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ABSTRACT 
An ongoing ASHRAE rese~rch project seeks to 

Identity and clarify key issues governing literate ap
p ficatlor1 .sf computer-based analytical met11ods for 
prediction of room air motion. The engiheering field Is 
termed "computational fluid dynamics," with the ac
ronym "CFO," which is maturing rapidly, paced by the 
incred/19/e growth of scientific computing hardware ca
pacity. As wit/1 any emerging technoldgy, the produc
tion of reliable predictions requires a full understanding 
of intrinsic details. This paper addresses issues pro
moting literate use of CFO for prediction of room air 
fluid/thermal flow fields. 

~'-

INTRODUCTION 
ASHRAE Research Project 464 seeks to quantify 

literate use of computational fluid dynamics (CFO} 
methodology for accurate prediction of room air mo
tion flow fields and pollutant transport. The CFO re
quirement is attainment of accurate approximate 
solutions to the Incompressible Reynolds-averaged 
Navier-Stokes equations, including a closure model 
for turbulence in room geometries. 

Characteritation of fluid/thermal incompressible 
flow classes is contained iti nondimensional group
ings, the most familiar of whict1 is the ratio of inertia to 
viscous forces, termed the Reynolds nilmber, fle = 
UL/v. Here, U is a scale velocity, L is a characteristic 
room ditnehsion, and vis the fluid kinematic viscosity. 
For nonisothermal flows and the Boussinesq assump
tion regarding density body force effects, the ratio of 
inertia to buoyancy forces yields the nondimensional 
Grashot number, Gr = gfi~TL3/v2 . Here, g is the ac
celeration of gravity, (3 is the fluid compressibility, and 
AT is a scale temperature differential. The Prandtl num
ber, Pr = Cppovlk, also becomes introduced, where Cp 
is the specific heat, Po is the reference density, and k 
is the fluid thermal conductivity. 

Under actual room airflow conditions, represen
tative orders of magnitude for these nondimensional 
groups are Re = 104 

- 105
, Gr= 1011

, and Pr = 1 o0
. 

Since Re is well over the limit for which the flow field 
remains well ordered , i.e., laminar, the requirement 
exists to adjust the problem statement to account for 
"turbulence." The time-honored engineering approach 
is to statistically manipulate the governing mathemat-
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ical description, ,hence introduce a "turbulent viscos
ity," v! , augmentation to diffusion effects. In distinction 
to the fluid kinematic viscosity, v, the distribution of vt 
depends on the flow state, not the fluid present. Any 
such engineering mod" I i ~ . an approximation of the 
true phenomena, hence the Mult~ of CFO analysis 
and experimental data will (must) exhibit some level 
of disagreement. . 

Therefore, the mathematical statement pre
sented to a CFO algorithm/code designer 1$ inaccurate 
to the extent that the true physics is mci.deled. This 
inherent di fficulty is then compounded by the fact that 
any numerical simulation procedure carr at best gen
erate only an approximate solution to the established 
governing nonlinear partial differential equation (PDE} 
system. Further, while this PDE system is generally 
accepted as appropriate, addition,al approximations 
mus be made to yield a computationally tractable 
statement. Specifically, no equation of state is avail
able for incompressible flows, and the velocity field 
must always be t:livergence-free. Designing a CPO the
ory that accounts for these details introduces further 
approximations that can compromise prediction fi
delity. 

Finally, since a CFO numerical algorithm pro
duces only an approximate solution to the terminal 
PDE system, numerical error mechanisms exist that 
further compromise prediction accuracy. Specifically, 
CFO methods operate on dlscretlzations, termed the 
"c mputational mesh," upon which short wavelength 
solution Information cannot be resolved. This intro
duces a dispersive error mechanism, producing 
mesh-scale solution oscillations if the discretization re
finement is inadequate to resolve the CFO solution 
spatial gradients. Should these characteristic tell-tale 
oscillations fail to appear on coarse mesh computa
tions, then irrefutable evidence thereby exi~ts that the 
CFO solution is dominated by a numerical diffusion 
mechanism characterized by an artificial viscosity 
(var1). Without proper attention in the CFO algorithm/ 
code design, vart effects can totally dominate those 
due to the physics model, vt, and the underlying ki-
nematic effects in v. . . . ·, . 

Frorh ,this brief iritroductiori, one can readffy as
certain that reliable use of CFO methodology in room 
air motion prediction requires a literate user. The 
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ASHRAE techi:)tca[ community must thus join with the· 
aerospace community in its full recognition of the need 
for reliable "code validation ." In the .. call for papers in 
a recent conference (AGARD 1988), code validation 
is defined· as an effort to "ensure that the mathematical 
and nunyerical schemes employed in the code accu~ 
rat9!Y model e.~iUeal {lysics of the flow field ." The 
Ad Hoc i , ·Validation of the Aeronau .'.-
tics /l..'dv o 'NASA (Bradley 1988) has· :. 
defined CFO oo '@ as "detailed surtace-and-
f low-field comparisons with experimental data to verify 
~he code's ability to accurately mod_el the ·c~ific_al phys-
ics of the flow . .. . " 1

1. ~ , •· i " 

Confidence in the predictions· prod uce€! by a 
code thus accrues from investigating tWo Issues: 

~ 1. Evaluation of the accuracy oH he governing 
equations that are to be _solveff rh~_e :e~uat!ohs in
clude a~sumptions due ~o using a simplifie.i;i' 'fq~m of 
the N~v1er-Stokes equations or due ·to ttie motieling 
required for turbulent flow, transition; ouoyancyr f11.!i1· -
surte1;.ce i_rit~raction , and other flow physics. · ;:, 

2. Determ i n~t ion of the accuracy of the numer
ical solution P!Pced~re for the chosen governing equa-
tions. "' · "· 

.. This p'aper addresses these .-issues for the room 
air .motion probiem class. 

'"".. ," ~ ;:.· , ~ -p, .,- -. 

