of the ¢-curve
(namely, tangential component parallel to a curve
with constant £and constant »)

h = distance between computational and physical
boundary surfaces

Subscripts and Superscripts

O = discrete value at the nodal point (j, j, k) with respect
to generalized curvilinear coordinates £ =/, p =,
E=ik

(g = value at time step, n

e = value at iteration time, ¢, of the relaxation
calculation

0, = partial derivative with respect to the time, ¢

[, U, [, = partial derivatives with respect to the Cartesian

coordinates, namely with respect to x, y, z,
respectively

U, U, U, = partial derivatives with respect to the generalized
curvilinear coordinates, namely with respect to £,
n, Or § respectively

(OJ, O, OJ) = expression of a vector in the physical region,
namely in the Cartesian coordinates
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sian coordinates is illustrated in Figure 19. No orthogonality con-
ditions are imposed on the curvilinear coordinates here.

Next the Jacobian is defined as

b by £=|71
Ye|® |01 1y 1=

tx ty tz

Xe X, Xy
J= Ye Yo

Ze 2, Z;

(A-2)

The metric elements and metric cosfficients are connected
by the following relations:

£ o= (yvzl_YCzn)/Jv fy--(xnzt—xtzu)/J' b
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1=~ (YeZe=YeZe )/ 5™ (Xe2:=%2¢) /0 1=

== (XY —%x Y )/J

Zx’ (YGzn_YWzt)/J' (Y'—(X(Z,-X,ZG)/J, {z

= (XY, ~%,¥¢ )/ (A-3)

Metric coefficients defined by x,, X, X, Ve, ¥y Y51 22, 2, @nd
z, are calculated using a central difierence with respect to the
physical coordinates; an example is shown in Equation A-4.
(Xe )10 k™ (X1 g ™ Xa—1.5,x)/(24¢) (A-4)
The value of the space increments in the computational
region A¢, An, and A¢is set as unity. Metric elements defined by

& Ey £ m my M2 $ §y @nd §, can be calculated using the
above relations (A-3).
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APPENDIX B
TRANSFORMATION FORMULAS FOR
DIFFERENTIALS AND INTEGRALS
Equations B-1, B-2, and B-3 show the general conservative
expression based on the curvilinear coordinates for a partial
derivativef,, f,, andf, for function f, where f(x, y, 2) is f{x(¢, , {).

(€. n.$). 2. 1. O}
f,‘-f,‘fe"'ﬂxf”"'txf{

= {(Jfoef ) e+ (Jnsef ), + (I ocf ) ¢} /I (B1)

fy’fyf£+ﬂyfu+{yft

= {((JE E) t (Inof), v (It F) e} /I (B-2)
fz*fzf(+”zfn+t=fc
={(Jt=f) t(Inaf), +(Jt=F), ) /I (B-3)

The integration form with respect to a control volume V in cur-
vilinear coordinates is expressed as:

IvE(x,y,z)dV=| 23731 5T (%, y, z) dxdydz

=l e I TR (tana )y (Eanal)

vz(fan,t))JdEdydt (B-4)

APPENDIX C

TRANSFORMATION OF GOVERNING EQUATIONS OF k-« MODEL

The governing equations expressed with Cartesian coor-
dinates and the transformed expressions based on the curvilinear
coordinates are shown in Table 1. In this section, “transformation
relations” implies that the equations are being transformed from
Cartesian coordinates to curvilinear coordinates. We express the
transformation of the momentum equations as shown in Equa-
tions 1.4 through 1.15in Table 1, where HX, HY, and HZ are the
convection terms; p,, p,, and p, are pressure gradient terms;
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and FX, FY, and FZ are diffusion terms of the momentum equa-
tions. The transformation relations of transport equations of the
turbulence kinetic energy, k, and the turbulence dissipation rate,
¢, are shown in Equations 1.16 through 1.22 in Table 1. HK and
HE are convection terms. FK and FE are diffusion terms.

The continuity equation by the Cartesian coordinates and the
conservative expression based on the curvilinear coordinates are
shown in Table 1 as Equation 1.1. The continuity equation is
transformed as below by referring to formulas B-1 through B-3.

UtV tue = [{J({autf,viiow)),

{(J(nautnyvhpaw)) I ([eutl vt =w)} (] /=0
(C1)
A new vector (U, V, W) defined by the following equation as

the contravariant vector of the velocity vector (u, v, w) is
introduced.

