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ABSTRACT

Accurate modeling of combined heat and moisture transfer in buildings is
important in predicting the indoor conditions, loads, comfort 1levels,
degradation and deterioration of building components, and performance of
mechanical equipment. This paper presents the "evaporation and condensation”
theory, a set of spatially distributed equations for modé]ing detailed combined
heat and moisture transport in building solids. 'The physical meaning of various
transport coefficients and their influence on the overall transport phenomena
are discussed. Associated material property requirements and data sources are

also given.

The combined heat and moisture transfer equations for the buiiding solids are
solved by the finite element method. The finite element solutions are then
interfaced with the exact solution of the air domain equations. Solutions from
the equations are compared aéainst analytical solutions of simplified cases.
Simulation results are giyeqfto demonstrate the effectiveness of the theory.
i

Sample simulations showed th&i the amount of moisture adsorption or desorption
by building materials to be significant. The temperature effects on moisture
transfer found to be very important. Equations developed here found to predict
the internal temperature and moisture (liquid and vapor) gradients

satisfactorily, for limiting cases.
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INTRODUCTION

There are significant moisture problems associated with warm, humid climates.
It is not uncommon in severely humid climates to have moisture Toads in excess
of 50 pounds per day (21.8 kg). In typical residences, these loads are removed
by the air-conditioning system and do not generally cause serious problems. In
passively cooled or energy-efficient buildings with standard air conditioners
where sensible loads have been significantly reduced, these moisture loads may

result in excessive relative humidity levels, even in air-conditioned buildings.

Methods of accurate]y‘evaluating moisture effects in buildings are generally
lacking in building energy analysis procedures. Typically, simple procedures
call for the calculation of sensible loads-and the subsequent application of some
percentage of that load to represent the additional moisture load of the
conditioned space (zone). Where moisture loads are calculated by detailed
procedures, the assumption is usually made that all moisture entering the zone
is added to the zone air and none is adsorbed by the building materials. This
assumption can produce inaccuracies. In reality, the moisture that is added to
a conditioned zone will be distributed in some manner between the zone air, the
zone materials, and the zone mechénicé] system.

In building simulations .the' researchers must be able to predict the indoor
conditions and the associatedl1oads. To accurately predict these variables, the
transport equations must be solved for each building component. The solution
to combined heat and moisture transfer equations in building solids can give
the amount of moigture adsorption and desorption rates by building materials.
If the equations for the building solids are simultaneously solved with zone
energy and moisture baTance equations, the effect of moisture adsorption and

desorption of building materials on indoor conditions and associated loads can



be predicted.

This study presents the "evaporation and condensation" theory, a set of spatially
distributed equations for modeling combined heat and moisture transport in
building solids using the avaiTéb1e material property data from the literature.
As shown in Figure 1, for mathematical convenience, the bdi]d{ng is divided into
three domains: air (a,), envelope (q,) and fyrniture (Qg) and three surfaces:
exterior envelope (r.), interior envelope (r,) and furniture (Tg). Moisture

transport occurs in both the solid (a,, Qf) and air (Q,) domains. In the air

domain moisture exists as a vapor. However, in the solid domains moisture may.
océur in one or all of its three phases. In this study the combined heat and

moisture transfer taking place in the envelope and furniture is formulated using

spatially distributed equations, but the energy and moisture balance of the air:

domain are formulated using spatially lumped equations. The spatially lumped
and distributed gquations are interfaced at the domain boundaries (surfaces).
A detailed derivation of a spatially Tumped moisture model, called the "effective
moisture penetration depth" model, and a literature survey of lumped models are

given by Kerestecioglu et al. (1988.a).