MATHEMATICAL STATEMENT , . . ' " '" 
Since direct numerical simulation of 11'.urbulent · 

flows;,:,is not tractable, eyen on : today's supercompl'.i~<: 
ters, 'a statistical manipulation Is required to yield a 
computable form of the Navier-Stokes equation sys:: · 
tern for incompressible fluid/thermar%::>ws. - Sever-al · 
methods are appropriate, and the resultanf're'at fonge- ~ 
ment is termed the "Reynolds-averaged'; Navier.: : 
Stokes" equations. 'After a suitable nondimensionali- · 
z~tion, this nonlinear partialdifferential equation (PDE) 
system governing unsteadyi turbulent incompressible 
fluid/thermal flow fields in vector form is 

J ~- \( -: ; 

ae -- -. . · ·;'·: 
L(9) =a + '(u . \7)El -:- '1: · ~_ (3) 

. ,. t... ... ' .. 
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· The dimensionle$S parameters in Equations 2 
through 4 _ are turbulent :· Prandtr"'number, ·turbuleht 
Schmidt number, and the Grashof n~mber with deff~ 
nitlbn{ . . . r ' . . . ' , , ' ; · -

Pr
/ = CpPoVr S I :··~ G·· :~= g[3(Tmax - T)L3 ~· .. 

kt > c - 01 I r 2 • (5) 
AB V . 

< 

and the Reynolds number definition remains' Re == 
UL!v. The ~ependent variable set includes velocity 
vector, u, with scalar components U;, 1 :::;; i :::;; n, kin
ematic pressure (P = plp0 ), and potential temperatut~~· 
e. In Equation 4, CA is the mass or mole fraction of 
species A, .iand Sc = v!DAa def.ines the Schmidt num
ber for binary diffusion. Finally, the Boussinesq buoy
ancy body force assumptiorn.s made in Equation 2, 
and g is the gravity unit vector .. 

The highest order spatial derivatives are present 
in Equations 2 through 4, henc_e~ach isolated equation 
is elliptic for finite Reynolds ·number, Re. Therefore, 
knowledge of fixed values of the dependent variables 
and/or their .r9rmal defivatives is requireggiven every
where on the boundary an of the domain of definition 
n c Rn, where n is.lhe dlr.n'ensiontof the problem state
ment.. The generally admissible procedure is to specify 
velocity and temperature at a flow inlet to a region and 
to specify a heat flux on walls along with the no-slip 
velocity requirerT)ent. Neither velocity nor temperature 
may be specified at a locationwhere the flow exits the 
region; the mathematically acceptable specification is 
that each variable leaves the domain wit~ba vanishing 
normal· derivative. ; · · · • · 

· The•1system coupling via'the continuity equation 
(Equation 1) creates a truly fundamenta~mathematical . 
issue.t~at forms the heart of any proposed GFD theory~ 1 

Spec1f1cally, Equation ,1 defines a differential . const~aint 
on :velocity fields that are aalmissible as solutions to 
Equations 2 and 3. The requirement for a divergence
fr~e fiel~ · is intimately connected to the; pressure (gra-:. 
d1ent) ·field that acts as a so_urce term in Equation 2; 
However, neither an algebraic (i.e. , equation ,of state) · 
nor a differentlal equation is avail13-ble for determination 
of pressure. Therefore, it must either be mathemati
cally eliminated from Equation 2, via a dependent var
iable transformation ·to· vorticity, or a computationally 
suitable procedure must be devised such that pres
sure becomes determinable from an iterative __ solution 
sequence. Any procedure for the latter must be com
patible with knowledge rE;:)garding pressure on the do
main boundary of Equation· 2. The mathematically 
adn:iissible situation is thal'static pressure may (must) 
be imposed at a flow outlet, and that the flow inlet 
pressure level will self-adjust such that .. a given inlet 
flow rate can be specified. No knowledge is available 
a priori regarding pressure d istributions on nonf low 
through (wall) bouf/dary segment~. ': · ~· 

In addition to these mathematical details, the 
PDE system (Equations 1 thr6ugh 4') is not solvable 
~ince .the turbulence eddy viscosity, v1

, is not yet de
fined. A r51nge of tt:ieoretlcal complexities exists for its 
n;:iodeling , f:'.a<?h of which-!imqunt? to .acc4mul~tion.of 
n;iapy slmphfy1ng assumptions. For th~ room air prob
l~m class, tti.e consensus appears that the ,two-Elqua
t1~n . t.u bulence kinetic. ~nergy (TKE) clQ,$ur~ i& the 
m1nimurn .• ac.ceptable , wherE!upon the oef1n_it,ion fqr vr 
is_, ; : r • • • -., 

(6) 



In Equation 6, k is the kinetic energy of the turbulent 
motion fluctuation about the mean flow, is the isotropic 
dissipation function describing the annihilation of tur
bulence energy into viscous heating, and Cµ is a cor
relation constant. 

. The PDE system governing k and e is, in non
djmensional form, 

L(k) ~ ak + ~.(~1k) .- ~.[-1 (1 
at '· ax1 . • , • ax1 Re . 

v1)ak] +--
U'k axi 

- v e--+ ' 1R au;(au; ~) : , 
axi axi ax; 

·, (7) . 
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)
0e] 
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· · . · c t 1R [au,(au1.. ~)J ~- · 
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+ C~f2Re k 
Gr v1 E · 

+ C3 - - -'Ve · g = O 
Re o;r. k 

~. ,: ~·· 

Equations 7 and 8 are:written in tens.or index notation 
with summation over th'e spatial dimensionality·n wnen.r 
repeated in any term. This (tensor) precisionds re
quired to correctly define the turbulence production 
terms invollilfng.au;laxi, which tightly connect Equations 
7 an(!J =8 :to Equations 1 through 4. The variable and. 
patameter. definitions remain.··customary, and er Wfde 
range of correlation'rnoctel constants and functions;.~ue~ 
required 110 close Equations 7'and 8. Por examplefthe · 
LaTii~Bretnhorst model : (Lam and Bremhorst 1198t>)r. 
speotfies ..... - :.: ;~ .: . ~~; : . · ·: :~1~ ~f.;\:· ' 

... , ,_· • -.,i, \· .. : .. ~-. . ,- . ·;. G , : . :), J ._~l:; :~ \.:·_ · : ~ ..... 

