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ABSTRACT 

A. Moser, Ph.D. 
Member ASHRAE 

A low-Reynolds-number k-i: model of turbulence was 
used for the prediction of natural convection flow in 
cavities with Rayleigh numbers on the order of 1010• The 
Boussinesq approximation was used for buoyancy, and 
the buoyancy production terms in the k and i: equations 
were also studied. 

The results indicate that the computed velocity and 
temperature profiles and convective heat exchanges by 
the model are in rather good agreement with the 
measurements. The influence of the buoyancy production 
is small on velocity and temperature profiles but is con
siderably large on the kinetic energy profiles. For the in
door airflow computation, use of the low-Reynolds
number model with buoyancy production terms is recom
mended so that correct indoor air velocity fields, air 
temperature distributions, convective heat transfer coef
ficients, and comfort parameters can be obtained. 

INTRODUCTION 

There are numerous practical flow problems related 
to buildings that can be solved profitably by numerical 
techniques. A successful numerical model would be an 
ideal tool to help a researcher understand the complex 
phenomena of flow problems and help a designer choose 
the opt imum design from a number of possible alter
natives. The study of air flow in rooms using numerical 
calculation techniques has been done for nearly 20 years 
and has achieved some successes, as reviewed by Kumar 
(1983) and Whittle (1986). Recently, more publications con
cerning this problem have become available, such as 
SAAHI (1987), Chen et al. (1988), Murakami et al. (1988) , 
and a special issue of a trade magazine (Building and En
vironment 1989). The range of airflow simulations, which 
originally comprised laminar, one- and two-dimensional, 
steady, and isothermal situations, has been enlarged to in
clude turbulent, three-dimensional , transient, and 
buoyancy-affected flows. Recent results (Building and En
vironment 1989) indicate that the k-i: model of turbulence 
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(Launder and Spalding 1974) is still the most appropriate 
model for practical flow applications. The set of model 
equations is suitable for high-Reynolds-number flow. For 
wall flow, where local Reynolds numbers are very low, the 
equations are normally used in conjunction with empirical 
wall function formulas. The success of this method 
depends on the "universality" of the turbulent structure 
near the wall. When disagreements are found between 
measurements and predictions, it is difficult to judge 
whether the weakness of the method lies in the basic 
model equations or in the wall function formulas. 

When the wall functions are used, the first grid in the 
numerical solution has to be sufficiently remote from the 
wall for (kv21/v) to be much greater than unity-so much 
greater, in fact, that the viscous effects are entirely over
whelmed there by the turbulent ones. This may result in 
some of the grids being located in the outer region of the 
velocity profile, as shown in Figure 1. The logarithmic wall 
function (Launder and Spalding 1974), which is widely 
used today, can still yield rather good results for fully 
developed, zero-pressure-gradient boundary layers in the 
outer region. However, Hammond (1982) showed that the 
velocity profile for a plane wall jet is very different from that 
at the zero-pressure gradient in the outer region, and the 
logarithmic wall function is invalid there without any 
modifications. The boundary velocity profile of air flow in 
a room may be located somewhere between that of the 
zero-pressure gradient and that of the plane wall jet. 
Hence, the wall function can hardly present good results 
for the air flow near walls in a room (Chen 1988). On the 
other hand, Chen (1988) also reported that air flows in 
rooms, in many cases, include natural or mixed convection, 
and the overall turbulence Reynolds numbers (R1) are 
rather small. The high-Reynolds-number k-i: model of tur
bulence with the logarithmic wall functions may not be 
suitable for use both near the wall and far away from it. 
Therefore, it is necessary to apply an appropriate low
Reynolds-number model of turbulence for the computa
tions of indoor airflow patterns. 
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Figure 1 Velocity profiles in the turbulent boundary layer over a smooth flat plate 

Some studies concerning the application of low
Reynolds-number models for natural or mixed convection 
in a cavity have been conducted in the past few years (e.g., 
Humphrey and To (1986]; Betts and Dafa'Alla [1986]). The 
foregoing studies were for natural or mixed convection with 
a relatively low Rayleigh number (up to 109) . Few valida
tions of low-Reynolds-number models were performed for 
Rayleigh numbers greater than 1010 , which is a typical 
value in a room with natural or mixed convection. 