Ust utf vl w, Vep uty vy w, Wef ut{ vi{_w
(C-2)

U is proportional to the velocity vector component normal to
the constant £ curved surface, V is proportional to the velocity vec-
tor component normal to the constant 5 curved surface, and W
is proportional to the velocity vector component normal to the con-
stant ¢ curved surface.

The following equations are obtained by solving Equation
C-2 simultaneously in reference to Equations A-2 and A-3.

uesx, Utx, Vix, W, v=y, Uty Vi+y W, wemz, Utz V+z, W

Fx-("t(ux—vy—wz))x+(Vt(“y+VX))y+(Vt(u=+WX))z

-l(Jvt(fxux+fyuy+£=uz_fxvy_fxwz+fyvx+£=wx))f

(C-3)
Next, the authors will explain the method by which the diffu-
sion term of the momentum equation of the x-direction is
transformed from Cartesian coordinates to curvilinear coor-
dinates. As is shown in Equation 1.13 in Table 1, u, in the
diagonal component of the strain rate tensor is changed by the
continuity equation. This s also performed for v, of Equation 1.14
and w, of Equation 1.15. Simple expressions are obtained by this
substitution, as will be illustrated later. The following equations are
derived by referring to formulas B-1, B-2, and B-3.

*(JVt(ﬂxux+ﬂyuy+ﬂzu=—ﬂxvy_ﬂxw=+ﬂyvx+UZWX))w
F{Iy e ([ st Uy H 22— oV = sV

oVt wWa)} o1 /I (C-4)

Then, by substituting u, = £,u, + nu, + U and likewise
for the variables u,, U, v,, vy, etc., into Equation C-4, the diffusion
term is rearranged as below:

The transformation relations for the y-direction and z-direc-
tion diffusion terms are obtained in the same way. The pressure
terms are changed simply by substituting p in Equations B-1, B-2,
and B-3. The transformations of the transport equations of k and
¢, using a similar technique, are performed more easily than those
of the momentum equations.

Applying the above transformation procedures to the gov-
erning equations of the k-e model, one can introduce the trans-
formed expressions of the governing equations based on the
curvilinear coordinates shown in Table 1, where the convection
terms, the pressure gradient terms, and the diffusion terms are
denoted conservatively. This conservative expression is very
important since errors due to the numerical integration may be
greatly reduced by this expression.

APPENDIX D
DISCRETIZATION

Discretization by the Control Volume Method

We use here the regular grid system in which all dependent
variables are defined at the same nodal points in the discretized
three-dimensional region, as shown in Figure 20. The discrete
governing equations are obtained by integrating the governing
equations with each control volume. Many shapes of the con-
trol volume appear to be related to the boundary, as shown in
Figure 21.

We can express the convection terms, diffusion terms, and
pressure gradient terms of the governing equations in the same
form as Equation D-1 because these terms, which are called
transport terms, have been denoted conservatively with respect
to the curvilinear coordinates, as shown in Table 1.

F=(A+B,+C;)/J (D-1)

A budget of flux through surfaces of a finite control volume
is estimated by integrating each term within the controf volume.
By integrating Equation D-1, the following discretized expression
is obtained:

[VFdV= [l 223t 2 LI SaFJdEddy
sA(1+1/2, §,k)=A(i-1/2, J,k)
+B(i,J+1/2,k)-B(i.,J-1/2,k)
+C(1,J,k+1/2)-C(i.J, k-1/2) (D-2)

For the half-shaped control volume that coincides with the
boundary at S,, as shown in Figure 20b, the following discrete

FXn fJy e (22t 52022 0t (st p s e an ) U, H (Fal st by Uyl =) U
(2 /I)va ¥ (2, /) Vet (ye /)W, = (¥, /I)We }] /I
P e (Oracksctiaf st rmb =) Ue ¥ (12241, 241 22) U, H(Dael sty E Pl ) U
Hze /I)Ve= (2 /I)ve=(ye /)W +(ye /) we )], /I

+[JVt((txfx+(yfy+(=f=)u£+(t*ﬂx+tyﬂy+t=ﬂ=)u;+(tx2+;y2+tzz)ur

(2, /) ver (2 /I) v, (y, /) we=(ye /)W, )] o /I

2



equation is obtained by integrating Equation D-1 with respect to
the one-half control volume:

