

Fig. 1. Similitude model of a two-room passive solar heated building used for determining natural convection heat transfer $\dot{\mathrm{q}}$ a through the doorway.

Fluid temperatures were measured by a grid of 25 thermocouples capable of scaming 90% of the internal volume of the model, and $\dot{व}_{a}$ was calculated by subtracting conduction heat losses through the model walls from heat applied to the electric heater. This \dot{d}_{a} calculation technique was calibrated using a partition without an aperture. Heat loss coefficients for the walls were experimentally determined from six different heating situations. Using these coefficients, heat flow could be calculated to within 1%.

Direct radiation heat transfer was eliminated because Freon 12 is opaque to thermal radiation at the system operating temperatures. The model was hermetically sealed to prevent infiltration.

Measurements were made over a range of power inputs for four different doorway heights corresponding to $96,79,57$, and 44 inches for a full-scale building. For each measurement, 180 temperatures were recorded, and da was calculated. Similarity numbers were calculated for each measurement for about 50 different definitions of $\Delta \mathrm{T}$. Doorway height, d , was taken as the characteristic length, and a linear regression was made for each curve representing a different definition of ΔT.

The criteria used to select a characteristic ΔT were the ease of measurement, the continuity of results for all four doorway heights, and a fit (R^{2} value) of a linear regression to this curve greater than 0.90 (where 1.0 is perfect).

Of the approximately fifty different definitions of ΔT that were tried, three are presented here. As indicated by Fig. 2 , the first definition, $\Delta \mathrm{T}_{\mathrm{rl}}$ (where r refers to room-to-room) was taken to be the average of the weighted difference of the temperatures measured by thermocouples on rakes $B(2)$ and $B(3)$. The weight factor (wi) of the ith thermocouple pair was determined according to the fraction of

THERMOCOUPLE

ROWS
(1) (2) (3) (4)

(a) SIDE VIEW

(b) END VIEW

Fig. 2. Similitude model showing thermocouple locations used for ΔT calculations. Grid position A was used for ΔT_{a} and position B was used for $\Delta T_{r 1}$ and $\Delta T_{r 2}$.
doorway height covered by the span extending half the distance to vertically neighboring thermocouples. Any measurements above the doorway height were excluded, and Σw_{i} was normalized to unity. Brown and Solvason ${ }^{1}$ used similar measurements, but did not weight according to doorway height.

The second, $\Delta T_{r 2}$, was calculated identically to $\Delta T_{I l}$ but using rakes $\theta(1)$ and $B(4)$.

The third, $\Delta \mathrm{T}_{\mathrm{a}}$ (a indicates aperture), was taken as the difference between the average temperature of the top and bottom halves of the doorway. For the measurements used here, temperatures were not measured directly in the doorway; therefore, thermocouples of equal height on rakes $A(2)$ and $A(3)$ were averaged to approximate the temperature at the corresponding height in the aperture. A linear regression was then made (see Fig. 3) of temperature vs height above floor, again excluding thermocouples above the

TEMPERATURE (${ }^{\circ} \mathrm{F}$)
Fig. 3. Graph description of the method used to calculate ΔT_{a}. The points (ロ) are calculated doorway temperatures. Linear regression uses only points below the doorway top.

Fig. 4. Fig. ΔT_{a}, respectI full-scale st given by sim
doorway; ΔT_{8} of this curve doorway hefgt this methodit the doorwayds in the result
4. RESULTS ${ }^{\prime}$ C

Figures $4 \mathrm{a} \cdot \mathrm{il}$ representing and ΔT_{a} for t temperatureis height d for These temper curves for tr acceptable cc $0.95)$. The ct 0.98) is slif $\Delta T_{r l}\left(R^{2}=0\right.$ easier to me: geometries, room-to-room ΔT_{r}) for the

The curve fo ($s=0.30 \mathrm{co}$ $\Delta T_{I 1}$ and ΔT_{r} is lower tha ΔT for the e numbers. Ho directly mea air that par heat transfe full-scale t
5. PART II:

Two full-sca differing rc heating were results of F

Fig. 4. Fig. $4 \mathrm{a}, 4 \mathrm{~b}$, and 4 c are results of similitude model tests using $\Delta \mathrm{T}_{r 1}, \Delta \mathrm{~T}_{\mathrm{r} 2}$, and ΔT_{a}, respectively. Doorway heights (d) have been scaled to those corresponding to a full-scale structure. The upper and lower lines in each graph represent the values of Eq. 1, given by $s=0.5$, and $C=1.0$ and 0.65 , respectively.
doorway; $\Delta \mathrm{T}_{\text {a }}$ was taken to be the slope of this curve multiplied by half the doorway height. An independent test of this method using thermocouples directly in the doorway showed less than 1% difference in the resulting Nu and Gr numbers.

