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ABSTRACT 
In this paper, the push-pull flow is assumed to be 

incompressible, two-dimensional, isothermal, laminar, 
and/or turbulent. By introducing the stream function and 
the vorticity, and by transforming Navier-Stokes equations 
into the equations of stream function and vorticity 
transportation, the problem of laminar flow is solved. 

Since the Navier-Stokes equation is solved with time­
mean computation, we try to solve the problem of turbu­
lent flow with a one-equation model. The comparison 
between the computational results and the experimental 
data confirms the accuracy of the computation and the 
feasibility of the numerical analysis of the computer. 

INTRODUCTION 
Air curtains formed by the combination of push and 

pull flows are often used in air conditioning to insulate part 
of a space, such as gate air curtains for the prevention of 
the invasion of cold or warm air, and are used in factories 
to improve working environments by eliminating gas or 
fumes generated in many processes. 

Owing to the complexity of the push-pull flow, research 
on the flow may be far from perfect until now. The formulae 
of its computation are essentially founded on the jet 
theories and/or experimental bases (Hayashi et al. 1985). 
In order to deepen our knowledge, the authors have been 
engaged in the computational analysis of push-pull flow. 

Formerly, the computational analysis of incompressi­
ble flow was for solid boundaries. The boundary conditions 
could be assumed according to the Dirichlet conditions or 
the Neumann conditions. 

Push-pull flows apart from the vicinity of the flanged 
opening are always in contact with flows such as polluting 
gases or transverse wind. The controlling ability of the 
push-pull flow determines whether the push flow entrained 
surrounding air or pollutant gases leaks from the inlet 
opening or not. This is reflected by the conditions of the free 
access of the flows at the nonsolid computational bound­
aries. The boundary with the distribution of velocity gradi­
ent which permits the free access of the flows is defined as 
free boundary by the authors. 
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Economization and efficiency must be pursued for 
any kind of push-pull flow installation. The main factor 
deciding the cost and effect is the ratio of flow rate. In other 
words, the ratio of the quantity of inlet, 0 3 , to that of outlet, 
0 1 , reflects the controlling effect, the cost of operation, 
and initial investment. Now, the problem is how to deter­
mine the ratio of 0 3/01 . 

In this paper, the method for determining the minimum 
flow ratio of both cases with or without flows disturbing 
push-pull flow is recommended. Using this method, the 
minimum flow ratio of more complicated cases can also be 
deduced. This will be discussed along with the experi­
mental results. 

The presence of the flange at the outlet adversely 
affects the fluidity of the outlet flow. The effects of the flange 
on the fluidity of the outlet flow are also discussed in the 
paper. The optimum combination of the outlet and the 
flange has been obtained by numerical analysis. 

FLOW EQUATIONS 

The steady two-dimensional flow of incompressible 
fluid can be expressed by the continuity equations and the 
Navier-Stokes equations. The dependent variable in these 
equations can be chosen as the stream function, if;, and 
the vorticity, w. Referring to the coordinates shown in Fig­
ure 1, if the width of outlet, 0 1 , is the reference width and 
the flow velocity at outlet, V1 , is the reference velocity, 
then, after dimensionless transformation, the fundamen­
tal if;- w equations describing laminar flows can be written 
as follows: 

Q~''' + 'g_'_>}> = - w 
'dx' (ly' 

Cl Cl l/J Cl CJ ·'· 1 Cl 2 w " 2 w -- (w - ) - - (w _.,, ) = _ ( __ +_a_) 
Clx Cly Cly 'dx Re 'dx' · (ly 2 

where 

'd •/J u = -- --
'd y 

Cl"' v= --
Cl x 

'du 'dv 
w= 8°y - ~ 

(1) 

(2) 

(3) 

For solving turbulent flow problems, the authors have 
tried both the one-equation model (k-L model) and the two­
equation model (k-c: model) (Damin and Xinghua 1986). A 
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Figure 1 Sketch of two-dimensional push-pull flow 

comparison of the two models shows that the results are 
different at the nozzle of the outlet or inlet where the turbu­
lent velocity becomes violent. The computational accun=icy 
of the k-E model is better than that of the k-L model, while 
at a distance from the nozzle both results coincide well . 
Si nee the computational expense of the k-E model is several 
times as much as that of the k-L model, the k-L model is 
used for turbulent flow in this paper. In addition to Equa­
tions 1, 2, and 3, the following equations are required for 
turbulent flows (Yoshikawa and Yamaguchi 1974): 
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For turbulent flows, the length scales, L, are 
designated as follows (Gosman et al. 1969): 

If the distance from any solid face is Ln, then 

L = Ln when Ln ~ L max (9) 

L = L max when Ln > L max (10) 

Lmax=tLs (11) 

Ls = (F1 x H)/201
2 (12) 
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Figure 2 Two-dimensional control volume 

The proportionality factor, t. is variable and can be 
determined by comparing the results of computation and 
experiment. However, in a certain limited calculation 
region, there is little effect of the change of ton the calcula­
tion results. Then, r is considered to be constant. It is of the 
order of magnitude 10-1 • The coefficients a0 , etc., can be 
found in Table 1. 