Combined heat and moistuné tfansport in materials is very difficult to describe
mathematically. In addit%oﬁiﬁo 1iquid molecular diffusion, transport by vapor
diffusion, surface diffusio;, Knudsen diffusion, capillary flow, purely
hydrodynamic flow, and internal evaporation and condensation further complicate
the problem. The traditional approach has been to sum the various contributions
to the total flow of water (Luikov 1966; Philip and DeVries 1957; DeVries 1958

and 1987). This results in apparent (effective) water-diffusion and thermal-

diffusion coefficients which relate the total water flux to the moisture and



temperature gradients. It should be noted that the temperature gradient is not
related to the Soret effect, but is strictly dependent on the sorption isotherm,
the evaporation and condensation mechanism of transport, and the temperature
dependence of the capillary suction pressure (see Philip and DeVries 1957).
Special mention must be made of the work of Harmatﬁy (1969), who devised a theory
for water transport in porous bodies assuming that all movement of water takes
place in the vapor phase, but with porous structure permegbi11ty that is
dependent on the moisture content. Special mention must be made also of Berger

and Pei (1973), who account for vapor and liquid transfer using constant

permeabilities.

During the 1960s it became fashionable to use flux equations that were based on
the phenomenological theory of irreversible thermodynamics as developed 'by
Prigogine (1961); Groot (195; and 1961); Groot and Mazur (1962); and Fitts
(1962). Examples of such studies are those of Luikov (1964, 1966 and 1975),
soil-science applications by Cary and Taylor (1962); and studies of Taylor and
Carey (1964); Roques and Cornish (1980); Valchar (1966) and, recently, Fortes
and Okos (1978 and 1980). Most notably Luikov et al. (1964, 1966 and 1975)
pursued this direction.

<
~

MATHEMATICAL FORMULATIONS: '

If the air is assumed to be well mixed, a set of ordinary differential equations
can be written to represent the energy and moisture balances for the air domain
("zone" or room). The energy and moisture balance equations for a single “zone"

can be written as the following equations:

paVC, AT /dr = Qp + mCy (T,T) + Qg in a, (1)
paV dwr/dr . QM + m’ (wa'wr) + QM,W 1n Qa (2)
with
@r=0 T.=T., and W, =W

r r,o



The components of the energy and moisture balance equations and the parameters

used in Eqs. (1) and (2) are illustrated in Figure 1. In Egs. (1) and (2) Q
and Qy denote the thermal energy and moisture generations, respectively. The
second term on the right-hand side of each equation denotes the infiltration

load, and the last term in each equation denotes the thermal energy and moisture

taken or released by the solid domains. They are defined by the following

equations:
nos *
i=1
and
nos 2 ”
QM,W = 'Zl AihM,i (Wi -Wr) on I‘a and Ff (4)
1=

Equations (3) and (4) are important bgcause they interface the air and solid

domains. T* and W* denote the temperature and the humidity ratio of the shrface,
respectively. hp and hM* are the convective heat and mass transfer coefficients,

respectively, and A denotes the surface area. A detailed discussion of these
terms is given in the succeeding_sections. Equations (1) and (2) are not complete
and, for simplicity, several terms are ignored. The complete equations are given

by Kerestecioglu et al. (1988.a).

In the development of the‘épﬁgined heat and mass transfer equations for the solid
domains the following asshmptjons are made: moisture travels due to water vapor
density (partial water vapor pressure) gradients, Tocal thermodynamic equilibrium
exist, the total pressure is constant, and the solid matrix is rigid. With these
assumptions the governing moisture and heat balance equations can be written as
the following equations:

3py aU,

A — = V.(AD, Vo) - py — in @, and Q¢ (5)
ar ar



aT au,
(pCp)e — = V.(kg VT) + xpy, — in @, and a¢ (6)

ar ar
Equations (5) and (6) are the modified forms of the equations given by Crank
(1964, pp. 307-308), and are referred to as "evaporation condensation" equations.
Equation (5) states that the net amount of water vapor increase in the pores is
equal to the amount of water vapor brought to the pore by diffusion minus the
amount of 1liquid water accumulated. Similarly, Eq. (6) states that the net
amount of energy stored in a control volume is equal to the amount of heat
conducted plus the energy liberated during the phase conversion. Because local
thermodynamic equilibrium is assumed to hold, the amount of 1iquid water at any
given point can be calculated through the equilibrium sorpt{on isotherm with the

knowledge of the temperature and water vapor density at that point. The boundary

conditions for these equations are given in the following equations:

hy (pv*'pv,a) on Tg .
-AD, Vo, = " (7)
hy (¢4 -pp)-On T, and T¢

and
- q"p + hp (T-T,) + e (T™*-Ts*) on 1,
- ke VT = (8)
" * s *4 4
- q"p + hp (T-T,) + .zlaFi-j (T7"-T;7) on T, and ¢
J=