. t, t., . ::-. 1 + {0.05/tµL ,_. . : '· '·;"~: .. ' . . 2' 
, f2 ~·· 1 - exp("'" Rr) · - - :·r ., . 

f µ = [1 ·7 ' exp( - ·0.0165Ry)·]2p + ·: 20.5/Riif ' 
Cµ. = O.G9 ,; ;·: ,. , ~1~:;.~ ;;: __ ~;,.·.~· ; ... : ... } 

c ;,,,·' (44 ~ ) - ?J.'. '. ': ' 
1 ... .. .. ,.. - ,. 

'.I c ~ "1.92 .: ' .; ·' J-. ' •• ·~ : 
2 ' . .- ' -...:..·- ~· ·<-:~·: . :~· ·.;:i ij 

~ C3 ·F 0.4 to 1.44; (func~ion q_.t_fl~x r -'.JUJ.:' . (9) 
. - Richar~qn . number t=I;) · ·: :: ~'- :.?:' 1: 

(J'k ":±"; 1 .0 ..... ,j :.. '' ..:.'i:...... .- .;;.~ ,.;·;=·.:.. 

. rr. <= 1 .3 '-
,_.. ' rrr = 0. 9 ~, · 

R .. = J<2f~E ;;, . .:-1·· .. 'S:~!.·',~ 
T •.. , ~ ,, .. ".. ; ......... ·. .~1, .-· 

Ry = ,Vk,YiV. wh,er~:oY-.. = n9rmal. .'~. ;;·,: -~ . 
.. . distan'&e ff:pm wall , :

0

·; .·' ·~:~ .. : : ' '• 

,, The: issue of 1:1@ nda'ry conditions for EquatR5ns"'.' 
?'ahd 8 rat~<is:;~ ~e:i~us"c~o_m_putational _e~mP._licati~:: 
The" don'llnaht -spa:t1ar ~envat1ons are again second.,. 
order' fi'~nde t'cq u~tlohs: 7<-arid ' 8~af'e each' (isolatedf 
elli.P,ti,S t.>.6:bn§?ki: vaL~e · 1'.>"r~.b_lerl}_s : ]ie ma~~em~tlca/ 1 ·
exact war~ ·ffot:1naaiY cona1tr0ns· al e· k = o:and iJe/an 
= 0; where'n is ihe n6rmal dir~ction to the ital!. How: . 
ever, as thoroughly documented in the literature (Pater 
et al. 1985), very large spatial gradients in both k and 

e exist in regions directly adjacent to solid wal!~ . .The 
computational mesh refinement required to ·ade
quately resolve these distributions places a Very.'se
vere burden on computer resources, hence essentially 
all code implementations utilize "wall functiqn" rela
tionships instead . These are deriv,ed from boundary 
layer similarity considerations and yield replacement 
"boundary condition expressions applied at an appro-
priate distance from the actual wall surface. 

The use of such wall functions is accurate for 
attached boundary layer flows only; their use is a sig
nificant GPmpromise for general omnidirectional flows. 
with recirculatbri regions. Figure 1 illustrates the sav- . 
ings that .accrue-. to use of wall functions for an iso
thermal boundary lay~r flow. The graph symbols de
note node points of the wall-nqrmal mesh. Note that 
the wall-fl:lnctiPn::predicted boundary layer velocity de~ 
creases -to only about 70% of freestream (Figure 1 a), 
while tne true value is zero (Figure 1 b). Si_milar: dis
tinctioris:are present in the k and e comparisons as 
we'li. ' ,, 

The complete governing PDE system)c:ir room 
air motion flow prediction is established in Equations 
1 through 8. It is extremely nonlinear and any CFO 
theory derived to seek an approximate ,§>olution is sig
nificantly challenged by attengant intrihsic numerical 
error mechanisms. The dominaht error mode is short 
wavelength dispersion yielding local solutton oscilla
tions . . ln, -the absence of an adeRuate mesh to resolve 
solution spatial gradients, the ,."universal'' .correctio.ri 

_ fo.r: pradically all CFO codes is to augment the genuine 
laminar and turbule,rit diffusion mechanisms with a nu
merical diffus(on operator that dissipates these dis
cretiza ioo~created oscillations. Unless great care is 
taken in ttie CrD formulation, the net effect is to modify 
the:.dissipation·term multiplier in Equation 2 to the form 

Y .. , . . R1 (1 + vi)'~:~tR;1 '(1 + vt ~-".vart) " , e\ · · e (1 O) -

The coefficient of artificial viscosity, vart, is either 
a fwnction of integration time step, ~ 6.t, or a character
istic length scale , h, of the local mesh. The larger either 
fit or h i.s:. ·the more, significarit v"" becomes in com
parison to v1 and/0.n"'laniinar viscosity (the 1/Re term) 
effects. Therefore, t~is error rriElchanlsm can only be 
controlled by use of small tim~~steps and/or an ade
quate mesh so that 6.t and/or ·h is kept sufficiently 
small. Without these constraints, and on coarse com
putational meshes, the CFO algorithm prediction will 
become totally dominated by V8

'
1
, yielding smooth-ap

pearing computational trash . The issue of advanced 
turbulence closure modeling then truly becomes moot. 
The "literate" user of CFO simulation packages must 
be fully cognizant of t~~se issues. 

BASIC PRECEPTS OF CFD ALGORITHMS 
The first requi reme:rit of ? .CFO algorithm/cod.e 

design is to rearrange th'e·:establishea governing PDE 
system (~,qv.ations- . l 1 !t:lroi..tQ.~ ~) in~o a mathematically 
wel!-g0s~ staterf.\Sf"!t~ )fJha~ . _distinguish,.es Stq_Cfh a. 
"canservation law sy~~rn~CLS)" from a PDE system 
is establishment. of initial and boundary conditiorn.s for. 

t:. 
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which one can mathematically guarantee that a solu- resolution of boundary values, the steady-state solu-
tion exists and that in fact it is bounded by what one tion yields ap/at = O, i.e., the pressure distribution is 
puts in as initial and boundary conditions. .. stationary. No • .application of this pseudo.7Gompressi-