All these formulae are dimensionless. The width of the 
outlet, 0 1 , is used as the reference width, while the veloci­
ty at the outlet, V1 , is used as the reference velocity. 

Finite Difference Expressions of Basic Equations 

Figure 2 shows a two-dimensional grid. The grids are 
divided into uniform square meshes, i .e.~ = ~y The con­
trol volume around Pis shown by dashed lines, and the 
points of e, w, n, ands are situated at the centers of EP, WP. 
NP and SP. respectively. Over the control volume in Figure 
2 making the integrations of formulae (1), (2), (4), and (5), 
we can get the standard forms of the two-dimensional 
discretization equations (Patankar 1980): 

ar•fir~ aH/>F + """'" + ri 11r/JN + a srfis + b (13) 

Then, the coefficients ap, aN, a8, aw. and aE can be 
expressed in the form shown in Table 2. The expressions 
of coefficients bE, AE, 1/lxy• " xy • etc., can be found in Table 3. 

Boundary Conditions 

(a) For push opening : The values of all variables are 
assumed to be initial conditions. 

( b) For pull opening: The normal gradients of all variables 
are assumed to be zero. 

CJ 
l/ 

TABLE 1 
Coefficient Values 

aD ak 

0.22 0.416 1.53 



TABLE2 
Definitions of Coefficients aE, aW, aN, aP & b 

Laminar Flows 
¢P l/-> p (,) p 1/J p 

1 bE + 
1 

1 aE --
Re 

1 bw + 
1 

1 aw --
Re 

1 bN + 
1 

1 aN --
Re 

1 b s + 
1 1 a s 
Re 

4 
4 

- +bE+bw 
4 aP Re+bN+b s 

b f::::.Xf::::.YWP !::::.x!::::.ywP 

( c) For sol id wall : 

1) Stream functions, t/; , are determined according to 
the ratio of flow rate. 

2) Vorticit ies, w, are given by the Woods method 
(Woods 1954), i.e., 

(14) 

in which fin is the distance from (n + 1) ton per­
pendicular to the wal l. 

( d) Open boundary can be treated in either of the follow­
ing ways: 

I 
I 

I 

1) Treated as general boundary: The boundary con­
dition is similar to that of push opening. 

2) Treated as free boundary: The boundary condition 
at the open face is first assumed to be an initial 
value. In the procedure of iteration to convergence, 

TABLE 3 
Definition of Coefficients bE, o,/;xy, veff.xx etc. 

b E 
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Turbulent Flows 
(,) p kP 
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the value of a neighboring point evaluated by extra­
polation is given to the boundary, leaving the 
boundary condition at free boundary unfixed for 
further improvements. In appearance, this is similar 
to the assumption of the boundary condition at the 
suction nozzle, but they are different in essence. For 
the pull opening, the boundary is at the lower 
bound of the calculated area, exerting no influence 
on the solution, while for the free boundary, the 
calculated points of the open face can be consid­
ered either at the lower bound or the upper bound, 
depending on the flow ratio. The difference of their 
influences on the solution is remarkable. 

Convergence Criterion 
The variables t/;, w, and k on the free boundary vary 

with every iteration of calculation and are hard to converge. 
Besides, the variables t/;, w, and k on the general boundary 
do not change with iteration of calculation and are easy to 
converge. 

Then, the convergence criterion of iteration is as 
follows without distinction of free or general boundary: 

a) The convergence criterion is previously fixed, /1 = 10-~ 

b) In the SOR (successive over-relaxation) method, max­
imum iteration is decided as follows, Nmax = 1000 . 

When the ratio of a maximum of absolute correction 
values on every point to a maximum of absolute variable 
values is less than /1 in any case oft/;, w , and k, respec;;tively, 
the numerical calculation is considered to converge. 

EXPERIMENTAL PROCEDURES 

For measuring the velocity and flow direction of 
push-pull flows, the smoke wire method and hot-wire 
anemometer are used. 