Equations (7) and (8) are written in general and include all types of boundary
conditions that might befeﬁéountered in buildings. Each equation consists of
several terms that may bé'égglicab1e either to the {nterior (solid to "zone")
or exterior (solid to ambient) boundaries of the solid domain. Equation (7) can
be obtained by wr%ting a moisture balance at the boundaries of the solid domain.
Equation (7) states that the amount of moisture diffusing is equal to convective
moisture fluxes. Equation (8) can be obtained by writing an energy halance at

the surface of the solid domain. Equation (8) statés that the amount of heat

conducted is equal to the summation of four components: imposed heat fluxes (such



as solar radiation), convective fluxes, radiation-to a known source or sink (such
as night sky radiation), and radiation among surfaces that view each other. 1In
Equation (8) Fi-j denotes the script-F factor, which is a function of the view
factors and the emissivity of the material (the mathematical derivation of the

script-F factors is given in Kerestecioglu et al. (1988.b).

In Egs. (5) and (7) D, denotes the vapor diffusivity of the material and can be

related to the molecular diffusivity of water vapor in air, D_, by the following

equation (Philip and DeVries 1957; Luikov 1966; Fortes and Okos 1978; Pierce
and Benner 1986). |

D, = (D /ro) P/(P-P,) (9)

According to'SherWOod and Pigford (1952), the molecular diffusivity of water

vapor in air is given by the following equation (Vafid up to 1366 K)

D, = (9.26x10°%/P) T2-3/(T+245)
In Eq. (6) (pcp)e and k. denote the effective thermal capacity and the effective
thermal conductivity of the material, respectively. If the porosity, A, is
known, the effective thermal capacity and the effective thermal conductivity may
be approximated according to the following equatiohs:
(pcpie»é A (pCo) a5 + (1-4) (pLy)g (10)
Dk = A Kagp + (1-A) Kg (11)
The equilibrium moisture contént, U,, used in Eqs. (5) and (6) is defined by the
following equation (Kerestecioglu et al. 1988.b, Appendix D): |
U, = a ¢b +C ¢d (12)
In Eq. (12) a, b, ¢ and d are material-dependent constants. ¢ denotes the water
activity (relative humidity in decimal form) and is defined by the following
equations:

¢ = pv/pvlsat (13)
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and
" Py sat = 1/(R,T) exp[23.7093 - 4111/(T-35.45)] (14)

It should be noted that different forms of Eq. (12) are available and can be
used. However, in this paper Eq. (12) is used to represent the sorption
isotherm. World wide sorption isotherm data for various building materials are
compiled and reduced to the format given by Eq. (12). (The data can be found
in Kerestecioglu et al. (1988.b).

If Egs. (13) and (14) are substituted into Eq. (12), and the result is
differentiated with respect to time, r, the following equation can be derived:

aU, aU_ ap, U, aT 3py, aT
= - #—— — = fp— = B, — (15)

p
ar dp

v 9 aT &r ar ar

In Eq. (15) A; and Bp denote the isothermal moisture capacity an& the thermo-
- gradient coefficient of the material, respectively. Their magnitudes are defined
by the following equations: 7
- Ag = 1/0, (ab ¢° + cd 49) | (16)
B, = = [I/T = 4111/(T-35.45)2] (ab ¢° + cd ¢%) (17)
If a different form of Eq. (12) is used, Egs. (16) and (17) must be rederived.
The isothermal moisture capacity is analogous to the specific.heét in heat
transfer and indicates Fhevire1ative mo1siure capacify of a material. The
isothermal moisture capacity increases with increasing relative humidity and
decreasing water vapor densiti. The thermo-gradient coefficient represents the
effect of thermal gradients on moisture gradients within the material. This
property increases with increasing relative humid%ty and deéreasing temperature.
If the thermo-gradient coefficient is small, the moisture transfer will not be

influenced by thermal fields. Note that A, and Bp are determined directly from

the sorption isotherm. After substituting Eq. (15) into Egs. (5) and (6), and

eliminating U,, the following set of equations can be obtained.