In addition to the low-Reynolds-number property, 
buoyancy is the main factor in natural convection. For 
mixed convection, buoyancy is also one of the dominant 
factors for indoor airflow problems. Because the insulation 
of buildings has been improved in order to reduce heat 
loss in winter and heat gain in summer, there can be a 
reduction of air supply, since the space load becomes 
smaller. Such a reduction, in many cases, generates a non
uniform distribution of indoor air temperature that is also 
influenced by the heat transfer through walls and windows 
and heat generation by room occupants or heaters, etc. 
Besides the buoyancy term in the momentum equation, 
the buoyancy production terms in the equations of turbu
lence energy and turbulence dissipation rate also interact 
with the transportation of momentum and energy. Hence, 
it is also necessary to study the influence of the buoyancy 
production terms in the equations of the kinetic energy of 

turbulence (k) and the dissipation rate of turbulence energy 
(E) on indoor airflow patterns. 

As we know, the air velocity, air temperature, and tur
bulence energy distributions within a room are related to 
comfort, and the convective heat transfer coefficient for a 
wall is one of the basic parameters used for space load 
calculation and the analysis of building energy consump
tion . If they are computed by an airflow program, it is 
necessary to apply an appropriate low-Reynolds-number 
model of turbulence, as previously mentioned. Hence, to 
find a suitable low-Reynolds-number model will be the 
main subject of this work. 

OUTLINEOFTHETURBULENCEMODEL 
The turbulence model used will be described in two 

parts. The first part concerns the Lam-Bremhorst k-e model 
for low Reynolds numbers, and the second deals with the 
buoyancy production term in the k and e equations. 

The Lam-Bremhorst k-e Model 
of Low Reynolds Number 

Many suggestions have been made over the past few 
years for the extension of turbulence closure models to 
enable their use at low Reynolds numbers and to describe 
the flow close to a solid wall. Most of the extended models 
incorporate either a wall damping effect, a direct effect of 



molecular viscosity, or both, on the empirical constants and 
functions in the turbulence-transport equations devised 
originally for the high-Reynolds-number, fully turbulent 
flows remote from the walls. In the absence of reliable 
turbulence data In the immediate vicinity of a wall or at low 
Reynolds numbers, these modifications have been based 
largely upon compa(lsons between calculations and ex
pe~iments inter~? of global parameters. Patel et al. (1985) 
reviewed the existing two-equation, low-Reynolds-number 
turbulence models with a systematic evaluation. They 
found that most modifications to basic high-Reynolds· 
number turbulence models lack a sound physical basis. 
The results of each of the models were compared for dif· 
ferent flows, and it was not clear which of the many pro· 
posed models could be used with confidence. From an 
overall examination of the results, they concluded that the 
models of Launder and Sharma (1974), Chien (1982). and 
Lam and Bremhorst (1981) , which are based on the k·t: 
model, and that of Wilcox and Rubesin (1980) yield com· 
parable results and perform considerably better than the 
others. However, Patel et al. (1985) also suggest that even 
these need further refinement if they are to be used with 
confidence to calculate near-wall and low-Reynolds
number flows. Further, Betts and Dafa'Alla (1986) studied 
the buoyant, turbulent air flow in a tall rectangular cavity 
with a Rayleigh number of 0.81 x 106 by the same turbu
lence models of low Reynolds number used by Patel et al. 
(1985). Their results showed that only the models of 
Launder and Sharma (1974) and Hassid and Poreh (1978) 
were reasonably comparable with their experimental data, 
but none of them w_as very satisfactory. In addition. they 
were unable to obtain converged results with the model of 
Lam and Bremhorst (1981) . 