Smoke Wire Method 
A machine oil with paraffin oil added is painted on a 

nicrome wire, which is stretched perpendicularly to flow 
direction . When the electric current flows on the wire 



momentarily, vapor of paraffin oil touches the airflow at 
normal temperature and condenses back to mist by cool­
ing. The airflow through the wire can be visualized by 
the mist. 

After the electric current flows, the airflows are illumi­
nated in a proper time lag with a stroboscope and are 
photographed. The velocity distributions near the wire are 
visualized as the time line of the mist. 

Hot-Wire Anemometer Method 

The probe of the hot-wire anemometer is inserted into 
the side opening. The velocity of push-pull flows can be 
measured by means of the probe traversing to the x or y 
direction. 

COMPARISON OF RESULTS 

Evaluation of the Minimum Flow Ratio 

The ratio of flow rate is defined as: 

K = Kmin = 03101 = (01 + 02)101 = 1 + (02101) (15) 

It can be determined in the following way: 
When the push-pull flow has not been set out, the sur­

rounding air can be considered steady. Then, 0 2 in Equa­
tion 1S is the surrounding air entrained by the push-pull 
flow. When 0 3/01 = 1, then 0 2 = 0, meaning that the flow 
entrained from the opening AE and DH will return back to 
the surroundings from the same openings. Accordingly, 
the minimum flow ratio, Kmin• can be determined by 
checking the directions of the flow at AE and DH. For 
quicker computation time, the push-pull flow can be 
assumed to be symmetric about the center line. Then, only 
half of the computated area is to be taken into considera­
tion and, in this case, the flow function and the vorticity at 
the symmetric axis will be equal to zero. 

Q _3 

E E 
-- - - - . . . . - - - - - . . . . . . . . . . . . 

Figure 3 shows an example for determining the 
minimum flow ratio, Kmin• of laminar flow. Figures 3a and 
3b indicate the case when K > Kmin• the flow, 0 2 , is drawn 
into the opening AE totally or partially returns to the sur­
roundings from the same opening. In another case (Figure 
3c), when K < Kmin• the flow, 0 2 , is drawn in from the open­
ing AE and proceeds forward without turning around. In 
the meantime, the result from the computational analysis 
is Kmin = 1.21. 

Figure 4 shows the visualized time lines obtained by 
using the smoke wire method for the verification of the 
calculated results of Figure 3. Although the results of 
visualized experiments are influenced by the buoyancy 
and cannot sufficiently embody the direction of individual 
streams, they do reflect the flow as a whole and can be 
used to ascertain the location and amount of the adverse 
current. From the comparison between numerical calcula­
tions and experiments, it can be concluded that the free 
boundary method and the method for determining 
minimum flow ratio are feasible. 

Since the practical flows are turbulent and the gases 
isolated by push-pull flows always possess a certain veloc­
ity, the formula that is more useful than Equation 1 Scan be 
written as: 

K = Kmin = 03101 = (Oo + 01 + 02)101 

= (00101) + (02101) + 1 (16) 

where 0 0 is the quantity of gas to be isolated. Isolated 
gases are side flows and are assumed to be uniformly 
produced. 

The examples of minimum flow ratio for turbulent flow 
shown in Figure S include cases when K < Km;n (Figures 
Sa and Sb) and when K > Km,ri (Figure Sc). By reference to 
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Figure 3 Velocity vector diagrams of laminar push-pull flow (F1/D1 = 10.0, H/0 1 = 6.0) 
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Figure 4 Comparisons between calcula~ions and experiments for laminar flow 

Figures 5b and 5c, it can be seen that the minimum flow 
ratio, Kmin• is in the range of 1.8 to 2.0 in the case of 0 0/01 

= 0.5. For any isolated gas quantity, 00 , the minimum flow 
ratio can be obtained by this method. 

For turbulent flows, it is not enough to determine the 
flow ratio according to whether there is leakage. The cor­
rect way is to determine the minimum flow ratio according 
to the amount of adverse current or the circulating flow 
under the upper flange (shown in Figure 5b). 

Effect of a Flange Equipped on an 
Opening of Push Flow 

The effect of the flange by the outlet on the fluidity of 
flow can hardly be explained in a few words. Apparently, 
si nee the resistance of the flange to su rrou ndi ng air carried 
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(c) 0:101 = 1.3 

when K = 0/01 > Kmin 

Figure 5 Flow vector diagram of turbulent push-pull flow 

(F/0 1 = 10.0, H/01 = 6.0, 00101 = 0.5) 

along with the outlet flow will consume some kinetic 
energy, the installation of flanges is not preferable in 
engineering practice. However, the wall around the outlet 
of an air-conditioned room and a plate similar to the flange 
will inevitably exist for the presence of connecting 
structures. 