The, mathematical interconnection between the bility formulation is reported for the room air motion 
continuit~ equation (Equation 1) constraint of velocity problem class. However, Kwak et al. (1986) developed 
divergence-freeness and pressure is the critical issue, such a code for isothermal incompressible aerodyn-
and two fundamentally distinct CLS resolutions exist. amics applications. 
The mathematically exact enforcement of Equation 1 Another class of inexact formulations is based 
requires use of vector field theory, since the curl of a on the hypothesis that a correction procedure applied 
vector potential always possesses vanishing diver- to a nondivergence-free velocity field can be formu-
gence. Hence u can be replaced by \l x 'I', and the lated into a pressure correction. Spalding and his stu-
n-dimensional stream vector, 'I', becomes the familiar dents, as summarized in Patankar (1980), originated 
scalar stream function 'I' in two dimensions. Howe~r. the "SIMPLE" pressure correction algorithm requiring 
pressure is still present in Equation 2 with no resolu- solution of a Poisson equation. The_re have been many 
tion. Since the curl of a scalar gradient also vanishes commercial code implementations of this algorithm, 
identically, forming the curl of "L(!J) yields the vector an,P many individual researchers have programmed 
vorticity transport equaNon LfO,.]: Finally, these vector their own codes for room air motion analyses (Hagh-
identities yield compatibility relationships among the ighat et al. 1989). This theory is viable only for steady-
derived dependent variables, hence closure is state flow prediction, and convergence is said to occur 
achieved. ,. .~ ,,.._ (typically) when the maximum local error in discrete 

Two fundamental detractions exist to this for- satisfaction of Equation 1 is nominally 1 %. Recently, 
mulation. In three dimensions, the 0-'I' compatiQility Noronha and Baker (1989) have formulated the more 
equation does not yield a well-posed CLS unless \Jr i.s exact theory and have extended its applicability to 
also divergence free. This occurs intrinsically in t1A'O time-accurate solution of unsteady problem state-
dimensions, but in three dimensions it will not gener~lly ments. • 
be achievable. Alternatively, the vorticity-velo~ity Still another class of an inexact formulation em-
transformation also removes pressure fro~xplicit ~p- ploys a penalty constraint theory, which algebraically 
pearance, and the resultant compatlbrlity relations equates the pressure field to the error in velocity field 
yield a well-posed CLS in n dimensions since \l · u divergence-freeness through a constant of the order 
= O identically. The vorticity PDE system is elliptic in (Re)·1 (Baker 1983, chapter 5). One commercially 
either instance; hence, vorticity and/or its normal tie- available code (Engleman 1984) is based on this CFO 
rivative needs to be known all around the boundary. theory, which...JLappllcable to both unsteady and 
This in.tprmation unfortunate1y"depends upon the state steady-state flow prediction. No applications of this 
of flow in the boundary region and is not known a priori; code or theor}/are reported in the room air literature, 
thus it must be computed, which constitutes the sec- although wide use is reported for thermal/fluid analy-
ond detraction. 1w1 1 . ';Lt:Si$ .. 

The alternative to exact enforcement of continuity The preceding paragraphs highlight the first de-
is to develop an inexact procedure, and several have cision required by a CFO algorithm designer. An 
been proposed over the ¥Sars, each wiU:uts individual equally fundamental decision regards the design de-
features and detractions. One class is formed by ad- cisions required to convert the derived CLS fnto a com-
mitting .that any computed velocity field will not lbe putable form, i.e., a set of algebraic equations. 
divergehce free; hence Equation 1 can be written in Essentially all incompressible flow CFO numerical the-
the form cries can be analyzed as decisions made in con

aq 
L(po) = \l · u + - = 0 at 

( 11 ) 
structing an approximation to a weak statement written 
on the governing CLS. This system is constituted of 
Equations 1 through 4 and Equations 7 and 8 and their 

If the time derivative of the source function q can be various rearrangements, each of which is an initial-
driven to zero, then Equation 11 reverts to Equation 1 value, elliptic boundary value statement of the form 
and the continuity constraint becomes enforced. 

The time-expliclt MAC algorithm (Roach 1972) L(q) = aq + ..i_('1 _ ff) _ s = t1.on n c Rn (12) 
'!"':~ thq firs~ dev1~1ophed for Equ_ati~n h11d, with the det-f ,...,_~ at ... ~>if ~:~...,~-~·-~ ··-·-·--'· 
1n1t1on g;:a v · u , w ere s~cnpt enotes use o '\.. ~ · ·!'$,, 

a computational mesh, Oh. The orig\nal derivation used As piesent1::::u i11, Bpker (19,83), q(x,t) b the generalized 
the symbol "O" for q, and at steady state aO/at = o dependent variable (array) and t1 is the kinematic/ki-
and indeed Equation 11 coincides with Equation 1. netic flux vector containing the fluid convection terms 
Murakami et al. (1987) employ the MAC algorithm in (u · 'V)q and pre.&~ure. Further, fj is the dissipative flux 
their room air motion simulation flow code. ·vect6Y containin~i'the 1 /Re and turbulence closure 

A time-implicit successor to the MAC algorithm model terms, s is the source term peculiar to each 
was formulated (Charin 1967) for the definition q = pl individual PDE, and n is the domain of definition of 
13, where 13 is a fictitious compressibility coefficient and L(q) of dimensionality n. In addition to Equation 12, 
p is pr0ssuce.Hooce, Equation 11 becomes ... ~n initiah:: , 'Nell-poseg CLS ma11lp'rJlatiqns can yield a Pq,isson 
value problem statement tor pressure: For· a suitab.Ja<j .. ;o;equati-Ori1~oupled with Equ.atior:i 12. The form is· 



~ J 
J(q*). ·~ -' - a2q2* - s(q) = iQ~ • :: . . (13) 
. ~' ' ·- . dXj · 

wh~tJ the sourc~ s(q) is a function of select variables 
in q 'satisfying Eq,uation 12. .· 

A CFO algorithm is thus required to transform the 
solution of the nonlinear conservation law system 
(Equations 12 and 13), with determined appropriate 
boundary conditions, into a computable form. The 
generalized weak statement theory (Bakerand Pepper 
1990) defines an algorithm as a semi~discrete ap
proximation to a weak statement (WS) written 011 L(q) 
and L(q*), ·· ···· 

WS = J w L(q)dT :#·o, for all w(x) (14) 
f1 . 

where the set of weight functions W(xi) is completely 
arbitrary: Specifically, if one chooses that w is the set 
of all constants, then Equation 14 expresses the con
straint statement underlying "finite difference" and/or 
"finite volume" CFO algorithms, of which the cited 
MAC, pseudo-compressibility, and SIMPLE theory im
plementations are examples. Conversely , if the set w 
is allowed to be functions of XJo then an entire class of 
"finite element" algorithms is established , e.g ., the ref- ., 
erenced penalty method . 