Fi1 dpy/8r = v.(AD, Vo ) + Fip Vv.(k, ¥T) in 0, and af (18)
Foq aT/87 = V.(Kg VT) + Fyy v.(AD, 9p,) in Q. and Qg (19)
The coefficients Fyq, Fio, Fpp and F,, are defined according to the following
equations:
Fii = A& + opby - {ppB,AopAr)/[(Co) e+20,B,]1  Fia = (p1B,)/[(sC,) 408,
Far = (6Cy)e + 2opB, - (AspArenB,)/ (atephy)  Fop = (AeyAp)/(atayhy)
If Egs. (18) and (19) are similar to the equations suggested by Luikov (1975);
Philip and DeVries (1957) and many others. However, the cross terms used in
these equations (the Laplacian of temperature in the mass transfer equation and

the Laplacian of water vapor density in the heat transfer equation) are directly

related to the sorption isotherm.

In Egs. (10) and (11) the effective thermal capacity and the effective thermal
conductivity of the material are defined as a Tinear fraction (determined by the
porosity, A) of the moist air and the solid. An alternate form of estimating
these effective properties is given below. In the following formulations the
porosity is assumed to decrease with increasing moisture content, and the concept

of static and dynamic porosities is introduced.

The volume of the so]id,fvstﬁcan be éstimated if the total volume, V., and the
static porosity,.As, (meééu;;g when the material is completely dry) are known.
Vo = Vo (1-ag)
If the moisture content of the material, U, is known, the 1iquid volume, V{, can
be calculated with the following equation:
Vi = U o Vi/py
In the above equation, the moisture content, U, and the density of water, o,

will spatially vary. Consequently, this equation should be integrated over the



total volume. Later the result should be divided by the total volume. The
volume of the air and water vapor mixture, Vg, can be estimated with the
following relation:
Vg =V, - Vg - Vg
Coqsequent1y, the dynamic porosity, A4, can be defined by the following equation:
Ag = Vg/Vt =1 - (Vg+Vq)/Ve
With known volumes and primary physical properties the effective density,

specific heat and thermal conductivity can be estimated through the following

equations:
3 3 ‘ 3 3 ¢ 3 3 3 3
Pe T z Vipi / Vi Cp,e =3 Vipicp,i / z Vipi ke =3 JViki / z JVi
i=1 i=1 i=1 i=1 i=1 i=1

i=1 represents the solid, i=2 represents the liquid water, and i=3 represents

the air and water vapor mixture.

TECHNICAL NOTE ON DIFFUSIVITIES:

The vapor flux, J,, based on water vapor density, s, is represented by the
following equation: -

. Jy, = - D, Vo, (20)
however, if the ideal gas law is assumed to prevail, the vapor flux can also be
written in terms of parti£1 9éter vapor pressure, P, as the following equation:

U, = - Dy/RT VR, (21)
The water vapor diffusivity, D, used in Egs. (20) and (21) is related to the
molecular diffusivity of water vapor in air, D_, through Eq. (9). From Equation

(21) the permeability, ~, of the material can be defined as the following

equation: _
x = Dy/R,T (22)

Using Eqs. (9) and (22) the tortuosity factor can be related to the permeability
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by the following equation:
ro = 0,/ (=R,T) P/(P-P,) (23)
Sometimes rather than the permeability, the permeance, =, of the material is

given. However, the permeability and the permeance of the material have the
following relationship:

wp = /L ' (24)
In Eq. (24), L denotes the Tength of the -specimen where the permeance measurement
was made. Before concluding the mathematical formulations a very important
point must be clarified. Equatjons (5), (18) and (19) indicate that the only
diffusivity required is the water vapor diffusivity. However, water can migrate
in either vapor or liquid phases and most commonly moves in both phases. A
common practice might be to write separate equations for the liquid and vapof
’f1uxes. Later, via thé~1oca1 tHermodynamic.equi1ibrium assumption and Kelvin’s
equation, either the liquid flux can be related to the vapor flux or vice versa.
I[f this pfocedure is followed, an effective diffusiv{ty must be introduced.
Luikov’s (1975); Philip and DeVries’s (1957); Berger and Pei’s (1973) studies

are some examples.