As already mentioned, the k·e model is generally us
ed for airflow simulations in and around .bu ildings. The 
model of Lam and Bremhorst (1981), which ls based on the 
k·e model, mo?ifies the direct effect of molecular viscosity. 
The con~tr~ct1on of the model can be done very easily in 
most ex1st1ng computer programs that use the high
Reynolds-number k·t: model. This model gave rather good 
results in the studies of Patel et al. (1985) and was not well 
tested by Betts and Dafa'.A.lla (1986). Therefore, this model 
was selected in the present research for predicting low· 
Reynolds-number flows in cavities with Rayleigh numbers 
greater than 1010. 

In the model of Lam and Bremhorst, the transport 
equations of the kinetic energy (k) and the dissipation rate 
of turbulence energy (El are determined from: 

Dk = ~ [(.!j_ + v) akJ + 11 (av; + !i.J.) av; (1) Dt (jxl. ak I ax t ax. ax. ax - e 
I I I 

De 
Dt= 

a [("' ) ae_i e (av; av) av e2 axi a, + 111 ax) + c, f, "tk axi + ~ ax; - C2'27{ 

(2) 

The time-averaged flow field can be determined 
through the eddy viscosity given by: 

(3) 

where 

ak = 1.0 
a, = 1.3 
c, = 1.44 
C2 = 1.92 
cµ = o.o9 
In fact, these equations are a general form of those 

given by Launder and Spalding (1974) in which the tune· 
tions f,, f2 , and fµ are all assumed to be identically one. 
Th!s assumption cannot be valid within a laminar sublayer 
or m low-Reynolds-number flows. The functions f , f1, and 
f2 are given by the following equations: µ 

(4) 

f, = 1 + [Ac1]a (5) 
fµ 

f2 = 1 - e-R¥ (6) 

where the turbulence model constants are Aµ = 0.0165, At 
= 20.5, and Ac1 = 0.05, and Rk and Rt are turbulence 
Reynolds numbers. 

The Buoyancy Production Terms 
in the k and E Equations 

Since the temperature difference in room air is relative
ly small, it is common practice to use the Boussinesq ap· 
proximation. This approximation takes air density as con· 
slant and considers buoyancy influence on air movement 
in the momentum equation via the following term: 

- (3 (T - T0 )g; (7) 

Since the k and e equations are derived from the momen
t~m .equation, the bu.oyancy term in the momentum equa
tion 1s then changed into buoyancy production terms in the 
k and e equations. The buoyancy production term for the 
k equation is: 

Sk = _ i!_V'H'g (8) Cp I I 

where His enthalpy. This term can be approximated as: 

Sk = _ 1!._V(H'g; = (3...!!:.L a(T - To) Q; (9) Cp paH ax; 
~k is an ~dditional source term on the right side of Equa
tion 1 (Nielsen et al. 1979). A similar method can be applied 
to thee equation to generate: 

s = -2!!:!.av:aH' = c !..s 
' p axi axi 3 k k 

(10) 

where C3 = 1.44. Equations 9 and 10 are the additional 
terms in the right side of Equations 1 and 2, respectively. 

The Boundary Conditions 
When a. low-Reynolds-number k·t: model is applied, 

no wall function formulas are required because the model 
is vali~. for the whole flow domain. However, the boundary 
cond1t1ons fork and e must be specified. We have tested 
a number of methods as reviewed by Patel el al. (1985), but 
it is very difficult to obtain converged and correct results. 
Only the following two methods present good results. 