Equation 14 is not a computable form since the 
state variable q remains unknown. One must thus seek 
an approximation for q(x"t), and any approximation 
can be expressed as an expansion into the product 
of the N known functions '1',{xi) and the N unknown 
expansion coefficients 0; as 

N 

qN(Xj,t) = ·~ W;(Xj)Q;(t) (15) 
J=·1 

The corresponding approximation to any weight · 
function w(xi) is · ~ '' 

·,- ; ~ 

(i 6) 

where the function set <I>; may certainly be distinct from 
'I'; in Equation 15. The theoretical preference, termed 
"Galerkin," is that the weight set, <I>;, indeed be iden
tical to the function set, 'I';, employed to support the 
semi-discrete approximation. In any case, the W; in_ 
E(luation 16 are known expansion coefficients of the 
interpolant wN(x;f of the specified test function w(x;). 

Note that Equations 14 through 16 are equally~. 
valid for approximating ~my Poisson variable q", which 
is implicitly time-dependent through s(q) . This being 
the case, the distinguishing notation can now be de
leted. The approximation function sets 'l',(xi). and <l>~x1) 
are chosen by the CFO algorithm designer, either ex
plicitly or by default, f rqrr( a very small suospace of 
fun'Otions in Hm, the Sobolev space containinJg all func
tions with m1t~:ir.d~r $!5>@tia.J.tP~riyat~'{eS that are .square 
Integrable. Since algorithm de.signers also choose to 
discretize the solution aomaln with a computational 
mesh h11

, a "compact support" CFO algorithm results 
for choosing 'I', as the local set of (Lagrange) inter-

polation polynomials with knots at the mesh nodal co>~ '.: 
ordinates. 

For the choice of using a discretization oh, the0 

resultant dominant approximation error mechanism is 
a phase dispersion that can induce shortwave oscil
lations. Following a generalized analysis (Baker and 
Kim 1987), a semi-discrete temporal Taylor series con
structed on Equation 12 yields a companion CLS ame
nable to exacting analysis for control of this ' E)rror 
mechanism. The resultant modified form for·;f:quation · .: 
12 is + ' '-

aq a 
L m(q) = at ~ ax (~ - f{) - s 

I 

· 'ha ( aq aq) 
- -, 

1
- aA1 + [3AiAk- + ... 

u axi at axk 

(17) 

where the matrix A1 =· ilf/aq is the Jacobian of 1he· . .-: 
kinematic flux vector 1f; in Equation 12, lul is velecity ,. 
magnitude, h is a lendth scale, and a and 13 are .¢oef-
ficients eligible for optimization. • 

Since Equat1on 13 contains no time derivative, 
an operation similar to Equation 17 is not appropriate 
for the Poisson variable (if present) . Hence, without 
loss of clarity, the Taylor weak statement (TWS) CFO 
theory for Equations 12 and 13 for any semi-discrete 
approximation (Equations 15 and 16) is 

.. TWSN .~_f(ihvyN(x)L'.Tl(qN)qT, = 01 for all ~N(x) (18)~ 
The complete arbitrariness required for wN(xi) in 

Equation 14 can now be accounted for analytically by ·· 
determining the extremum of Equation 18 with respect 
to the known expansion coefficients Wi in Equation 16. 
Using the standard Taylor series concept, the station
ary point of Equation 18 for all possible choices for W;, 
for .1 s .i s N, is •fi 

o(TWSN) = {O} ,,. . ' 1 

. aW1 (19) 

= J
0 

ct>1(x)Lm(qN~~T , :o.~ '. !:; i s N 

Since the functions <l>;(x)'·are all known,· as are 
the solution approximation functions, 'l';(x), all integrals 
expressed in Equation 19 are theoretically evaluable. 
Therefore, realizing that time t remains:la continu9us 
variable, Equation 19 for CLS (Equation 1.7) yields.an 
ordinary differential equation (OD.E.) system ~ 

iJT~S~: = [f~1] d~~J + .{.R} ,., {O} (20) 

Correspondingly, for the Poisson PDE (Equation 13)., 
if .present, Equation 19 produces the algebraic system 

aTWSN = {F(Q)} = [O){Q} - {S} = {O} (21) 

In Equatio~s 20 and 21 , the bracket notation (;] sig
nifies an order N squar.e matrix and the brace O de
notes the corresponding order column matrix. . 

' Since a CFO algorithm must transform a PDE 
system into a completely algebraic statem~nt, a tem
poral discretization: 'step is required for Equation 20. 



Both explicit and implicit formulations are usable, and 
the generic single-step ODE algorithm family amounts 
to evaluation of the discrete Tay!or series 

{Q}n+1 = {Q}n + flt(e d{Q}n+1 + (1 - 0) d{Or) 
. dt dt 

(22) 

for any O :s 0 :s 1 . The ODE matrix system (Equation 
20) expresses the time derivative needed to complete 
Equation 22, hence one directly obtains the terminal 
algebraic system 

{F(Q)} = [M]{Qn+ 1 - on} (23) 

+ flt( 0{R}n+1 + (1 - 0){R}n)) = {O} 

The established CFO algorithm statements, 
Equations 22 and 23, are fully algebraic, and both are 
expressed in the homogeneous form {F(·)} = {O}. This 
is particularly convenient for direct insertion into age
neric (Newton) matrix iteration algorithr:n , from which 1 

any numerical linear algebra computational procedure 
can be developed. The basic Newton statement is 