Then, the numerical analysis method can be used to 
find the rational extension length of the outlet to minimize 
the effect of the flange. 

Now, a laminar flow problem will be mentioned. For 
the case when 0 3/01 = 2, HID , = 2.5, and Re = 3000 
are fixed, while F0 increases by 0.125 D, , plotting the 
distribution lines of velocities at four sections in the cases 
of y = 0.1, 0.75, 1.5, and 2.2 between the outlet and inlet, 
one can analyze the distribution of velocities at the section 
for each y to ascertain the effect of the flange on the fluidity 

c 
.... ~ .. .. .. :: ... ... + ........ ... - _,. ... .... ...,.. - ----... .... ~ ... - .... - ... -~~~ ~ .,. - .... ..... .... -------.;. ... ... .... .... -- _.,,._,._.,....,..,.~ ... .... .... - ::::;:::~/~ '. .... .... ..... - .... 

- - ,;r....,.;#.,#. 1? .... .... - ..... - ' . ... ..... .... - ..::r .A' A.-#'/l/f/f. 

02:: -.... .... .... ~ _,,,,,,,,,,,,,,,,.n 
.... ..... .... .... ~ ~ .KA'H'Jf;f;{'lf-1'-.... .... -.... .... ~ ~ .¥.K;lf?/'#1'<1/~4. 

.... .... .... ..... .... .... .:rr .;JI' KK3':1'"!f'lf"f~~ ... .... - .... .... .... .;r ..,. #",,,,,,,,.,..,,..,~"A ... .... .... - .... ,.. ,.. "?.., .... .,,.,..,. .. " .... ~ ~ ->r.., .. .,...,....,...,..,,..,.. ........ 
:: ... ... .... .... .... ~ ....... ii"' v ?"?'I'".,,.~•'".< - .... ... .... ... ~-r~.- .. r,,...,,..,,.,_JL...._'4r(Al ... ... ... ... ... .. : :: : :::;;;,..,.""_:,, ~~~ ..... "' ... .. ,.. ,.. ... .. .. .. ,.. .. > .. > ..... ., ~ ..,..,..-c.A1'-tp 

A Bl 01 

Figure 6 Velocity vector diagram (FD/0 1 = o, 0:101 = 2, H/01 "' 2.5) 



E .. >-... >-.. ,.. 
"' >-,. ... 

,.. 
02: 

,.. ... ,.. ,.. 
,.. ... ,.. ,.. - ,.. 
,.. ,. 
,.. ,.. 
,.. ,.. 
,.. ,.. ,.. ,.. ... ,.. 
,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. 

A 

Figure 7 

0 
0 

N 

0 
c.o 0 

0 
N 

0 
co 
0 

0 

""' . 
0 

F 
... >- ,.. >- >- ,.. .. .. ... ,.. .,.. .,.. - _,,_~ 

>- ,.. ,.. .,.. .,.. .,.. ~ ........---?>' ~~ .. .. .,.. .. .,.. .,.. -7 :; ;; ::;~ ,.. .. "" -~ -"?.,,,.. "'""'..A:: 
-7 ~ -7 ;7;7~ ~ r 
~ ,--7_.:r_,.7_,,-r ,,P,fl) I I 
~ ~ _.., ,7,7.Jf / f 1~~ 

"' 
_7,;?,,.7',-""f)f;t ; t ;' • 

" ,, .:r H ,.'7 .ff ;fff ;fJI'/~ .. ~ '7 "' 
.;;r ;}' ;t ~ 1111 '11:(.,t ·~ ~ 

,,. ,,. ~ " 
,, "' ff p' ~ 'ff ~(~J .,j ·~ ' 

'7 " " :::f' 11 ~ -.f '1f ·,/·A,~ 1i. 
,.. ,.. '7 '7 "' " ~ ~ ~ ~r <t~/,,l•A 1A 

,.. ,.. '7 '"' 
,,. 