Consequently, the water vapor diffusivity defined by Eq. (9) must be viewed in
the following manner. Thegto;tuosity factor, ro, may not be the true tortuosity,
but is a factor that indiéa%%é the water vapor resistance of the material and
is a function of the moistu;e content. For instance, Tveit’s (1966) data
indicates three conditions: with %ncreasing moisture contents for most of the
building material., ihe water vapor diffusivity increases; for some materials the
water vapor diffusivity stays almost constant; and for some materials after an

increase there is a noticeable decrease. These conditions can be attributed to

liquid water movement and saturation of the pores. Saturation of the pores can

11



be handled through the static and dynamic porosity concept. Hence, if similar
experiments are perfo}med at a constant temperature as Tveit’s experiments were
performed, the tortuosity factor as a function of moisture content can be
obtained. Similarly, if permeability measurements are performed, a difference
among the dry- and wet-cup experiments is realized. Therefore, if Eq. (22) is
used to obtain the water vapor diffusivity, permeability data at different

moisture contents are necessary.

NUMERICAL SCLUTIONS
In the numerical solutions the two domains must be simultaneously considered.
The "zone" energy and moisture balance equations, Egqs. (1) and (2), can be
rearranged according to the following equations:
dT./dr + Pl(;) T, = Qu(r) in q (25)
dW,./dr + Py(r) Wo = Qo(r) in o, (26)

P1s» Py, Qq and Qé are time dependent parameters and are defined by Kerestecioglu

et al. (1989.a). The exact solutions of Egs. (25) and (26) subject to initial
conditions, are given as the following equations:
Te(r) = Qu(r)/Py(r) + [Ty o - Q(r)/Py(r)] exp[-Py(r)7] (27)
Welr) = Qolr)/Pylr) + [y o -Q(r)/Py(r) 1 exp[-Py(r)r] (28)

For the solution of the sé1fa'domains the Galerkin Finite Element Method (GFEM)
’ Ca b

is used. Eqgs. (18) and“(lag-are multiplied by a weighing function and the
residual is set to zero. Later, applying the Green-Gauss theorem on the second
order terms, the boundary conditions given by Egs. (7) and (8) are introduced.
Equations (7) and (8) are boundary conditions to Egs. (5) and (6) not to Egs.
(18) and (19). Therefore, modified boundary conditions must be used that would
account for simultaneous temperature and vapor density gradients for each

equation. The variation of the temperature and the water vapor density

12



throughout the solid domain is approximated in terms of nodal values ap and a,
according to the following equations:

pV=Nap

T=Nayp and
where N is the usual shape function defined for each element. For the standard
GFEM the weighing functions are the shape functions. The algebraic GFEM
formulations of the solid domains are given by tHe following equations:

" Cpoapt + Ky ap + Kpy a, = Fr (29)

Cy a," + Ky a, + Kyp ap = Fy (30)
The capacitance (C), stiffness (K) matrices and the force (F) vectors used in

Egs. (29) and (30) are given as the following equations:

- Cp = Jg N {Fy7) N do

aNT aN T = : nos
3%y 8%y 5 b j=1
aNT aN . _
3%y 3y
Fo = §p NT (heT + oeTs* + " " 4 : ")
T = T T gels + q T + -zldFi-j TJ + F22 (hM pV,a + q M)} dP
J=
Cy = [o NT (Fyy) N da
~aNT aN
Ky = [g == (aDy) — do + §p NT {hy) N dr
.ax& axk )
Nt - aN .
Kyr = Jo — (Fp ko) — da + § NT (Fyp ho) N dr +
3xk 3Xk
T 3 nos
J=
1 4 — 4
FM = fl‘ N {hM qv,a + q"M. + Flz (hT Ta + q“T + o€ TS + 0'.21 i'jTj )} dF
J=