4. RESULTS OF SIMILITLDE EXPERIMENTS

Figures $4 \mathrm{a}, 4 \mathrm{~b}$, and 4 c show the curves representing Eq. 1 using $\Delta T_{r 1}, \Delta T_{r 2}$, and $\Delta \mathrm{T}_{\mathrm{a}}$ for the characteristic temperature differential, and the doorway height of for the characteristic length. These temperature differentials result in curves for the four doorway heights with acceptable contiruity and fit ($R^{2} \leq$ $0.95)$. The curve fit of $\Delta \mathrm{T}_{\mathrm{r} 2}\left(\mathrm{R}^{2}=\right.$ 0.98) is slightly better than that for $\Delta T_{r l}\left(R^{2}=0.95\right)$. However, $\Delta T_{r l}$ is easier to measure in rooms having irregular geometries, so that it was selected for the room-to-room ΔT (henceforth designated ΔT_{r}) for the full-scale tests.

The curve for ΔT_{a} shows a shallower slope ($s=0.30$ compared to 0.5 and 0.6 for $\Delta T_{r 1}$ and $\Delta T_{r 2}$), and the Nusselt number is lower than for the other definitions of ΔT for the entire range of Grashof numbers. However, because ΔT_{a} most directly measures the temperature of the air that participates in the convective heat transfer, it was also measured in the full-scale tests.

5. PART II: FULL-SCALE TESTS .

Two full-scale structures having widely differing room geometries and modes of heating were instrumented to test the results of Part I. Both buildings
consisted of two raoms connected by a doorway through which \dot{q}_{a} was calculated from measurements of temperature and air velocity in the doorway. Temperatures were measured in the center of the doorway with a vertical rake of thermocouples, and air velocities were measured at 13 locations with a low velocity anemometer (DISA Type 55080). The heat transport. . ${ }^{\text {a }}$ was obtained by evaluating the sum

$$
\dot{q}_{a}=c_{p} \sum_{i 21}^{13} \rho_{i} A_{i} v_{i} T_{i}
$$

in which C_{p} is the heat capacity, and ρ_{i}, A_{i}, v_{i}, and T_{i} the density, area, velocity, and temperature at the ith measurement location. Note that v_{1} is negative over approximately half the total doorway area. Additional identical thermocouple rakes were located in positions carresponding to thermocouple rows $\mathrm{B}(2)$ and $\mathrm{B}(4)$ in the similitude model.

6. GHOST RANCH ATTACHED GREENHOUSE

An adobe building at Ghost Ranch, NM, that was heated by an attached greenhouse was used for the first full-scale tests. This structure cansisted of two guest rooms, each having an attached greenhouse on the south side connected by an 80 -in.-high doorway. At the time the tests were conducted, the greenhouse was in need of repairs and was very leaky. The infiltration rate of the structure is unknown, but was much higher than that for an average well-constructed home.

A series of eight measurements were taken, starting at early morning, to obtain a range of temperature differentials from

00 to about 150 F. This was done for two doorway heights, 80 and 56 in., to test the doorway height as a characteristic length in the Grashof and Nusselt numbers.

7. TWO-STORY LABORATORY

A series of 15 measurements were taken at a two-story laboratory with adjoining single-story office. Here, the room geometry was vastly different from that of Ghost Ranch. The building consists of a small office room connected to a large two-story laboratory by an 84-in.-high doorway. The office is well insulated; however, the laboratory is not insulated and has large infiltration rates. The office was heated by four electric space heaters. A range of ΔT from 0° to $22^{\circ} \mathrm{F}$ was obtained by use of combinations of these heaters.

8. RESULTS AND OISCUSSION

Results of all full-scale measurements are shown, together with similitude model data for both ΔT_{a} and ΔT_{r} in Figs. 5a and 5b. Onitting two-story data for ΔT_{r}, we find that the curves fall within the theoretical 1 imits, and the slopes (s) for ΔT_{a} and ΔT_{r} are 0.49 and 0.48 , respectively. Setting $s=0.5$ for these curves, the values of C for $\Delta \mathrm{T}_{\mathrm{a}}$ and $\Delta \mathrm{T}_{\mathrm{r}}$ are 0.78 and 0.89 , respectively.

Compared to the full-scale curves for $\Delta \mathrm{T}_{\mathrm{a}}$, the similitude model curves have a shallower slope ($s=0.3$ as opposed to 0.49 for full scale) and show lower heat transfer for a given Grashof number. These data are supported by additional
measurements that were made using Freon 13, 1381, and 114. One possible explanation is that the heated and cooled end walls of the model, together with well-insulated side walls, cause a different configuration of
convection currents in the model than occur in these particular full-scale buildings. In the buildings used here, heat losses were large due to air infiltration and poor insulation. These losses caused the heated air that was convected through the doorway to the cooler room to be rapidly cooled, thereby possibly allowing a greater qंa for a given ΔT_{a}.