- [J]p{8Q}p+1 = -([M]{flQ}2+ 1 + flt(0{R}2+ 1 

+ (1 - 0){R}n)) = -{F(Q)} (24) 

n+1 
where [J] = a{F}/a{Q} is the Newton Jacobian, pis 
the iteration index, and n and n + 1 refer to the ap
propriate time levels (1 and r+ 1

. The resultant CFO 
nodal solution is given by 

{or+1 = {Q}n + {flQ}n+1 

{6.o}n+ 1 = L{8Q}p+1. for p <:: O 
p 

(25) . 
(26) .I 

ROOM GEOMETRY BENCHMARK EXPERIMENTS 
Overview 

Code validation is a fundamental prerequisite to 
use of CFO methodology for room air motion predic
tion. As stated, validation includes verified ability to 
accurately model~he.nce capture-the correct phys
ics:iOf a given problem. This implies an adequate clo- . 
sure . medel for turbulence, etc., .and an ad.equate .. 
discrete analo~ for · the resultant governing equation ~ 
s'fs.tem: Realizing: ttlat· any Jurbulence closure, e.g., · 
TKE, is at best a model', then disparity is always-ex
pected between experiment and prediction for com
plicated, noffboundary-layer · turbulent flows. 
Conversely, several quality laminar flow benchmark 
pr6b1·ems exist that a:re. highly demanding for char
aCferistic physics, hence control of strictly numerical 
error m~hanisms in a CFO algorithm. 

Emphasis is appropriate on the latter, since if one 
can guarantee ~bntrol oftti.e _numerical errcl'1meefia
nisms, then, ir'i' the progressiqh to turbulent .flow slrri::'· 
ulation, the only error mecl'.ianism remi:i'ining rnefut 
reside in the closure model. ·-~ . further substantiation 
for this .approach stems from re:Cogr1ition that the domi~ 

'... . • • .. - . :< -. . • . • ~' '· ; 

nant dispersive CFO numerical error mechanism mani
fests mesh-scale oscillations when the mesh is 
inadequate for resolving the local solution gradients. 
Diffusion mechanisms moderate this oscillating error 
mode and, recalling Equation 10, the effective diffU'
sion mechanism present in a CFO algorithm is ;: 

Dert = ~e( 1 + Vt+ vart) (27) 

Certainly, control of vart is critical to the validation re
quirements1 for. vt. 

It is important to determine the range for Datt that 
is appropriate for room air motion turbulent simula
tions. Recall that Re = UL!v is the classic Reynolds 
number. In a room geometry, a typical dimension is L 
= 1 O ft and a representative velocity scale may be U 
= 120 ft/m. The room-temperature kinematic viscosity 
of air is v = 1.6 x 10-4 ft2/s; hence, in consistent 
units, 

Re = UL= 2 . 10 = 10s (28) 
v 1.6 x 10-4 

For fully turbulent flow, a representative turbulent/ 
laminar viscosity ratio is the order vtlv :s 102

. Thus, 
Equation 27 becomes 

De11 = ~e( 1 + v' + v"rr) _ , ... 
' ' = 10- 5( 1 + 102 + vqrt) = 10-3 (29) 

if v"rt is controlled. Hence, the "effective Reynolds 
number (Ref)" of a representative turbulent flow CFO 
simulation is about Ref== 103

. 

The nondimensionalization of the Navier-Stokes 
equations for laminar natural convection employs a 
representative velocity, U, scaled on the thermody
namic variables. This produces a unit Reynolds num
ber (Re = 1) identically, and introduces the Rayleigh 
number, Ra = Gr/Re2 = Gr, where Gr is the Grashot 
number. Thus, 

(30) ' 

and for unit temperature difference fl T and unit length 
scale L, Ra = 107 for air, while a de.cade increase in 
both yields Ra = 1011 . In the event t.baMhe natural., 
convection flow is turbulent, then ~r .y'fv = 102

, t~e· 
CFO "effective Raylei~h numQer (Raf)" range be
comes 103 :s Raf :s 10 . - 0,r :::1JE 

. This briefly illustrates; est9blishing a set of effec-. 
tive parameters pertinent to CF-D simulation of turbu-· 
lent room air motion flow. The: concepts of "Ref" ancf 
"Raf" allow one to efficier.it y .conduct CFO benchmark 
experiments in the ab~e·Qffil ., of ·a turbulence closure ' 
model tha~ ~i.nva r.iably .l~crE~l{~s code. computing CP?ts 
by an or~r. of magq~yq~ ?J friore." :.: _ 

Natu91il ·convectiori~n 'a:.Squa~e cavity · . 
·l:~is thermal pr661em1;stat&me1ir is- ttWi'''fon~a

mental natural convection ;benchrtfa.rk·'tor the FcidiiY'aFr 
motion clasS':'~fis cons.tltu1ecfof a square roem (do-

:.: ,. . ·~ ~ ~ !.. :. "" .. t4·: :_ . •"· I _ .. (, ."..., '· 



main) with opposed fixed temperature vertical sur
faces and adiabatic f6p and bottom surfaces (see 
Figure 2a). The flow is viscous, hence the velocity 
vector vanishes all around the boundary. A represen
tative uniform computational mesh containing 1 7 x 
17 node points is shown in Figure 2b. Figures 2c, 2e, 
and 2g graph the computed steady-state velocity vec
tor fields for 103 s: Raf s: . 105 as obtained using the 
CFD lab vorticity-stream function TWS pilot code 
(Woods 1989). The corresponding temperature distri
butions are shown in both a surface perspective and 
as planar isotherm contours in Figures 2d, 2f, and 2h. 
The former presentation highlights the temperature 
gradients resolved, hence the related heat flux distri
butions to the walls. 

The first question to pose of any given CFD ex
perimental data set is, "Is the mesh adequate to re
solve the solutions features, and are these data 
accurate?" Provided the CFD algorithm can absolutely 
control vin, one can assess mesh adequacy by view
ing solution smoothness, since oscillations will occur 
in the solution if the mesh is inadequate. In the vorticity
stream function formulation, velocity is determined 
from vorticity, the computational primitive most sus
ceptible to dispersion error. The perspective vorticity 
solution surface provides the observation venue, and 
Figures 3a through 3f summarize the benchmark test 
results on two computational meshes. For 103 s: Raf 
s: 105, the 172 uniform mesh solution is free of short
wave oscillations (Figures 3a through 3c), hence the 
mesh appears adequate. However, for Raf = 106

, the · 
solution near the walls exhibits an oscillation (Figure 
3d). In the absence of artificial viscosity, the 172 uni
form mesh is verified definitely inadequate for Raf ;;:::: 
106 . 