The capacitance, stiffness matrices and the force vectors defined above are

applicable for one-, two- and three-dimensional simulations. Additionally, mixed
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dimensional problems can also be simulated. In other words, a certain part of
the problem can be simulated in 3-D and a certain part of the problem can be
simulated in 1-D. For one-dimensional problems, da and dr must be replaced by
A dL and A, where A is the cross section of the element and L is the element
length. For two-dimensional problems, do and dr must be replaced by t dA and
t dL, where t is the thickness of the element. For three-dimensional problems,
d@ and dr must be replaced by dV and dA, where V is the volume of the element.
Equations (29) and (30) can be solved with various time integration schemes. The

different time integration schemes can be written in the following format:

Kypear CytKydar a,” o7 [Cy-Ky(1-8)ar] a,”

| Kpy(1-8)ar a,7 | | Fp'(1-8)ar | Fr™"ear |
+ . (31)

KMT(].'S)AT aTT FMT(].‘S)AT FMT+ATBAT.‘

The parameter o used in Eq. (31) depends on the type of integration scheme. o
takes on values 0, 1/2 and 1 for the forward, central, and backward difference

schemes, respectively.

SOLUTION PROCEDURE

Equations (27) and (28!—(gjve the room temperature and humidity ratio,
respectively. However, thggé equations require knowing surface temperature and
water vapor density, which a?é‘ca]culated from Eq. (31). But Eq. (31) requires
knowing the "zone" conditions. Consequently, Egs. (27), (28) and (31) must be

solved simultaneously.
These equations can be solved with different methods: fixed point iteration,
Newton type methods, and incremental methods, to name a few. Ortega and

Rheinboldt (1980) provides an excellent survey of available procedures. A
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particularly simple scheme is a fixed point iteration procedure known as
successive substitution (also referred to as Picard iteration, functional
iteration, and successive approximation). In this scheme the rate of convergence
can be enhanced by using a relaxation factor. An outline of the fixed point

iteration scheme is provided in Table 1.

The dependence of material properties on the field variables, and especially of
the properties derived from the sorption curve, makes the probiem highly
nonlinear. Thus, fixed point iteration may not be the best solution method.
The computer program developed ﬁses fixed point and Newton Raphson iteration
schemes. Several test cases havé been executed and convergence has been achieved
with both schemes. The Neyton Raphson method converged much faster for each
case but requires calculation of the Jacgbian matrix. However, the definition
and the.construction of the Jacobian matrix is beyond the scope of this paper

and is not given here,

RESULTS )

For a linear sorption curve and a set of linear material properties the
ana]ytica]lso1utions of Egs. (18) and (19) for Various boundary conditions are
given by Dabir (1988) anngazzaq (1988). 1In this paper, validations pertaining
to convective boundary conditions are presented. The temperature and water vapor
density histories of a 10 cm fhick infinite plate are depicted in Figures 2 and
3, respectively. One end (X=0) of the plate is assumed to be insulated and
impermeable whereas the other end (X=L) is assumed to be exposed to convective
boundary conditions. The skétch of the physical problem, material properties,
sorption curve, simulation parameters, and initial and boundary conditions are
given in the figures. This simuTation uses consistent capacitance matrix and

time step of 0.25 hour.
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The following three example simulations illustrate the physics and the concept
of "evaporation and condensation" theory. The material properties used in the
simulations are for gypsum drywall and are represented in Table 2. Sketches of
the physical problem are shown in appropriate figures. All the properties
(except the tortuosity) are assumed to bé noniinear and varying, according to
| the equations given earlier. -
Example 1: A 10 cm thick gypsum drywall sample is assuped to be insulated and
impermeable at one end (X=0), and impermeable and exposed to convective heat
transfer boundary conditions at the other end (X=L). In other words, heat is
allcwed to cross the sample at only X=L. However, moisture is not allowed to
cross any boundary and the total mass of moisture is always preserved. The

initial temperature and water vapor density are assumed to be 26.85 °C and 0.012
kg/m3, respectively. The convective heat transfer coefficient and the temperature

are 5.0 W/m?.°C and 36.85 °C, respectively.