[VFdV=[XIi22] 321021 PFIdt dydt
s A(1+1/2,4,k)-A(1,j,k)
+{B(i,J+1/2,%)-B(i,j~1/2,k)) /2
*{C(1,4,k+1/2)-C(i,§.k~1/2)}/2  (D.g)

Theintegration area is changed similarly for the one-fourth-
shaped or one-eighth-shaped control volume, shown in Figure
21. Anintegration for a term that cannot be expressed as the form
of the surface integration is represented by the value at the nodal
point, namely a value at the center of the control volume. For ex-
ample, the integration of the production term of the transport
equation of k is expressed as follows:

JvreSdV= 8l 2o 3 ia 2 121020 <SIdEdpdt
=(JyeS)1.4.x (D-4)
After applying the above-approximated integration formulas
(D-2 or D-3) to each governing equation, an algebraic equation
of discrete dependent variables is obtained at each nodal point.
These algebraic equations can be solved at all nodal points

simultaneously using a relaxation method, which will be discuss-
ed in Appendix H.

QUICK Scheme

The QUICK scheme is applied to the convection term of
momentum equations (Leonard 1980; Murakami et al. 1987).
When expressing the convection term as a form of Equation D-1,
theterms A(i—1/2, j, k) and A(i+1/2, }, k) in Equation D-2 mean the
momentum flux through the surface with a constant £. The
momentum flux is expressed as follows by the QUICK method:

A(1-1/2, 3, k)= [{(JU) =1, 4. ut(JU), L3.1)/2)
{(uy—1, 4. utu,, 4. )/2-CURVN/8)

(D-5)
where CURVN/8 indicates the upwind effect, namely,
if Uiz, k>0
CURVN=U1_2_J_1._"2U1—1.J.k+U1.J.k (D.6)
orelse U_yp <0
CURVN!“I—I.J.k—zul.J.k+ul+1'J,k. (DJ)

The QUICK scheme is applied to the convection terms of the
transport equations of k and e in the same way as was describ-
ed above,

APPENDIX E
BOUNDARY CONDITIONS

Here, the wall boundary condition is stated primarily because
the inflow or the outflow boundary condition can be dealt with
easily. In a curvilinear coordinate system, the boundary surface
isto be treated as a curved surface with a constant value of £, g,
or ¢ regardless of the boundary's degree of complexity. This pro-
perty of the computational boundary allows one to formulate the
boundary conditions simply.

In the present method, the imaginary computational bound-
ary is set just inside the physical region of the flow field. The com-
putational boundary surface is parallel to the physical boundary
surface and separated from it by the small distance, h. Thus, the
narrow area between the physical boundary and the computa-
tional boundary is not treated directly by the computation. With

>3

this positioning of the boundary, velocity components at the com-
putational boundary, as well as those within the inner flow region,
may be calculated using the momentum equations. The physical
boundary imposes its boundary conditions on the computational
boundary, which is set just inside the physical surface, using the
proper wall law or wall function. Consequently, simple expres-
sions for the boundary conditions are obtained, as will be men-
tioned below.

Wall Boundary Condition of Velocity Components by Power Law

Distribution

Here, the authors deal with the constant £ boundary surface.
Itis assumed that the tangential velocity components parallel to
the computational boundary surface, namely parallel to the
physical surface with constant £, satisfy the power law in the
n-direction and {-direction. Based on this assumption, partial
derivatives for the velocity components at the wall, u;, v;, and w,
are derived. These derivations are required to solve the momen-
tum equations at the wall boundary.

The tangential velocity components are defined as ut?,
which has the direction of the {-curve, and u%¢, which has the
direction of the n-curve in Figure 22. Both ur and u'! are com-
ponents of the velocity parallel to the computational boundary
surface with a constant £, These tangential velocity components
are expressed using the tangential unit vector at the nodal point
(i, j, k) on the computational boundary surface as follows:

usfre(u, v, W) (Xe Yoo 2p )/ (X 24y, 242, 2) 1 /2
(E-1)

uttte(u,v,w)- (x,,y,,2,)/(x,3ty, 2+z,2)1/2
(E-2)
It is assumed that both u%" and u%¢ obey the power law, as
illustrated in Figure 22. N is defined as a normal distance
measured from the physical surface. Then the power law is
expressed as Equation E-3 and two normal derivatives of the
tangential velocity components are derived from differentiating
Equation E-3 at the nodal point (i, j, k) (Equations E-4 and E-5).

utfﬂsutfnl.J'k(N/h)ﬂ' utlluutltl'J'k(N/h)n

(E-3)
(du=t7/iN) g = (m/h)umtr g a (=4
(Fu=te/IN), .y aem(m/h)umee, oy (E-5)

The continuity equation is added with non-conservative form
as follows:
Wt vytwe mEugH vt ow, taau, F, v,y av,
o H v 2w, =0 (E-6)

Using the above equations (E-1, E-2, E-4, E-5, and E-6), through
some complicated algebraic procedures one can get partial
derivatives u;, v, and w, for velocity components with respect
to curvilinear coordinates, as shown in Table 2.