Two acceptable approaches are available to re
solve the issue of mesh inadequacy. The best pro
cedure is to incfease the uniform mesh density, which 
considerablyi ncreases computer CPU cost. Figure 3e 
presents the steady-state solution for Raf = 105 ob
tained on the double-density uniform 332 mesh. The 
172 and 332 solutions are quite comparable, although 
added local detail in the latter is certainly evident. 

The next best procedure is to rearrange the given 
mesh to nonuniform, to move more resolution into the 
high-gradient regions. Comparing Figures 3d and 3f 
confirms that a nonuniform 172 mesh, with added wall 
resolution somewhat resolves the oscillations at Raf= 
106. However, since the domain middle region now 
has even less resolution, associated solution detail is 
lost. An unacceptable approach is to add artificial vis
cosity van to the CFD algorithm. This approach simply 
augments th~"effective diffusive processes; hence the 
computer printed output for Raf does not correspond 
to physical reality. 

An important accuracy comparison for this 
benchmark room air problem is the distribution of wall 
heat flux. The Nusselt number, Nu, is the appropriate 
variable, and Figure 4 graphs· the computed range 
and average value of Nu vs. Raf. The compari'SOn to 
available experimental and computational data is ex
cellent over the range of Raf evaluated. Note that Nu 

varies two orders of magnitude about the average at 
Raf= 106 . - .. . 

Isothermal Step Wall Diffuser 
Most room geometries involve ventilation intro

duction via an inlet of small characteristic dimension 
in comparison to a room dimension. The benchmark 
problem for which quality experimental data exist is 
the isothermal step wall diffuser. As sketched in two 
and three dimensions (Figures 5a and b), flow enters 
from the left in a duct of characteristic width h into a 
chamber of characteristic dimension H > h. The onset 
flow first separates at the step, then eventually reat
taches, yielding one or more closed recirculation re
gions. The axial extent, intercept, and number of these 
recirculation zones is directly dependent on Reynolds 
number, Re. Armaly et ar,"'(1983) report experimental 
results for H = 2h in the three-dimensional geometry 
of Figure Sb, which is summarized in Figure 5c as the 
loci of the primary, secondary, and tertiary recircula
tion region separation and reattachment coordinates 
(defined in the inset sketch). The flow field remains 
two-dimensional and laminar to Re = 800, then be
comes fully three-dimensional prior to onset of tur
bulent flow at Re = 3000. The turbulence becomes 
fully developed by Re = 6500, hence the flow field 
returns to two-dimensionality for Re > 6500. Note in 
Figure Sc l haU he primar.y- recirculation region extent 
is identical at Re = 300 and Re 2: 7000, adding cre
dence to-the concept of Ref as well as the nominal 
102 factor for eddy viscosity ratio (Equation 29). 

Noronha and Baker (1989) report comparisons 
among TWS vorticity-stream function and velocity
penalty algorithms and this experiment. Figure 6a 
summarizes the steady-state laminar velocity vector 
fields obtained for the nondlssipative (v.., = 0) w-'11 
algorithm for 1 O s: Ref ~ 2000. The comparison data 
obtained by the TWS penalty algorithm (Figure 6b) 
degrade significantly by Ref = 400, whereupon the 
dispersive error mode begins to dominate. In the range 
for which the -~_xperi.meot remail}~ two-dimensional , the 
TWS prediction of primary ·re~trculation region span is 
in exce!lent ag.r.eemei:it with the experiment (Figure 
6c). Finally, note that the vorticity al@orithm predicts 
progressively more recirculation regions as Ref in
creases to 2000, in qualitative agreement with the ex
periment (Figure 5c), which, however, has transitioned 
to a fully three-dimensional flow field. 

Pollutant Transport 
The accurate CFD prediction of transport of a 

scalar inert species via numerical solution of Equation 
4 is also challenging. Two benchmark test case spec
ifications are available for definitive comparison with 
computed solutions. The first '" is, .. purely convective, 
while the second mixes convection and uniform but 
directional diffusion, and either can be cast in two- or 
three-dimensional form. 

One benchmark is familiarly termed the "rotating 
·• cone" and constitutes···pure convection of a scalar, 
'" 'point-symmetric initial distritiution by a solid body ro

tation velocity field . Hence, in' Equation 4, u = ui + 
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Figure 3 Natural convection square cavity benchmark,· TWS vorticity-stream function algorithm, steady-state vorticity dis
tribution; a) uniform 172 mesh, Raf = 10"; b) Raf = 104; c) Raf'= 105

; d) Raf = 105
; e) uniform 332

. mesh, Raf 
105

; f) non-uniform 172 mesh, Raf= 106 'r:-' 

vj = r0e0 is the input velocity field in two dimensions, 
while in three dimensions u = ui + vj + wk = r0e6 

+ wk. In both cases, e6 is the unit vector parallel to 
the locus r = constant and e is angular velocity. In 
three dimensions, w greater or less than zero tran~-
lates the planar profiles'~arallel to<the -z axis. ';,. ·· -.. 

Baker (1983) compares various CFO algorithm 
performance for this problem for the case where CA(z 
= O) is an axisyrnmetric, rotated cosine ·distribution. 
Figure '7a illustrates this Initial distribution in perspec-

\0 

., 

tive view, and also shows the sense of impose·d con
vective motion. The problem possesses no steady 
state, and the .exact solution is pure rotation of. the 
initial condition without distortion. F.igu~es 7b ·through 
e illustrate computed result~ ·Obtained for various CFO 
algorithms fG>llowing what should be one complete rev
olution of the initial condition: An implicit · quadratic 
basis finite-element Galerkin ·algorithm using a non
dimensional time step of 0.25 produces the rnost ac
curate. solution (Figure 7b). Increasing· this time· .step 
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Figure 4 Nusselt number comparison, CFO to available 
data, natural convection thermal cavity 

to 0.5 decreases accuracy (Figure 7c), hence the in
herent underlying dispersive error mode is more vis
ible in the background plane. The linear basis finite
element algorithm is easier to form and, as evident in 
Figure 7d, produces a relatively larger magnitude dis
persive oscillation, as documented by the elevation of 
the plot base. Finally, Figure 7e shows the Crank-Ni
colson finite difference algorithm solution obtained at 
the same integration time step, which is highly dis
torted by phase dispersion error. 