Figure 4.(a) shows the temperature distribution in the drywall sample. At the
beginning, the temperature of the surface is hotter than the inner regions.
Consequently, near the surface liquid water is converted into vapor, resulting
in lower liquid water densities as shown in Figure 4.(d), and higher vaporu
densities as shown in Figu?e*4.(b). As the partial vapor pressure of the surface
increases, a pressure gradﬁé;t.is created between the surface and inner regions
of the sample, as shown in F{gure 4.(c). Thus, the moisture is transported to
the inner regions, resulting in higher liquid water densities. As the steady-
state condition is reached, the moisture content levels off and attains its
initial value (0.048 kg/kg) throughout the sample.

Example 2: A 10 cm thick gypsum drywall sample is assumed to be insulated and‘

impermeable at one end (X=0), and insulated and exposed to convective mass
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transfer boundary conditions at the other end (X=L). In other words, moisture
is allowed to cross the sample at only X=L. However, heat is not allowed to
cross any boundary. The initial temperature and water vapor density are assumed

to be 26.85 °C and 0.012 kg/m3, respectively. The convective mass transfer
coefficient and the water vapor density are 0.005 m/s and 0.015 kg/m3,

respectively.

Figures 5.(b) and 5.(c) show the water vapor density and partial vapor pressure
distribution in the drywall sample. The vapor density and the partial vapor
pressure of the surface reach the ambient value very rapidly, resulting in sharp
increase in the liquid water content of the surface, as shown in Figure 5.(d).
However, as the steaﬂy-state condition is reached, the moisture is slowly
d;ffused to the inner fegions of the sample. While the moistu;e is adsorbed,
due to the heat of sorption, the temperature of the plate is increased, as shown
in Figure 5.(d). However, due to the high thermal conductivity of the sample,
except at the beginning, no appreciable temperature gradients are observed.

Example 3: A 1.27 cm thick gypsum dryWa11 sample is assumed to be insulated and
impermeable at one end (X=0), and exposed to convective heat and mass transfer
boundary conditions at the other end (X=L). The initial temperature and water
vapor density are assume& t6 be 26.85 °C and 0.013 kg/m3, respectively. The

‘}
convective heat transfer coefficient and the temperature are 5.0 W/m2.°C and

22.85 °C, respectively. The convective mass transfer coefficient and the water
vapor density are 0.005 m/s and 0.018 kg/m3, respectively. The initial and

final conditions translate into relative humidities of 50.95 and 88.37 percent.
Figure 6.(a) shows the temperature decay. Increase in the water vapor density

and liquid water density are depicted in Figures 6.(b) and 6.(d), respectively.
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CONCLUSIONS

Solutions to the equations give the detailed behavior of combined heat and
moisture transfer in hygroscopic materials. However, the "evaporation and
condensation" theory must be verified with experiments because different types
of materials have different characteristics. The sorption curve derivatives
used in the transport coefficients need to be experimentally verified.
Experimental transport coefficient data, as a function of temperature and
moisture content, are required. However, very little data pertaining to building

materials can be found in the world literature.
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NOMENCLATURE

Heat and moisture transfer surface area [m?]

[sothermal moisture'aapacity based on water vapor density [m3/kg]
Nodal temperature unkmown vector [K]

Nodal water vapor density unknown vector [kg/m3]

Thermo-gradient coefficient based-on water vapor density [kg/kg.K]
Specific heat [J/kg.K] :
Molecular diffusivity of water vapor in air [mz/s]

Moisture diffusivity [mz/s]

Convective mass transfer coefficient [m/s]

Convective mass transfer coefficient (hMpé) [kg/mz.s]

Convective heat transfer coefficient [W/m“.K]

Summation index over syrface number one

Water vapor flux [kg/m“.s]

Thermal conductivity [W/m.K]

Length [m]