The curves corresponding to ΔT_{a} and ΔT_{r} for Ghost Ranch data are about the same and agree with Eq. 1 with s approximately 0.5 . When ΔT_{a} is used for the two-story data again, Eq. 1 is followed with $s \geqslant 0.5$. However, when ΔT_{r} is used, the curve through the two-story data approximates a line of zero slope. This means Nu is independent of $\Delta \mathrm{T}_{r}$, or that $\dot{\mathrm{C}}_{a}$ is directly proportional to $\Delta \mathrm{T}_{\mathrm{r}}$.

In the two-story geometry, heated air from the small office is being transported to the large two-story laboratory, where it is essentially never returned. Effectively, an infinite supply of cooler air is supplied to the office. This decouples the system, and the effect is to allow maximum heat transfer by natural convection for a given doorway geometry through the aperture. This is the opposite case from the similitude model, where all the fluid is returned directly because the model is hermetically sealed.

Results from previous workers ${ }^{1,4}$ are shown in Fig. 6. Brown and Solvason used a temperature differential similar to ΔT_{r}, but did not weight according to aperture height. Shaw used a form of $\Delta \mathrm{T}_{\mathrm{a}}$, but his definition was not specified. Both workers used the aperture height as the characteristic length. Their results do not show agreement. with Eq. 1. In Brown and Solvason's case, this could be because they did not weight their averages, and in Shaw's case, it may have been caused by the forced-air system that they used to maintain temperature differences.

Fig. 5. Results of model and full-scale tests using ΔT_{a} in (a) and ΔT_{r} in (b). Upper and lower lines are the same as in Fig. 4.

9. CONCLUSIONS

Results of similitude modeling show that characteristic length and characteristic temperature differentials can be found that allow an expression of the form of Eq. 1 that is independent of room and doorway geometries, and of the type of space heating. The doorway height, d, has been shown from both similitude modeling and Ghost Ranch tests to be a suitable characteristic length, and two temperature differentials, ΔT_{a} and ΔT_{r}, have been found suitable. The results for ΔT_{a} are consistent for full-scale tests involving three doorway heights in two buildings having completely different room geometries and different methods of heating. This temperature differential, ΔT_{a}, is, therefore, most suitable for monitoring heat flow through apertures in all geometries where temperature measurenents can be made in the aperture. Using ΔT_{a}, Eqs. 1 and 2 become
$\frac{N u}{P r}=0.26 G r^{1 / 2}$, and $\dot{q}_{a}=4 w\left(d \Delta T_{a}\right)^{3 / 2}$.
In buildings where the rooms are normal-sized living spaces having low heat losses, ΔT_{r} could be used for prediction and building design, in which case Eqs. 1 and 2 become
$\frac{\mathrm{Nu}}{\mathrm{Pr}}=0.3 \mathrm{Gr}^{1 / 2}$, and $\dot{\mathrm{a}}_{\mathrm{a}}=4.6 \mathrm{w}\left(\mathrm{d} \Delta \mathrm{T}_{\mathrm{r}}\right)^{3 / 2}$.
For ΔT_{r} equal to 50 F , and for a typical doorway ($\mathrm{d}=6.6 \mathrm{ft}$ and $w=3 \mathrm{ft}$), $\dot{\mathrm{q}}_{\mathrm{a}}$ is 2600 Btu/h (760 W). Results from Eqs. 1 and 2 for $\Delta \mathrm{T}_{\mathrm{a}}$ and $\Delta \mathrm{T}_{\mathrm{r}}$ should be dependable to within $+20 \%$. It can be seen from these equations that doubling the doorway height will increase \dot{o}_{a} by almost
a factor of 3. A further study to relate ΔT_{a} and ΔT_{r} to building design parameters and thermal comfort would be useful.

10. ACKNOWLEDGEMENT

The authors wish to thank Donald A. Neeper for his continued support of this project and help in writing this paper, and to Jose Tafoya for his assistance in experimental work.

11. REFERENCES

1. W. G. Brown and K. R. Solvason, "Natural Convection Through Rectangular Openings in Partitions, Part I: Vertical Partitions," Int. J. Heat and Mass Transfer, 5, 859-868 (1962).
2. F. Kreith, Principles of Heat Transfer, Intext Educational Publishers, New York, 1973, pp 392-393 and pp 459-469.
3. D, D. Weber, "Similitude Modeling of Natural Convection Heat Transfer Through an Aperture in Passive Solar Heated Buildings," Ph.D. Dissertation, University of Idaho, 1980.
4. B. H. Shaw, "Heat and Mass Transfer by Natural Convection and Combined Natural Convection and Forced Air Flow Through Large Rectangular Openings in a
Vertical Partition," Int. Mech. Eng.
Conference on Heat and Mass Transfer by Combined Forced and Natural Convection, Manchester, 1971, Proceedings Vol. C.819, 31-39 (1972).

Fig. 6. Results from previous workers (after Shaw). An added factor, C_{v}, has been included to account for heat transfer caused by their test system.