The first one is recommended by Parry (1989), where 
a zero value is assigned at the wall for the k equation and 
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Figure 2 Sketch of the small-scale water-filled cavity 

f = 211,k (11) 
y2 

for thee equation for the grid cell close to the wall. 
The wall function formulas are still used as the second 

method, but the distance between the wall and the first grid 
can be very small. This indicates that the first grid points will 
be located inside the viscous layer. In this circumstance, the 
second grid points may still be in the inner region of the 
boundary layer and the low-Reynolds-number model will 
work well for those points. In the inside viscous layer, the 
wall function formulas present linear velocity and temper
ature distributions, and they can be accepted for air flow 
in a room. This is different from the application of the high
Reynolds-number model with the wall function formulas in 
which the first grid must be sufficiently remote from the wall. 

VALIDATION OF THE TURBULENCE MODEL 

Numerical Solution 

A computer code developed by Rosten and Spalding 
(1987) was extended to include the turbulence model 
formulations described above. The computational method 
involves the solution, in finite-volume form, of two- or three
dimensional conservation of mass, momentum, energy, 
turbulence energy, and the dissipation rate of turbulence. 

The methodology for performing the numerical 
calculations uses under-relaxation and false time step fac
tors for obtaining a convergent solution. All calculations 
were performed using an upwind differencing scheme and 
"staggered grids." For the present study, a non-uniform 
grid is used to produce a very fine grid near the boundary 
and a coarse grid in the central region of the flow field. The 
grid for the two-dimensional cases is 53 x 53 and will be 
described in the following sections. A detailed description 
of the mathematical model and solving procedure is given 
by Chen (1988). 

Validation of the Model in a 
Small-Scale Water-Filled Cavity 

Aside from its intrinsic value, the accurate modeling of 
turbulent natural convection for a cavity with a hot wall and 
a cold wall is considered to be a logical first step toward 
the numerical simulations of more complex, buoyancy
affected, turbulent flows related to buildings. However, in 
reviewing the literature, it becomes apparent that even the 
case of steady, two-dimensional natural convection with 
turbulent flow in a cavity has not yet been satisfactorily 
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Figure 4 Relationship between the maximum vertical com
ponent of velocity (w) and the cavity height 

resolved. Therefore, the validation of the turbulence model 
is first carried out for a two-dimensional square cavity, as 
shown in Figure 2, for which detailed measurements are 
available (Heiss 1987). 

This square cavity is 9.84 in. (250 mm) in width and 
height and the flow is controlled to be two-dimensional. In 
order to simulate the airflow in a room, the Rayleigh num
ber of the cavity was modeled to be similar to that of a full
scale room. Hence, the medium used in the cavity was 
water instead of air. The cavity was heated by one of the 
side walls and cooled by the other. The temperature dif
ference between the two side walls was 78.1°F (43.4°C). 
The top and bottom walls were controlled to be adiabatic. 
The mean temperature of the water was 102.2°F (39.0°C). 
The corresponding Rayleigh number is 2.5 x 1010 . 

In order to study the low-Reynolds-number model and 
the buoyancy production terms in the k and e equations, 
the computations were performed for four cases, as shown 
in Table 1. 

The calculated profiles of the vertical component of 
velocity (w) near the hot wall in different heights (different 
z sections) for the four cases and the corresponding 
measured results (Heiss 1987) are given in Figure 3. The 
velocity profiles computed by applying the low-Reynolds
number k-e model (Cases 2 and 4) are in good agreement 
with the measurements. The profiles calculated by the 
high-Reynolds-number k-e model (Cases 1 and 3) deviate 
from the measurements. We define a maximum error be
tween the computations and the measurements in the 
velocity profiles as: 

emaAz) = max I Wcomputed ~ Wmeasured I x 100% (12) 
W max, measured 

where Wmax, measured is the peak value Of the velocity (w) in 
the profile. The emax in section z = 7.36 in. (187.5 mm) for 
Case 3, which uses the high-Reynolds-number model with 
buoyancy production terms in k and E equations, can be 
as large as about 61%. This means that if the high
Reynolds-number model is applied for the airflow com
putation in a room, it may result in very significant errors in 
the predicted velocity field. 