Wall Boundary Condition of Turbulence Kinetic Energy k by Free-
Slip Condition

The gradient of k normal to the surface of the boundary
vanishes under the free-slip condition. The free-slip condition of
k can be expressed easily, as shown in Equations 2.7, 2.14, and
2.21in Table 2.

LWall Boundary Condition of Turbulence Dissipation Rate by Wall
aw

The authors have located a nodal point (i, j, k) atthe computa-
tional boundary normal to the wall and a small normal distance,
h, from the physical boundary, as shown in Figure 22a. The value
of the turbulence dissipation rate at this point can be calculated
easily using Equation 2.22 in Table 2.



APPENDIX F
TIME INTEGRATION METHOD

The momentum equations are approximated by means of a
fully implicit scheme for the time integration as follows:

unt leyuntft (= p, " -HX T 14FX 1) (F-1)
vn*l.vn.’.At (_pyn+1_HYn-rl+FYn+l) (F»2)
wn"- 1 .wn.'.A t (_pzn-l' 1 _HZn# 1 .’.an* 1 ) . (F-S)

where At is the time increment. The computational stability
through the time marching procedure improves by applying the
fully implicit scheme. Consequently acomparably larger time in-
crement, At, can be used.

The continuity equation at the time step (n + 1) is express-
ed as follows:

uxn4l+vyn*l+wzn+l-o (F'4)

The following Poisson equation is obtained after substituting
Equations F-1, F-2, and F-3 into Equation F-4:

S i

= (U Vot ) /bt (HX, 1 4HY, m e 1+HZ, o0 )

+(FX Pt T4FY, " 14FZ 71 ) (F-5)

Here, we must solve Equation F-5 and the momentum equa-
tions (Equations F-1, F-2, and F-3) simultaneously because
HX+1 HYn+1 HZM FX* ) FY+1and FZ™*1 are unknowns.
We also apply the fully implicit scheme to the transport equations
of kande.

APPENDIX G
SOLVING POISSON EQUATION OF PRESSURE

Formulation of Equation and Treatment at Boundary

After transforming Equation F-5 into curvilinear coordinates,
it is integrated with respect to a control volume. Then, the

transformed Poisson equation is obtained as shown in Equations
3.1 through 3.7 in Table 3. The superscript (") of the pressure is
neglected. D is the generation term of the Poisson equation. It
comes from the control volume integration of the right-hand side
of Equation F-5. L; is the coefficient that distinguishes whether or
not the surface of the control volume coincides with the boundary,
as shown in Equation 3.5 in Table 3. U, V, and W are defined in
Equations 36 and 3.7 in Table 3.

A velocity component normal to the boundary surface is set
at zero on the wall or itis given before as a fixed value at the supply
outlet or the exhaust inlet. Using the above condition of the nor-
mal velocity component, the terms of the normal pressure gra-
dient can be eliminated from the integrated Poisson equation by
substituting the momentum equations in the Poisson equation.
L; in Equation 3.1 comes from this process of eliminating p.

APPENDIX H
RELAXATION METHOD

The momentum equations and the transport equations of k
and e must be solved simultaneously by the relaxation method
because they are formulated with the fully implicit scheme. The
relaxation method-which is used for the turbulence kinetic energy,
k, turbulence dissipation rate, ¢, and the pressure is an ordinary
one, asis shownin Table 4. However, for the velocity components,
a new method is proposed which imposes the Dirichlet-type
boundary condition on the momentum equations automatically
through the procedure of iterative calculations using contravariant
vector components. The relaxation procedure of this method is
shown in detail in Table 4.

In the present method a fully implicit scheme is used, so
velocity components, pressure, turbulence kinetic energy, and
turbulence dissipation rate are relaxed simultaneously in the same
iteration loop. A calculation procedure of the present method is
ilustrated in Figure 23.