Mass flow rate of the infiltration air [kg/s]
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N Shape function vector

nos Number of surfaces

P Total pressure [Pa]

P, Partial water vapor pressure [Pa]
Qu Moisture generation rate [kg/s]

QM'W Moisture adsorbed or desorbed by the solid domain [kg/s]
Qr Heat generation rate [W]

qQ"r Imposed heat flux [N/mz]

T W Heat taken or released by the solid domain [W]
Ideal gas constant [461.52 J/kg.K]
Temperature [K]

Temperature of the other surface [K]
Dry-bulb temperature of the "zone" air [K]
Initial "zone" air temperature [K]
Radiation receiver temperature [K]
Moisture gontent [kg/kg]

Volume [m~”]

Humidity ratio [kg/kg]

Humidity ratio of the "zone" air [kg/kg]
Initial "zone" air humidity ratio [kg/kg]
Interior envelope surface

Exteriar envelope surface

Exterior furniture surface

Emissivity or error tolerance

Numerical integration constant [O<ex<l]
Porosity

Heat of vaporization [J/kg]

Permeability [s]

Permeance [h/s]

Density [kg/m3]

Stefan-Boltzmann constant [W/mz.KA]

Time [s]

Tortuosity

Relative humidity [0 to 1]

Air domain

Envelope domain .

Furniture and internal mass domain
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Air -
Bulk

Effective or equilibrium
Solid

Saturation

Vapor

Ambient

Surface condition
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TABLE 1

Fixed Point Iteration Scheme

<I> Solve Eg. (31) with Tr’o and wf,o. Obtain ap(n,r+ar) And ap(n,r+Ar)
<2> With known T and pv* solve Egs. (27) and (28) to obtain T. and W..
<3> Check for convergence '

lap(n+l,r+ar) - agp(n,r+ar)| < e [T (n+l) - T (n)] < ¢

|ap(n+1,r+Ar) - ap(n,r+Ar)' < ¢ |wr(q+1) - W (n)] < e
<4> If the solution converges increment the time and go to step <1>
<5> If the solution does not converge, relax the solution using the

following equations:
ap(n+l,r+ar) = R ap(n+l,r+ar) + (1-R) ap(n,r+ar)
ap(n+1,r+Ar) = R ap(n+1,r+Ar) + (1-Rr) ap(n,r+Ar)
T.(n+l) = ® T.(n+l) + (1-®) T.(n)
W.(n+l) = ® W.(n+1) + (1-R) W.(n)
<6> Let Tr7o = T.(n+l) and wr,o = W.(n+l). Go to step <1>.
Note: n denotes the iteration number, « denotes the error tolerance, and
R is the relaxat1on _parameter.
s
TABLE 2
Material Properties of Gypsum Drywall
\ k p Cp 70 I Ag a b | g ! d “
W/m.K | kg/m® | J/kg.K
0.262 725 1085 6 | 0.7 | 0.0107 3.8018 0.0615 | 0.3311
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Envelope domain (0.), unknowns temperature T and vapor
density p, distributions.

r

a

Air domain (Q,), unknowns room temperature T. and room
humidity ratio W..

rf o |

Furniture domain (fg) |—» Qp g=Ashy ; (T%;-T,)
unknowns temperature "
T and vapor density —»Qy =Ashy (W ;-W.)
py distributions. - ' ’

* .
v,1i

*
Ti)P

Surface temperature T*
| Surface vapor density p"y ; I l

——» Sensible infiltration Toad mC,(T,T,)
—

——_—___1——-——>Latent infiltration Toad m" (W -W.)

_’DQT W = Aih:r ) ;‘(T*i'Tr)
> Oy = Aghyg 3 (W5 W)

Internal heat Qp aiiu moisture generation Qy

Figure 1. Schematic of the drob]em description and domain and surface
definitions.
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Figure 2. Comparison of analytical versus finite element temperature distribution in a
gypsum drywall sample exposed to convective boundary conditions.
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Figure 3. Comparison of analytical versus finite element water vapor density distribution

in a gypsum drywall sample exposed to convective boundary conditions.
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