The influence of the buoyancy production terms in the 
k and e equations is not very significant. From the com
putations, it seems that the introduction of the buoyancy 
production terms (Cases 3 and 4) results in a slight 
discrepancy. 

It should be pointed out that the low-Reynolds-number 
model (Cases 2 and 4) still gives a too-high peak value for 
w velocity profiles. Figure 4 shows the maximum w veloc
ity distribution in relation to the height of the wall. Among 
these four cases, the low-Reynolds-number model without 
buoyancy production terms in the k and e equations (Case 
2) presents the best results. 
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Figure 5 Temperature profiles (top figure for near the hot 
wall in the section z = 4.41 in. {112 mm], bottom 
for near the cold wall in the section z = 5.43 in. 
[138 mm], where x• is the distance to the cold 
wall) 

The near-wall temperature profiles for the hot and cold 
walls are illustrated in Figure 5. The computations for the 
four cases show similar results, and the temperatures far 
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from the wall in all four cases are lower than those in the 
measurement. Figure 6 shows the vertical temperature 
distribution in the section x = 4.92 in. (125 mm) (the mid
dle section). 

It seems the overall temperature in the cavity of the 
measurement is higher than that of the computations. In 
the computations, all the water physics properties are 
assumed to be temperature independent. If the medium 
is air, this assumption is acceptable. With this assumption, 
the flow and temperature distributions are always sym
metrical to the center point of the cavity. However, the ther
mal conductivity of water is 0.343 Btu/h·ft·°F (0.595 
W/m• K) when the water temperature is 63°F (17.3°C) but 
0.376 Btu/h•ft• °F (0.651 W/m•K) when the temperature is 
141°F (61.7°C) . The laminar kinetic viscosity of water is 
decreased from 1.16 x 10-5 ft2/s (1.077 x 10-6 m2/s) to 
0.50 x 10-5 ft2/s (0.463 x 10-5 m2/s) in this temperature 
range. In the viscous sublayer, the heat transfer flux is pro
portional to the thermal conductivity and is inversely 
proportional to the laminar kinetic viscosity. This means 
that with the same temperature differences, the heat gain 
from the hot wall is larger than the heat loss to the cold wall. 
In the steady state, the temperature difference between the 
hot wall and the cavity center should be smaller than that 
between the cavity center and the cold wall in order to 
maintain the energy balance. As a result, the average water 
temperature in the cavity is higher than the mean 
temperature of the hot and cold walls. This can be the main 
reason for the discrepancy between the computations and 
the experiment in the temperature distribution. 

Although the temperature profiles calculated in the 
four cases look similar, the heat fluxes are not the same. The 
heat gain from the hot wall (or the heat loss to the cold wall) 
is 5601 Btu/h•ft (5382 W/m) for Case 1, 3578 Btu/h•ft (3438 
W/m) for Case 2, 5597 Btu/h •ft (5379 W/m) for Case 3, and 
3524 Btu/h •ft (3386 W/m) for Case 4. The accounting for 
the buoyancy production terms in the k and E equations 
(Cases 3 and 4) does not have a significant influence on the 
heat transfer. But the difference of the heat fluxes by the 
high- and low-Reynolds-number k-E models is great. For 

W = 1.64 ft (0.5 m) 
14 .,I 

ADIABATIC WALL -----·-

HOT WALL AIR COLD WALL 

H = 8.20 ft (2.5 m) 

I ____ __.,_._ 

ADIABATIC WALL 

Figure 7 Sketch of the full-scale air-filled cavity 

example, the difference between Cases 1 and 2 is (5601 
- 3578)/3578 = 56%. Unfortunately, no experimental 
data are available for the validation. 

The previous discussion implies that the high- and low
Reynolds-number models may predict the same air tem
perature distributions in a room, but the convective heat 
transfer coefficients calculated are different. Since convec
tive heat transfer coefficients are very important for space 
!oad calculation and the analysis of energy consumption 
in a room, further validation of the models is necessary. 