The second convection with diffusion benchmark 
corresponds to a continuous source emission into a 
unidirectional imposed flow field with diffusion pro
cesses non-zero in the plane normal to this velocity. 
The exact solution to this "Ga_ussian plume" specifi
cation (Bak~ 1983, p. 213) is 

(-) s -:112~ 
CA X; = 2110' IT I I e r 

y ~ ) 
( e-~ .:.i)212~ + e- (H+ z)212u~ 

(31) 

where CA = pollutant concentration at point x, y, z; S 
=·r·emission rate of the>source; u = average·wind 

\·sp~ed (U0 = ui); x := downwind distance from source; 
y = crosswind distance measured from plume cen

' terline ; z = elevation above ground level; H = ele
vation of the source above ground level; cry = 
horitontaF diffusib~coefficient; ane.J i:rrz = vertical dif
fosi·on coefficieri ·:'Figure 8 compares finite-element 

· GalerK-lf:i~- algorit ti'm: ·computed steady-state distribu
tions' ro 'Eq'baNoh 31~ denoted"Ulerein as1·"Gaussian," 
for the c:aseioPa"pyrami'dal source with'$ =' ~ OOg/m2s, 
u = 1 ·m/s, ·cry = 0;1~1,;n111s, and crz = 0'.5 m2/s for the 
.three-dimensional ·case. Simulations wete:'conducted 
using the linear and'·:tH.e. quadratic basis algorithm for
mulation. and the data presentations compare sym-

"°"mefrii:9·:tialfcplane .. CFO · results .rjVith the .analytical 

J/ 

centerline results and analytical lateral spread at the 
outflow plane. Again, the quadratic basis algorithm 
results are uniformly more accurate; in comparison, 
the linear basis centerline trajectory is underpredicted 
by approximately one nodal span length . 

Turbulent Boundary Layer 
In many instances followil")g air introduction into 

a room, the resultant flow field approximates a deve
loping boundary layer up to encountering an obstacle 
or a corner. An excellent comparison base to validate 
wall function and/or low Reynolds number CFO imple
mentations for a TKE model exists in Cole's law, an 
empirically derived correlation of a wealth of turbulent 
boundary layer experimental data. The correlation, ex
pressed in nondimensional form where u+ = u/U,, is 

u+ = _! lny+ + B + 2n sin2(Ily) (32) 
K K 28 

In Equation 32, K = 0.4 is Karmann's constant, B = 
5.5, n = 0.55 for a flat plate, and 8(x) is the boundary 
layer thickness distribution. The corresponding Rey
nolds number distribution for length scale L = 8(x) is, 

Res = U,
8 

= 0.14(Rex)617 (33) 
v 

where U, = U(x) is the reference free stream velocity 
distribution. Figure 9a shows the problem geometry 
and a 19 x 19 nodal nonuniform mesh with local wall 
region resolution . The inlet flow is the slug profile U(x0 ) 

= 1; hence, w(x0 ) = 0 and '110 is proportional toy. The 
inlet conditions for k0 and e0 can be determined from 
the second x-station solution using Cole's law skin 
fraction 

c, = P~~12 = 0.455[1n(0.06 Rex)]2 (34) 

A vanishing normal outflow boundary condition is ap
propriate for all variables in"·q = {w, k, E; 'I'}. The 
entrainment (top) boundary conditions are vanishing 
normal derivative fork and e, w = O, and aw/an = U,. 
Finally, if approtlfiate, the wall function boundary data 
are employed along a line in the vicinity y+ = 50. 

The TVVS solution was initialized from Cole's law 
(Equation 32) for Rex1 = 4 x 106

, where xf = 32.6 ft. 
Figure 9b graphs the resultant boundary layer profile 
development on O :s x :s xf. The CFO comparisons 
with Cole's law at station x = 25 ft, where Rex = 1 x 
108 , are drawn for vortitrty: ·and velocity in Figures 9c 
and d. The solid line is Cole's law (exact solution) and 
the symbols are the CFO solution. Agreement is very 
good on airbases, indicating CFO prediction accuracy 
Jor growth of a turbulent 'boundary layer. Figures 9e 

· 'and f show the companion com19uted profiles for.k and 
'E. 

:~ ·~ ·~.. . _.. c:. . . ·; ; 
SUMMARY .~.~D .CONCl.USIONS 

1his paper·. has presented an·overview of math
. ematiualtheory, closure rnodelil']g ,:and code valiGlation 

issuesDtpertin.ence to roorn ai! mi;::it.ion CFO prediction. 
A::series1oforitica.I benchr;mark- prob!ef'D predictions are 



region 

--... ~ . 

.r., 
IS 

x 
"f 

10 

-

b) 

. " 

- .~'._-)Kr 
c) 

-~ _ . r:: z • ;:t. .. 

ax, • x,! 
• x, prnen1 dau 
ax. 
ax 1 

-

Figure 5 Close-coupled step wafl diffuser, a) two-dimensional, b) three-dimensional, c) experimental data of 
Armaly et al. (1983) 
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mechanisms become dominant, and totally pollute a 
coarse mesh CFO solution. Factually, if a coarse mesh 
solution appears smooth, one can be assured that 
numerical diffusion dominates the results. The indoor 
environmental analysis community must thus strive to 
become literate users of CFO methodology so that the 
inherent limitations are understood and fully appreci
ated. Further, the burden falls on CFO code designers 
to pffer the full complem13nt of validation test results 
to the prospective code user and/or buyer. 

\d-
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Figure 9 Developing turbulent flow over a flat plate, wall 1un6ti0ns, ReL = 4 x 108
; a) mesh; b) velocity vector field at x 
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