" .,,- -:r -1 ·lf'ff-/.,.4 .A .. ... ,.. ,.. ,,. 
" " "' 

., V' 7-c/"'f-J-f-<f,f.A ,.. ,.. ,.. ,.. ,.. ,.. " 
., ., 'Y ~ "'1-1'1'1·14·A ,.. ,.. ,.. ,,. ,,. ,,. T ., 

"' 7 .,, -1 -:f 'ff<f-:f-1 ,~ .. .. ,.. ,.. ,.. ,.. .,, T -y "'7 ...,,.,,-:t-:r-:;-r .. f ,.. ,.. ,.. ,.. 
"' 

,.. ,,. ., T ..,,. 7 "7<1"'!-1'"'1"'?'</ ,. ,. ,.. .. ,,. ., .,, .,, v "'T "'?' "?.,,.,,..,.~..,,"'}' ,.. ,.. ,.. ,.. ,.. ,.. ,,. ; ; ; .,. .:::;:;~~ 01 ,.. ,.. ,.. ,.. ,.. ,.. ,,. .. .. .. ,.. ,.. ,,. T TT T"-r ~ ... .. ~; ... ,.. ,.. ,.. ,.. ,.. ,.. ,.. .,, 7 r.,. y-., Y1\ .. ,.'1T .. .. ,.. ,.. ,.. ,.. ,.. ; :: ;: ~ : .~-'., .,,~~: ~ ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,,. 
7 Y .,. ... ~ l : _! .:!:...,,,.r ,.. .. ,.. ,.. ,.. ,.. ,.. 

,.. ,.. ,.. ,.. ,.. ... .,... -:- ~1-'I! ""' .... ..t """4.-C ~;-

B 

Velocity vector diagram 

(FD/0 1 = 1.0, 

0 

0 

Q/01 = 2, H/01 = 2.5) 

Exper i men ta I Ca I cu I a ted 
Y Va I ues Va I ues 

0 1 

4 

3 
2 

2 
3 
4 

0.50 o. 75 1.00 1.25 
x 

Figure 8 Comparison between calculations and experiments 

when FD/0 1 = 0 

of outlet flow. Calculation results indicate that when F0 = 

0 1 , the effects of flange on the fluidity of outlet flow 
become steady. 

Figures 6 and 7 show the velocity vector diagrams for 
F0 = 0 and F0 = 0 1 , respectively. Figures 8 and 9 indi­
cate the calculated and experimental values, and are the 
velocity distributions at relevant sections taken from 
Figures 6 and 7. Since y = 0 denotes the region of the 
outlet, y = 2.5, one of the inlets, section 4, is near the inlet 
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Figure 9 Comparison between calculations and experiments 

when FD/0 1 = 1 

region. Therefore, U values at section 4 are affected by the 
suction stream and become large, as is shown in Figures 
8 and 9. 

The velocity distribution lines for y = 0.1 and y = 0.75 
in Figure 8 are distinctly lower than those in Figure 9. The 
discrepancy is due to the effect of flange. Thus, a conclu­
sion can be drawn that if the outlet is extended, the veloc­
ity of the flow by the outlet can be increased. The velocity 
distributions of the sections in Figures 8 and 9 have been 
verified by experiments. 

CONCLUSIONS 

The concept of free boundary of the push-pull flow 
and the method for determining the minimum flow ratio 
were first discussed in this paper. The comparison between 
the calculations and the experiments proved the validity of 
the free boundary method. For the criterion of the minimum 
flow ratio, the authors prefer the location of adverse current 
rather than the leakage at the opening AE. This idea is 
subject to more experimental proofs for more complicated 
cases. 

In the case when there is a flange by the outlet, the 
disadvantageous effects of the flange can be eliminated as 
long as the outlet is extended a certain distance from the 
flange. The extended length is a function of the flow ratio 
and the geometric form of the push-pull installation. The 
method for solving this kind of problem has been revealed 
in this paper. 

NOMENCLATURE 

0 1 = width of outlet (m) 
0 3 = width of inlet (m) 
F1 = full length of flange at outlet (m) 
F3 = full length of flange at inlet (m) 
F0 = extension length of outlet (m) 
H = distance between outlet and inlet (m) 



Q0 = quantity of side flow (m3/s) 
Q 1 = quantity of outlet (m3 /s) 
Q 2 = quantity of flow surroundings (m3/s) 
Q3 = quantity of inlet (m3 /s) 
K = ratio of flow rate(= 0 3/01) 

Re = Reynolds number 
U = dimensionless velocity (when u~O. U = J u2 ,+ 112) 

(when u < 0, U = - ~ u2 + v2) 

u = component of U in x-direction (= u'IV1) 

v =component of U in y-direction (= v'IV1) 

V1 = outlet velocity (m/s) 
x = dimensionless abscissa(= x'/01) 

y = dimensionless ordinate(= y'/0 1) 

v = coefficient of kinetic viscosity (m2 /s) 
1/; = dimensionless .stream function(= 1/; '/V10 1) 

w = dimensionless vorticity(= '01/V1) 

k = kinetic turbulent energy 
L = length of energy-containing eddies 
a0, ak, a, = coefficients 
1 = dimensionality 
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