Validation of the Model 
in a Full-Scale Air-Filled Cavity 

The experiment used for validation was performed in 
a small-scale model. The resulting information is extrapo
lated to full scale by observing the similarity of Rayleigh 
number, which is the most important parameter in natural 
convection of indoor air flow. The small-scale cavity with 
water does not always accurately simulate a full-scale room 
with air. Important features are frequently distorted in the 
model test because of the difficulty of maintaining the 
similarity of Reynolds number and Prandtl number. There
fore, validation in a full-scale air-filled room was necessary 
for obtaining further confidence in the model, and that will 
be the subject of this section. 
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Figure 8 Profiles of vertical component of velocity in the middle height z = 4.10 ft (1.25 m) 

The validation of the low-Reynolds-number k-e model 
in a full-scale air-filled cavity was carried out by the applica
tion of the experimental results from Cheesewright et al. 
(1986). The air-filled cavity was designed with a height of 
8.20 ft (2.5 m) and a width of 1.64 ft (0.5 m), as shown in 
Figure 7. The top and bottom walls were insulated to be 
adiabatic. The temperature difference between the hot wall 
and the cold wall was 82.4°F (45.8 K) . The cold wall was 
cooled by the ambient air of the laboratory. The corre
sponding Rayleigh number is 5 x 1010 and is based on 
the cavity height. The air velocities and their fluctuations 
were measured by a laser-Doppler anemometer system. 

Figure 8 shows the comparison between the 
measured velocity profiles at the middle height and the 
ones computed by the four models, as indicated in Table 1. 
The difference between the results predicted by the high
Reynolds-number k-e model (Cases 1 and 3) and the low
Reynolds-number k-e model (Cases 2 and 4) is smaller 

than that in the water-filled cavity. However, it is clear that 
the results predicted by the low-Reynolds-number model 
(Cases 2 and 4) are in better agreement with the measure
ments. Figure 8 also lndicates·that the measured near-wall 
velocity profiles are not symmetric. Moreover, Cheese
wright et al. (1986) also report that the velocity profile near 
the top wall is not the same as that near the bottom wall. 
The boundary layer at the bottom of the hot wall showed 
many of the characteristics of a laminar bourdary layer 
(asymmetric relaminarization effects) . In this study, these 
asymmetric effects may be attributed to the imperfect insu
lation of the roof of the cavity, since any heat loss in this 
region, even of a negligibly small proportion to the heat 
transfer across the cavity, could have a major effect 
(Cheesewright et al. 1986). 

It shouhj be noted that the asymmetric relaminariza
tion effects also occurred in a case with a high level of insu-
1 ation (Cowan et al. 1982). Cheesewright et al. (1986) 
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Figure 9 Vertical temperature profiles in the middle section 
x = 9.84 in. (25 cm) 

proposed.that there appears to be a feedback mechanism 
that not only enhances the sensitivity to heat loss through 
the roof but also seems to increase the strength of the flow 
across the roof and to reduce the strength of the flow 
across the floor. As a consequence, this will enhance the 
relaminarization at the bottom of the hot wall and increase 
the turbulence at the top of the cold wall such that the 
velocity profile in the middle height is asymmetric. 

The vertical temperature profiles in the center section 
(x = 9.84 in. [0.25 m]) are given in Figure 9. The measured 
overall temperature of the cavity is lower than that of the 
computations. As we know, the variations of the physics 
properties of air are small within a temperature difference 
of 82.4°F (45.8 K). Therefore, the discrepancy is probably 
due to the imperfect insulation of the ceiling such that acer
tain amount of heat was transferred to the roof. As the final 
result, the overall air temperature of the cavity is lower than 
the mean temperature of the hot and cold walls. 

Although the difference among the computed 
temperature profiles is small, as in the water-filled cavity, we 
have obtained large differences in the heat gains from the 
hot wall (or heat loss to the cold wall) among the computa
tions. The heat gains for the four cases are 315 Btu/h 0 ft 
(303 W/m), 227 Btu/h·ft (219 W/m), 303 Btu/h•ft(291 W/m), 
and 226 Btu/h•ft (217 W/m), respectively. If a convective 
heat exchange coefficient is defined based on the wall-to
cavity-center temperature difference, its value for Case 1 
is 0.93 Btu/ft2 ·h·°F (5.3 W/m2 •K); for Case 2, 0.67 
Btu/ft2 • h ·°F (3.8 W/m2K); for Case 3, 0.90 Btu/ft2 ·h·°F (5.1 
W/m2 ·K); and for Case 4, 0.67 Btu/ft2·h·°F (3.8 W/m2 •K). 
The difference between the computations by the high
Reynolds-number model (Cases 1 and 3) and by the low
Reynolds-number model (Cases 2 and 4) is (315-227)/227 
x 1000/o = 39%. 

In order to validate the models with respect to heat 
transfer, Figure 10 shows the relationship between the local 
Rayleigh numbers with the local Nusselt numbers. The 
local Rayleigh number (Raz) and local Nusselt number 
(Nu,) in boundary flows are defined as: 
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Figure 10 Local Nusselt number vs. local Rayleigh number 
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Due to the insufficient thermal insulation of the top and bot
tom walls, asymmetrical data for the heat transfer through 
the hot and cold walls are found in the experiment by 
Cheesewright et al. (1986). Therefore, the measured data 
for both walls are given in Figure 10. It is clear that the com
putation with the low-Reynolds-number model is in good 
agreement with the measurement in the hot wall. The dif
ference in heat transfer between the hot wall and the cold 
wall can be regarded as the heat loss through the top and 
bottom walls. We may conclude that the low-Reynolds
number model yields correct convective heat transfer coef
ficients and should be employed for the airflow computa
tion in a room. In other words, the convective heat transfer 
coefficients calculated by the low-Reynolds-number model 
are reality and can be used for other purposes, such as 
space load calculation. 

Chen (1988) reported that the high-Reynolds-number 
model with the wall functions presents a too-low convec
tive heat exchange coefficient if the first grid is located out
side the viscous sublayer of the boundary. In this study, a 
too-high convective heat exchange coefficient has been 
obtained when the first grid is in the viscous sublayer. This 
implies that the convective heat transfer computed by the 
high-Reynolds-number model depends on the first grid 
location. Therefore, this model is not suitable for the airflow 
simulation in a room from the viewpoint of the heat transfer 
in the boundary. 

In the experiment, the velocity fluctuations at the mid
dle height of the cavity are provided. However, no detailed 
information is given on the definition of the velocity fluctua
tions. If we assume that k is the square of the velocity fluc
tuation, a comparison of k profiles in the middle height of 
the cavity between the computations and the measure
ments can be done, as illustrated in Figure 11. The com
putations with the buoyancy production terms in the k and 
e equations (Cases 3 and 4) are in very good agreement 
with the measurements in the middle section. In the near 
wall regions, the computations using the low-Reynolds
number k-e model (Cases 2 and 4) present much better 
results. 

Since the velocity fluctuation (turbulence energy) is 
one of the important parameters affecting comfort as 
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Figure 11 Profiles of kinetic energy of turbulence in the 
middle height z = 4.10 ft (1. 25 m) 

explored by Fanger et al. (1989), we may conclude from the 
above results that the model of Case 4 (low-Reynolds
number k-E model with buoyancy production terms in the 
k and E equations) will be the best for the prediction of 
natural-convection flow as well as mixed-convection flow 
in rooms. 

CONCWSIONS 
A low-Reynolds-number k-E model of turbulence 

developed by Lam and Bremhorst (1981) was first used to 
simulate the flow in a small-scale water-filled cavity with 
natural convection, for which detailed experimental data 
are available. The corresponding Rayleigh number (2.5 x 
1010) was as high as that encountered in a full -scale room 
with natural convection. The model was then applied to a 
full-scale air-filled cavity for further validation (Ra = 5 x 
1010). The Boussinesq approximation was used for 
buoyancy and the buoyancy production terms in the k and 
E equations were also studied. 

From the validation in the water-filled cavity, it was 
found that near-wall velocity profiles calculated by the low
Reynolds-number k-E model are in good agreement with 
the measurements despite peak values a little too high in 
the computations. The high-Reynolds-number k-E model 
with wall functions (Launder and Spalding 1974) may result 
in an error as large as 61% in the near-wall velocity profile 
computations and 56% in the total heat gains from the hot 
wall. Although the error and the difference are smaller in 
the full-scale air-filled cavity, the validation supports the 
conclusions obtained from the results of the water-filled 
cavity. This implies that if the high-Reynolds-number model 
is applied tor the airflow computation in a room, the 
predicted velocity field will deviate very much from ex
perimental data. 

The convective heat transfer computed by the high
Reynolds-number model depends on the first grid loca
tion. From the viewpoint of the heat transfer in the boun
dary, this model is not suitable tor the airflow simulation in 
a room. In other words, the convective heat transfer coef
ficients calculated by the high-Reynolds-number model 
are not reality and cannot be used further. 

The computations also show that the influence caused 
by the buoyancy production terms in the k and E equations 
is small on the velocity and temperature profiles but is sig
nificant on the turbulence energy profiles. Accounting for 
the buoyancy production gives better turbulence energy 
distributions, which is very important because turbulence 
has a significant impact on the sensation of draft. 

Hence, tor the simulations of natural-convection flows 
as well as mixed-convection flows in rooms, it is better to 
use the low-Reynolds-number k-E model of Lam and Brem
horst with the buoyancy production terms in the k and f 

equations. 
Since water is used as the medium in the small-scale 

cavity and water physics properties are assumed to be 
temperature-independent in the computations, a signifi
cant discrepancy between the computations and the ex
periment in temperature distribution was found due to this 
assumption. However. for natural- or mixed-convection 
flows in rooms, the assumption may be acceptable, be
cause air physics properties are nearly independent of 
temperature. 
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NOMENCLATURE 
a = thermal diffusivity 
Aµ, A1, Ac1 = turbulence model constants 
C

1
, C2, C3, Cµ = turbulence model constants 

f1, f2 , fµ = turbulence model functions 
9; = gravity in i direction 
H =enthalpy 
k = kinetic energy of turbulence 
I = characteristic length scale in flow boundary 
Nu, = local Nusselt number 
Ra, = local Rayleigh number 
Rk = turbulence Reynolds number (kv'y)J.,,, 
Rm = Reynolds number based on maximum 

T 

u+ 
v 
w 
x 

y+ 
z 
{3 

µ 
p 

p 

velocity (UmYm)lv1 
= turbulence Reynolds number (k2)1Pf 
= source terms in k and e equations due to 

buoyancy 
= temperature 
= hot wall surface temperature 
= core temperature 
= dimensionless velocity 
= mean velocity 
= velocity component in vertical (z) direction 
= horizontal coordinate 
= tensor notation for space coordinates 
= smallest distance from a cell center to a wall 
= dimensionless transverse coordinate 
= vertical coordinate 
= expansion coefficient 
= turbulence dissipation rate 
= fluid viscosity 
= kinetic viscosity 
= density 
= diffusion Prandtl number for energy 
= diffusion Prandtl number for turbulence 

energy 
= diffusion Prandtl number for dissipation rate 



Subscripts 

I =laminar 
o = reference value 
t = turbulent 

Superscripts 

9 = fluctuating component of the turbulence parameters 
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